Journal Home > Volume 17 , Issue 2

Repairing Achilles tendon has emerged as a long-standing challenge in the orthopaedic surgeries. Although suture is the gold standard for re-attaching and repairing the fractured Achilles tendons in clinical surgeries, it is still subjected to numerous adverse side-effects, including chronic inflammatory, tendon tissue re-rupture, scar formation, and post-surgical peritendinous adhesion. In this work, we develop a class of hydrogel bioadhesives with tailored nanoscale phase separation for Achilles tendon repairing. To address the existing limitations of sutures, our hydrogel bioadhesives encompass three core functionalities: (i) instant and tough adhesion to Achilles tendon tissues, (ii) extraordinary long-term adhesion robustness under wet and dynamic in vivo conditions, and (iii) anti-postsurgical peritendinous adhesion. Combining our hydrogel bioadhesives with sutures, such kind of integrated approach enables a conformable yet robust biointerface with the tendon tissues, and prevents the fibroblast migration and formation of connective tissues, thus facilitating the tendon repairing. The hydrogel bioadhesives reported here open up new opportunities for the repairing of fractured Achilles tendons in diverse and complicated clinical scenarios.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Hydrogel bioadhesives harnessing nanoscale phase separation for Achilles tendon repairing

Show Author's information Jun Zhang1,2,§Xingmei Chen1,§Jingseng Lin1Pei Zhang1Iek Man Lei1Yue Tao1Jiajun Zhang1Tian Luo3Ji Liu1,4,5( )
Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
Research and Innovation Center, SKG Health Technology, Shenzhen 518000, China
SAFE (Shenzhen) Medical Technology Company Limited, Shenzhen 518000, China
Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
Guangdong Provincial Key Laboratory of Human-Augmentation and Rehabilitation Robotics in Universities, Southern University of Science and Technology, Shenzhen 518055, China

§ Jun Zhang and Xingmei Chen contributed equally to this work.

Abstract

Repairing Achilles tendon has emerged as a long-standing challenge in the orthopaedic surgeries. Although suture is the gold standard for re-attaching and repairing the fractured Achilles tendons in clinical surgeries, it is still subjected to numerous adverse side-effects, including chronic inflammatory, tendon tissue re-rupture, scar formation, and post-surgical peritendinous adhesion. In this work, we develop a class of hydrogel bioadhesives with tailored nanoscale phase separation for Achilles tendon repairing. To address the existing limitations of sutures, our hydrogel bioadhesives encompass three core functionalities: (i) instant and tough adhesion to Achilles tendon tissues, (ii) extraordinary long-term adhesion robustness under wet and dynamic in vivo conditions, and (iii) anti-postsurgical peritendinous adhesion. Combining our hydrogel bioadhesives with sutures, such kind of integrated approach enables a conformable yet robust biointerface with the tendon tissues, and prevents the fibroblast migration and formation of connective tissues, thus facilitating the tendon repairing. The hydrogel bioadhesives reported here open up new opportunities for the repairing of fractured Achilles tendons in diverse and complicated clinical scenarios.

Keywords: robustness, hydrogels, phase separation, bioadhesion, tendon repairing

References(43)

[1]

Rozis, M.; Benetos, I. S.; Karampinas, P.; Polyzois, V.; Vlamis, J.; Pneumaticos, S. G. Outcome of percutaneous fixation of acute Achilles tendon ruptures. Foot Ankle Int. 2018, 39, 689–693.

[2]

Locke, R. C.; Ford, E. M.; Silbernagel, K. G.; Kloxin, A. M.; Killian, M. L. Success criteria and preclinical testing of multifunctional hydrogels for tendon regeneration. Tissue Eng. Part C Methods 2020, 26, 506–518.

[3]

Freedman, B. R.; Kuttler, A.; Beckmann, N.; Nam, S.; Kent, D.; Schuleit, M.; Ramazani, F.; Accart, N.; Rock, A.; Li, J. Y. et al. Enhanced tendon healing by a tough hydrogel with an adhesive side and high drug-loading capacity. Nat. Biomed. Eng. 2022, 6, 1167–1179.

[4]

Liu, J.; Lin, S. T.; Liu, X. Y.; Qin, Z.; Yang, Y. Y.; Zang, J. F.; Zhao, X. H. Fatigue-resistant adhesion of hydrogels. Nat. Commun. 2020, 11, 1071.

[5]

Li, Q. R.; Zhang, Q.; Cai, Y. H.; Hua, Y. H. Patients with Achilles tendon rupture have a degenerated contralateral Achilles tendon: An elastography study. BioMed Res. Int. 2018, 2018, 2367615.

[6]

Wang, Y.; Jin, S. S.; Luo, D.; He, D. Q.; Shi, C. Y.; Zhu, L. S.; Guan, B.; Li, Z. X.; Zhang, T.; Zhou, Y. H. et al. Functional regeneration and repair of tendons using biomimetic scaffolds loaded with recombinant periostin. Nat. Commun. 2021, 12, 1293.

[7]

Freedman, B. R.; Mooney, D. J. Biomaterials to mimic and heal connective tissues. Adv. Mater. 2019, 31, 1806695.

[8]

Zhao, S.; Zhao, X.; Dong, S. K.; Yu, J.; Pan, G. Q.; Zhang, Y.; Zhao, J. Z.; Cui, W. G. A hierarchical, stretchable, and stiff fibrous biotemplate engineered using stagger-electrospinning for augmentation of rotator cuff tendon-healing. J. Mater. Chem. B 2015, 3, 990–1000.

[9]

Xu, Y.; Dong, S. W.; Zhou, Q.; Mo, X. M.; Song, L.; Hou, T. Y.; Wu, J. L.; Li, S. T.; Li, Y. D.; Li, P. et al. The effect of mechanical stimulation on the maturation of TDSCs-poly(L-lactide-co-e-caprolactone)/collagen scaffold constructs for tendon tissue engineering. Biomaterials 2014, 35, 2760–2772.

[10]

Cai, C. D.; Zhang, X. S.; Li, Y. G.; Liu, X. Z.; Wang, S.; Lu, M. K.; Yan, X.; Deng, L. F.; Liu, S.; Wang, F. et al. Self-healing hydrogel embodied with macrophage-regulation and responsive-gene-silencing properties for synergistic prevention of peritendinous adhesion. Adv. Mater. 2022, 34, 2106564.

[11]

Gurtner, G. C.; Werner, S.; Barrandon, Y.; Longaker, M. T. Wound repair and regeneration. Nature 2008, 453, 314–321.

[12]

Eming, S. A.; Martin, P.; Tomic-Canic, M. Wound repair and regeneration: Mechanisms, signaling, and translation. Sci. Transl. Med. 2014, 6, 265sr6.

[13]

No, Y. J.; Castilho, M.; Ramaswamy, Y.; Zreiqat, H. Role of biomaterials and controlled architecture on tendon/ligament repair and regeneration. Adv. Mater. 2020, 32, 1904511.

[14]

Liu, X. Y.; Liu, J.; Lin, S. T.; Zhao, X. H. Hydrogel machines. Mater. Today 2020, 36, 102–124.

[15]

Taboada, G. M.; Yang, K.; Pereira, M. J. N.; Liu, S. S.; Hu, Y. S.; Karp, J. M.; Artzi, N.; Lee, Y. Overcoming the translational barriers of tissue adhesives. Nat. Rev. Mater. 2020, 5, 310–329.

[16]

Liang, Y. P.; He, J. H.; Guo, B. L. Functional hydrogels as wound dressing to enhance wound healing. ACS Nano 2021, 15, 12687–12722.

[17]

Wei, H.; Wang, Z. W.; Zhang, H.; Huang, Y. J.; Wang, Z. B.; Zhou, Y.; Xu, B. B.; Halila, S.; Chen, J. Ultrastretchable, highly transparent, self-adhesive, and 3D-printable ionic hydrogels for multimode tactical sensing. Chem. Mater. 2021, 33, 6731–6742.

[18]

Zhang, K.; Chen, X. M.; Xue, Y.; Lin, J. S.; Liang, X. Y.; Zhang, J. J.; Zhang, J.; Chen, G. D.; Cai, C. C.; Liu, J. Tough hydrogel bioadhesives for sutureless wound sealing, hemostasis, and biointerfaces. Adv. Funct. Mater. 2022, 32, 2111465.

[19]

Xue, Y.; Zhang, J.; Chen, X. M.; Zhang, J. J.; Chen, G. D.; Zhang, K.; Lin, J. S.; Guo, C. F.; Liu, J. Trigger-detachable hydrogel adhesives for bioelectronic interfaces. Adv. Funct. Mater. 2021, 31, 2106446.

[20]

Chen, X. M.; Zhang, J.; Chen, G. D.; Xue, Y.; Zhang, J. J.; Liang, X. Y.; Lei, I. M.; Lin, J. S.; Xu, B. B.; Liu, J. Hydrogel bioadhesives with extreme acid-tolerance for gastric perforation repairing. Adv. Funct. Mater. 2022, 32, 2202285.

[21]

Wu, S. J.; Yuk, H.; Wu, J. J.; Nabzdyk, C. S.; Zhao, X. H. A multifunctional origami patch for minimally invasive tissue sealing. Adv. Mater. 2021, 33, 2007667.

[22]

Cui, C. Y.; Wu, T. L.; Chen, X. Y.; Liu, Y.; Li, Y.; Xu, Z. Y.; Fan, C. C.; Liu, W. G. A Janus hydrogel wet adhesive for internal tissue repair and anti-postoperative adhesion. Adv. Funct. Mater. 2020, 30, 2005689.

[23]

Cai, C. D.; Wang, W.; Liang, J.; Li, Y. E.; Lu, M. K.; Cui, W. G.; Fan, C. Y.; Deng, L. F.; Li, Y. S.; Wang, F. et al. MMP-2 responsive unidirectional hydrogel-electrospun patch loading TGF-β1 siRNA polyplexes for peritendinous anti-adhesion. Adv. Funct. Mater. 2021, 31, 2008364.

[24]

Voleti, P. B.; Buckley, M. R.; Soslowsky, L. J. Tendon healing: Repair and regeneration. Annu. Rev. Biomed. Eng. 2012, 14, 47–71.

[25]

Nourissat, G.; Berenbaum, F.; Duprez, D. Tendon injury: From biology to tendon repair. Nat. Rev. Rheumatol. 2015, 11, 223–233.

[26]

Wang, Z. B.; Zhou, H. H.; Liu, D.; Chen, X.; Wang, D.; Dai, S.; Chen, F.; Xu, B. B. A structural gel composite enabled robust underwater mechanosensing strategy with high sensitivity. Adv. Funct. Mater. 2022, 32, 2201396.

[27]

Liu, X. Y.; Steiger, C.; Lin, S. T.; Parada, G. A.; Liu, J.; Chan, H. F.; Yuk, H.; Phan, N. V.; Collins, J.; Tamang, S. et al. Ingestible hydrogel device. Nat. Commun. 2019, 10, 493.

[28]

Sun, T. L.; Kurokawa, T.; Kuroda, S.; Ihsan, A. B.; Akasaki, T.; Sato, K.; Haque, A.; Nakajima, T.; Gong, J. P. Physical hydrogels composed of polyampholytes demonstrate high toughness and viscoelasticity. Nat. Mater. 2013, 12, 932–937.

[29]

Liang, X. Y.; Chen, G. D.; Lin, S. T.; Zhang, J. J.; Wang, L.; Zhang, P.; Lan, Y.; Liu, J. Bioinspired 2D isotropically fatigue-resistant hydrogels. Adv. Mater. 2022, 34, 2107106.

[30]

Liang, X. Y.; Chen, G. D.; Lin, S. T.; Zhang, J. J.; Wang, L.; Zhang, P.; Wang, Z. Y.; Wang, Z. B.; Lan, Y.; Ge, Q. et al. Anisotropically fatigue-resistant hydrogels. Adv. Mater. 2021, 33, 2102011.

[31]

Jahn, S.; Seror, J.; Klein, J. Lubrication of articular cartilage. Annu. Rev. Biomed. Eng. 2016, 18, 235–258.

[32]

Klein, J. Repair or replacement—A joint perspective. Science 2009, 323, 47–48.

[33]

Markovsky, E.; Baabur-Cohen, H.; Eldar-Boock, A.; Omer, L.; Tiram, G.; Ferber, S.; Ofek, P.; Polyak, D.; Scomparin, A.; Satchi-Fainaro, R. Administration, distribution, metabolism, and elimination of polymer therapeutics. J. Controlled Release 2012, 161, 446–460.

[34]

Xu, L.; Yang, J. P.; Xue, B.; Zhang, C.; Shi, L. L.; Wu, C. W.; Su, Y.; Jin, X.; Liu, Y. M.; Zhu, X. Y. Molecular insights for the biological interactions between polyethylene glycol and cells. Biomaterials 2017, 147, 1–13.

[35]

Wu, W.; Cheng, R. Y.; Das Neves, J.; Tang, J. C.; Xiao, J. Y.; Ni, Q.; Liu, X. N.; Pan, G. Q.; Li, D. C.; Cui, W. G. et al. Advances in biomaterials for preventing tissue adhesion. J. Controlled Release 2017, 261, 318–336.

[36]

Jaibaji, M. Advances in the biology of zone ii flexor tendon healing and adhesion formation. Ann. Plast. Surg. 2000, 45, 83–92.

[37]

Sensini, A.; Gualandi, C.; Zucchelli, A.; Boyle, L. A.; Kao, A. P.; Reilly, G. C.; Tozzi, G.; Cristofolini, L.; Focarete, M. L. Tendon fascicle-inspired nanofibrous scaffold of polylactic acid/collagen with enhanced 3D-structure and biomechanical properties. Sci. Rep. 2018, 8, 17167.

[38]

Guo, D. S.; Li, H.; Liu, Y. B.; Yu, X.; Zhang, X. X.; Chu, W. Y.; She, Y. S.; Wang, D. L.; Chen, G. X. Fibroblast growth factor-2 promotes the function of tendon-derived stem cells in Achilles tendon restoration in an Achilles tendon injury rat model. Biochem. Biophys. Res. Commun. 2020, 521, 91–97.

[39]

Chou, P. Y.; Chen, S. H.; Chen, C. H.; Chen, S. H.; Fong, Y. T.; Chen, J. P. Thermo-responsive in-situ forming hydrogels as barriers to prevent post-operative peritendinous adhesion. Acta Biomater. 2017, 63, 85–95.

[40]

Yang, Q. Q.; Zhang, L. Z.; Zhou, Y. L.; Tang, J. B. Morphological changes of macrophages and their potential contribution to tendon healing. Colloids Surf. B: Biointerfaces 2022, 209, 112145.

[41]

Agres, A. N.; Duda, G. N.; Gehlen, T. J.; Arampatzis, A.; Taylor, W. R.; Manegold, S. Increased unilateral tendon stiffness and its effect on gait 2–6 years after Achilles tendon rupture. Scand. J. Med. Sci. Sports 2015, 25, 860–867.

[42]

Don, R.; Ranavolo, A.; Cacchio, A.; Serrao, M.; Costabile, F.; Iachelli, M.; Camerota, F.; Frascarelli, M.; Santilli, V. Relationship between recovery of calf-muscle biomechanical properties and gait pattern following surgery for Achilles tendon rupture. Clin. Biomech. 2007, 22, 211–220.

[43]

Laurent, D.; Walsh, L.; Muaremi, A.; Beckmann, N.; Weber, E.; Chaperon, F.; Haber, H.; Goldhahn, J.; Klauser, A. S.; Blauth, M. et al. Relationship between tendon structure, stiffness, gait patterns, and patient reported outcomes during the early stages of recovery after an Achilles tendon rupture. Sci. Rep. 2020, 10, 20757.

Video
12274_2023_5918_MOESM2_ESM.mp4
12274_2023_5918_MOESM3_ESM.mp4
12274_2023_5918_MOESM4_ESM.mp4
12274_2023_5918_MOESM5_ESM.mp4
File
12274_2023_5918_MOESM1_ESM.pdf (3.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 05 May 2023
Revised: 05 June 2023
Accepted: 06 June 2023
Published: 25 July 2023
Issue date: February 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

J. L. acknowledges the financial support by Natural Science Foundation of Guangdong Province (Nos. 2022A1515010152 and 2021A1515110735), the Basic Research Program of Shenzhen (Nos. JCYJ20210324105211032 and GJHZ20210705141809030), and the Scientific Research Platforms and Projects of University of Guangdong Provincial Education Office (No. 2022ZDZX3019). This work was also supported in part by the Science, Technology, and Innovation Commission of Shenzhen Municipality (No. ZDSYS20200811143601004). The authors also would also like to acknowledge the technical support from SUSTech Core Research Facilities, and also thank Ms. Hui Guo from SUSTech Laboratory Animal Research Center for her generous help during the animal tests.

Return