Journal Home > Volume 17 , Issue 1

The spectral characteristics of outdoor structures, such as automobiles, buildings, and clothing, determine their energy interaction with the environment, from broad-spectrum absorption of light energy to high-efficiency thermal emission. Recently developed spectrally selective absorption (SSA) materials permit the reduction of energy loss from human habitat eco-system in the sustainable way and further reduce the utilization of fossil energy to achieve carbon neutrality. Here we review recent advances in SSA materials that enable rational and efficient management of thermal energy and provide new solutions for the resource base that supports human life like comfortable heat management, electricity production, and water supply. The basic principles of thermal photonic management, the regulation of SSA materials, and functional properties are summarized. An outlook discussing challenges and opportunities in SSA material energy management for comfortable living environments is finally presented, which expects the enormous potential of this interdisciplinary research in solving growing resource-shortage of human society.


menu
Abstract
Full text
Outline
About this article

Promising thermal photonic management materials for sustainable human habitat

Show Author's information Houze Yao1,2,§Qihua Liao1,2,§Huhu Cheng1,2( )Liangti Qu1,2( )
Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
State Key Laboratory of Tribology in Advanced Equipment (SKLT), Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China

§ Houze Yao and Qihua Liao contributed equally to this work.

Abstract

The spectral characteristics of outdoor structures, such as automobiles, buildings, and clothing, determine their energy interaction with the environment, from broad-spectrum absorption of light energy to high-efficiency thermal emission. Recently developed spectrally selective absorption (SSA) materials permit the reduction of energy loss from human habitat eco-system in the sustainable way and further reduce the utilization of fossil energy to achieve carbon neutrality. Here we review recent advances in SSA materials that enable rational and efficient management of thermal energy and provide new solutions for the resource base that supports human life like comfortable heat management, electricity production, and water supply. The basic principles of thermal photonic management, the regulation of SSA materials, and functional properties are summarized. An outlook discussing challenges and opportunities in SSA material energy management for comfortable living environments is finally presented, which expects the enormous potential of this interdisciplinary research in solving growing resource-shortage of human society.

Keywords: passive cooling, spectrally selective absorption, solar power, eco-system

References(142)

[1]

van der Schoor, T.; Scholtens, B. Power to the people: Local community initiatives and the transition to sustainable energy. Renew. Sustain. Energy Rev. 2015, 43, 666–675.

[2]

Lewis, N. S. Research opportunities to advance solar energy utilization. Science 2016, 351, aad1920.

[3]

Yin, X. B.; Yang, R. G.; Tan, G.; Fan, S. H. Terrestrial radiative cooling: Using the cold universe as a renewable and sustainable energy source. Science 2020, 370, 786–791.

[4]

Baranov, D. G.; Xiao, Y. Z.; Nechepurenko, I. A.; Krasnok, A.; Alù, A.; Kats, M. A. Nanophotonic engineering of far-field thermal emitters. Nat. Mater. 2019, 18, 920–930.

[5]

Weinstein, L. A.; Loomis, J.; Bhatia, B.; Bierman, D. M.; Wang, E. N.; Chen, G. Concentrating solar power. Chem. Rev. 2015, 115, 12797–12838.

[6]

Wang, Z. X.; Horseman, T.; Straub, A. P.; Yip, N. Y.; Li, D. Y.; Elimelech, M.; Lin, S. H. Pathways and challenges for efficient solar-thermal desalination. Sci. Adv. 2019, 5, aax0763.

[7]

Mandal, J.; Yang, Y.; Yu, N. F.; Raman, A. P. Paints as a scalable and effective radiative cooling technology for buildings. Joule 2020, 4, 1350–1356.

[8]

Liu, J., Tang, H., Jiang, C., Wu, S., Ye, L., Zhao, D., Zhou, Z. Micro-nano porous structure for efficient daytime radiative sky cooling. Adv. Funct. Mater 2022, 32, 2206962.

[9]

Sun, W.; Du, A.; Feng, Y.; Shen, J.; Huang, S. M.; Tang, J.; Zhou, B. Super black material from low-density carbon aerogels with subwavelength structures. ACS Nano 2016, 10, 9123–9128.

[10]

Torres, J. F.; Tsuda, K.; Murakami, Y.; Guo, Y. F.; Hosseini, S.; Asselineau, C. A.; Taheri, M.; Drewes, K.; Tricoli, A.; Lipiński, W. et al. Highly efficient and durable solar thermal energy harvesting via scalable hierarchical coatings inspired by stony corals. Energy Environ. Sci. 2022, 15, 1893–1906.

[11]

Zhou, L.; Tan, Y. L.; Wang, J. Y.; Xu, W. C.; Yuan, Y.; Cai, W. S.; Zhu, S. N.; Zhu, J. 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination. Nat. Photonics 2016, 10, 393–398.

[12]

Xi, J. Q.; Schubert, M. F.; Kim, J. K.; Schubert, E. F.; Chen, M. F.; Lin, S. Y.; Liu, W.; Smart, J. A. Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection. Nat. Photonics 2007, 1, 176–179.

[13]

Zhu, J.; Yu, Z. F.; Burkhard, G. F.; Hsu, C. M.; Connor, S. T.; Xu, Y. Q.; Wang, Q.; McGehee, M.; Fan, S. H.; Cui, Y. Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays. Nano Lett. 2009, 9, 279–282.

[14]

Huang, Y. F.; Chattopadhyay, S.; Jen, Y. J.; Peng, C. Y.; Liu, T. A.; Hsu, Y. K.; Pan, C. L.; Lo, H. C.; Hsu, C. H.; Chang, Y. H. et al. Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures. Nat. Nanotechnol. 2007, 2, 770–774.

[15]

Baharoon, D. A.; Rahman, H. A.; Omar, W. Z. W.; Fadhl, S. O. Historical development of concentrating solar power technologies to generate clean electricity efficiently—A review. Renew. Sustain. Energy Rev. 2015, 41, 996–1027.

[16]

Zhang, P. P.; Liao, Q. H.; Yao, H. Z.; Cheng, H. H.; Huang, Y. X.; Yang, C.; Jiang, L.; Qu, L. T. Three-dimensional water evaporation on a macroporous vertically aligned graphene pillar array under one sun. J. Mater. Chem. A 2018, 6, 15303–15309.

[17]

Li, T.; Zhai, Y.; He, S. M.; Gan, W. T.; Wei, Z. Y.; Heidarinejad, M.; Dalgo, D.; Mi, R. Y.; Zhao, X. P.; Song, J. W. et al. A radiative cooling structural material. Science 2019, 364, 760–763.

[18]

Mizuno, K.; Ishii, J.; Kishida, H.; Hayamizu, Y.; Yasuda, S.; Futaba, D. N.; Yumura, M.; Hata, K. A black body absorber from vertically aligned single-walled carbon nanotubes. Proc. Natl. Acad. Sci. USA 2009, 106, 6044–6047.

[19]

Davami, K.; Cortes, J.; Hong, N. N.; Bargatin, I. Vertical graphene sheets as a lightweight light absorber. Mater. Res. Bull. 2016, 74, 226–233.

[20]

Yang, Z. P.; Ci, L. J.; Bur, J. A.; Lin, S. Y.; Ajayan, P. M. Experimental observation of an extremely dark material made by a low-density nanotube array. Nano Lett. 2008, 8, 446–451.

[21]

Rephaeli, E.; Fan, S. H. Tungsten black absorber for solar light with wide angular operation range. Appl. Phys. Lett. 2008, 92, 211107.

[22]

Fleming, J. G.; Lin, S. Y.; El-Kady, I.; Biswas, R.; Ho, K. M. All-metallic three-dimensional photonic crystals with a large infrared bandgap. Nature 2002, 417, 52–55.

[23]

Randich, E.; Allred, D. D. Chemically vapor-deposited ZrB2 as a selective solar absorber. Thin Solid Films 1981, 83, 393–398.

[24]

Li, Y.; Xiong, C.; Huang, H.; Peng, X. D.; Mei, D. Q.; Li, M.; Liu, G. Z.; Wu, M. C.; Zhao, T. S.; Huang, B. L. 2D Ti3C2Tx MXenes: Visible black but infrared white materials. Adv. Mater. 2021, 33, 2103054.

[25]

Dyachenko, P. N.; Molesky, S.; Petrov, A. Y.; Störmer, M.; Krekeler, T.; Lang, S.; Ritter, M.; Jacob, Z.; Eich, M. Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions. Nat. Commun. 2016, 7, 11809.

[26]

Li, P. F.; Liu, B. A.; Ni, Y. Z.; Liew, K. K.; Sze, J.; Chen, S.; Shen, S. Large-scale nanophotonic solar selective absorbers for high-efficiency solar thermal energy conversion. Adv. Mater. 2015, 27, 4585–4591.

[27]

Arpin, K. A.; Losego, M. D.; Cloud, A. N.; Ning, H. L.; Mallek, J.; Sergeant, N. P.; Zhu, L. X.; Yu, Z. F.; Kalanyan, B.; Parsons, G. N. et al. Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification. Nat. Commun. 2013, 4, 2630.

[28]

Moreau, A.; Ciracì, C.; Mock, J. J.; Hill, R. T.; Wang, Q.; Wiley, B. J.; Chilkoti, A.; Smith, D. R. Controlled-reflectance surfaces with film-coupled colloidal nanoantennas. Nature 2012, 492, 86–89.

[29]

Yeng, Y. X.; Ghebrebrhan, M.; Bermel, P.; Chan, W. R.; Joannopoulos, J. D.; Soljačić, M.; Celanovic, I. Enabling high-temperature nanophotonics for energy applications. Proc. Natl. Acad. Sci. USA 2012, 109, 2280–2285.

[30]

Ghebrebrhan, M.; Bermel, P.; Yeng, Y. X.; Celanovic, I.; Soljačić, M.; Joannopoulos, J. D. Tailoring thermal emission via Q matching of photonic crystal resonances. Phys. Rev. A 2011, 83, 033810.

[31]

Liu, X. L.; Tyler, T.; Starr, T.; Starr, A. F.; Jokerst, N. M.; Padilla, W. J. Taming the blackbody with infrared metamaterials as selective thermal emitters. Phys. Rev. Lett. 2011, 107, 045901.

[32]

Wang, H.; Wang, L. P. Perfect selective metamaterial solar absorbers. Opt. Express 2013, 21, A1078–A1093.

[33]

Mandal, J.; Fu, Y. K.; Overvig, A. C.; Jia, M. X.; Sun, K. R.; Shi, N. N.; Zhou, H.; Xiao, X. H.; Yu, N. F.; Yang, Y. Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling. Science 2018, 362, 315–319.

[34]

Li, D.; Liu, X.; Li, W.; Lin, Z. H.; Zhu, B.; Li, Z. Z.; Li, J. L.; Li, B.; Fan, S. H.; Xie, J. W. et al. Scalable and hierarchically designed polymer film as a selective thermal emitter for high-performance all-day radiative cooling. Nat. Nanotechnol. 2020, 16, 153–158.

[35]

Rephaeli, E.; Raman, A.; Fan, S. H. Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling. Nano Lett. 2013, 13, 1457–1461.

[36]

Raman, A. P.; Anoma, M. A.; Zhu, L. X.; Rephaeli, E.; Fan, S. H. Passive radiative cooling below ambient air temperature under direct sunlight. Nature 2014, 515, 540–544.

[37]

Chen, Z.; Zhu, L. X.; Raman, A.; Fan, S. H. Radiative cooling to deep sub-freezing temperatures through a 24-h day-night cycle. Nat. Commun. 2016, 7, 13729.

[38]

Zhai, Y.; Ma, Y. G.; David, S. N.; Zhao, D. L.; Lou, R. N.; Tan, G.; Yang, R. G.; Yin, X. B. Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science 2017, 355, 1062–1066.

[39]

Zhou, L.; Song, H. M.; Liang, J. W.; Singer, M.; Zhou, M.; Stegenburgs, E.; Zhang, N.; Xu, C.; Ng, T.; Yu, Z. F. et al. A polydimethylsiloxane-coated metal structure for all-day radiative cooling. Nat. Sustain. 2019, 2, 718–724.

[40]

Zhou, M.; Song, H. M.; Xu, X. Y.; Shahsafi, A.; Qu, Y. R.; Xia, Z. Y.; Ma, Z. Q.; Kats, M. A.; Zhu, J.; Ooi, B. S. et al. Vapor condensation with daytime radiative cooling. Proc. Natl. Acad. Sci. USA 2021, 118, e2019292118.

[41]

Zhao, H. X.; Sun, Q. Q.; Zhou, J.; Deng, X.; Cui, J. X. Switchable cavitation in silicone coatings for energy-saving cooling and heating. Adv. Mater. 2020, 32, 2000870.

[42]

Li, X. Q.; Sun, B. W.; Sui, C. X.; Nandi, A.; Fang, H. M.; Peng, Y. C.; Tan, G.; Hsu, P. C. Integration of daytime radiative cooling and solar heating for year-round energy saving in buildings. Nat. Commun. 2020, 11, 6101.

[43]

Tang, K.; Wang, X.; Dong, K.; Li, Y.; Li, J.; Sun, B.; Zhang, X.; Dames, C.; Qiu, C.; Yao, J. et al. A thermal radiation modulation platform by emissivity engineering with graded metal–insulator transition. Adv. Mater 2020, 32, 1907071.

[44]

Kraemer, D.; Poudel, B.; Feng, H. P.; Caylor, J. C.; Yu, B.; Yan, X.; Ma, Y.; Wang, X. W.; Wang, D. Z.; Muto, A. et al. High-performance flat-panel solar thermoelectric generators with high thermal concentration. Nat. Mater. 2011, 10, 532–538.

[45]

Kraemer, D.; Jie, Q.; McEnaney, K.; Cao, F.; Liu, W. S.; Weinstein, L. A.; Loomis, J.; Ren, Z. F.; Chen, G. Concentrating solar thermoelectric generators with a peak efficiency of 7.4%. Nat. Energy 2016, 1, 16153.

[46]

Cao, F.; McEnaney, K.; Chen, G.; Ren, Z. F. A review of cermet-based spectrally selective solar absorbers. Energy Environ. Sci. 2014, 7, 1615–1627.

[47]

Ho, C. K.; Mahoney, A. R.; Ambrosini, A.; Bencomo, M.; Hall, A.; Lambert, T. N. Characterization of pyromark 2500 paint for high-temperature solar receivers. J. Sol. Energy Eng. 2014, 136, 014502.

[48]

Huang, J. F.; Liu, C. X.; Zhu, Y. H.; Masala, S.; Alarousu, E.; Han, Y.; Fratalocchi, A. Harnessing structural darkness in the visible and infrared wavelengths for a new source of light. Nat. Nanotechnol. 2016, 11, 60–66.

[49]

Panagiotopoulos, N. T.; Diamanti, E. K.; Koutsokeras, L. E.; Baikousi, M.; Kordatos, E.; Matikas, T. E.; Gournis, D.; Patsalas, P. Nanocomposite catalysts producing durable, super-black carbon nanotube systems: Applications in solar thermal harvesting. ACS Nano 2012, 6, 10475–10485.

[50]

Cao, F.; Kraemer, D.; Tang, L.; Li, Y.; Litvinchuk, A. P.; Bao, J. M.; Chen, G.; Ren, Z. F. A high-performance spectrally-selective solar absorber based on a yttria-stabilized zirconia cermet with high-temperature stability. Energy Environ. Sci. 2015, 8, 3040–3048.

[51]

Cui, K. H.; Lemaire, P.; Zhao, H. B.; Savas, T.; Parsons, G.; Hart, A. J. Tungsten-carbon nanotube composite photonic crystals as thermally stable spectral-selective absorbers and emitters for thermophotovoltaics. Adv. Energy Mater. 2018, 8, 1801471.

[52]

Liao, Q. H.; Zhang, P. P.; Yao, H. Z.; Cheng, H. H.; Li, C.; Qu, L. T. Reduced graphene oxide-based spectrally selective absorber with an extremely low thermal emittance and high solar absorptance. Adv. Sci. 2020, 7, 1903125.

[53]

Musah, J. D.; Ilyas, A. M.; Venkatesh, S.; Mensah, S.; Kwofie, S.; Roy, V. A. L.; Wu, C. M. L. Isovalent substitution in metal chalcogenide materials for improving thermoelectric power generation—A critical review. Nano Res. Energy 2022, 1, e9120034.

[54]

Lenert, A.; Bierman, D. M.; Nam, Y.; Chan, W. R.; Celanović, I.; Soljačić, M.; Wang, E. N. A nanophotonic solar thermophotovoltaic device. Nat. Nanotechnol. 2014, 9, 126–130.

[55]

Rinnerbauer, V.; Lenert, A.; Bierman, D. M.; Yeng, Y. X.; Chan, W. R.; Geil, R. D.; Senkevich, J. J.; Joannopoulos, J. D.; Wang, E. N.; Soljačić, M. et al. Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics. Adv. Energy Mater. 2014, 4, 1400334.

[56]

LaPotin, A.; Schulte, K. L.; Steiner, M. A.; Buznitsky, K.; Kelsall, C. C.; Friedman, D. J.; Tervo, E. J.; France, R. M.; Young, M. R.; Rohskopf, A. et al. Thermophotovoltaic efficiency of 40%. Nature 2022, 604, 287–291.

[57]

Li, L. H.; Feng, S. J.; Bai, Y. Y.; Yang, X. Q.; Liu, M. Y.; Hao, M. M.; Wang, S. Q.; Wu, Y.; Sun, F. Q.; Liu, Z. et al. Enhancing hydrovoltaic power generation through heat conduction effects. Nat. Commun. 2022, 13, 1043.

[58]

Zhou, S. Y.; Qiu, Z.; Strømme, M.; Xu, C. Solar-driven ionic power generation via a film of nanocellulose @ conductive metal-organic framework. Energy Environ. Sci. 2021, 14, 900–905.

[59]

Burger, T.; Sempere, C.; Roy-Layinde, B.; Lenert, A. Present efficiencies and future opportunities in thermophotovoltaics. Joule 2020, 4, 1660–1680.

[60]

Bierman, D. M.; Lenert, A.; Chan, W. R.; Bhatia, B.; Celanović, I.; Soljačić, M.; Wang, E. N. Enhanced photovoltaic energy conversion using thermally based spectral shaping. Nat. Energy 2016, 1, 16068.

[61]

Davids, P. S.; Kirsch, J.; Starbuck, A.; Jarecki, R.; Shank, J.; Peters, D. Electrical power generation from moderate-temperature radiative thermal sources. Science 2020, 367, 1341–1345.

[62]

Sun, Z. Y.; Wen, X.; Wang, L. M.; Ji, D. X.; Qin, X. H.; Yu, J. Y.; Ramakrishna, S. Emerging design principles, materials, and applications for moisture-enabled electric generation. eScience 2022, 2, 32–46.

[63]

Bai, J. X.; Huang, Y. X.; Wang, H. Y.; Guang, T. L.; Liao, Q. H.; Cheng, H. H.; Deng, S. H.; Li, Q. K.; Shuai, Z. G.; Qu, L. T. Sunlight-coordinated high-performance moisture power in natural conditions. Adv. Mater. 2022, 34, 2103897.

[64]

Chen, Q.; Zhao, J.; Cheng, H. H.; Qu, L. T. Progress in 3D-graphene assemblies preparation for solar-thermal steam generation and water treatment. Acta Phys. Chim. Sin. 2022, 38, 2101020.

[65]

Wei, Z. C.; Wang, J.; Guo, S.; Tan, S. C. Towards highly salt-rejecting solar interfacial evaporation: Photothermal materials selection, structural designs, and energy management. Nano Res. Energy 2022, 1, e9120014.

[66]

Ghasemi, H.; Ni, G.; Marconnet, A. M.; Loomis, J.; Yerci, S.; Miljkovic, N.; Chen, G. Solar steam generation by heat localization. Nat. Commun. 2014, 5, 4449.

[67]

Ito, Y.; Tanabe, Y.; Han, J. H.; Fujita, T.; Tanigaki, K.; Chen, M. W. Multifunctional porous graphene for high-efficiency steam generation by heat localization. Adv. Mater. 2015, 27, 4302–4307.

[68]

Hu, X. Z.; Xu, W. C.; Zhou, L.; Tan, Y. L.; Wang, Y.; Zhu, S. N.; Zhu, J. Tailoring graphene oxide-based aerogels for efficient solar steam generation under one sun. Adv. Mater. 2017, 29, 1604031.

[69]

Zhang, P. P.; Li, J.; Lv, L. X.; Zhao, Y.; Qu, L. T. Vertically aligned graphene sheets membrane for highly efficient solar thermal generation of clean water. ACS Nano 2017, 11, 5087–5093.

[70]

Wang, J.; Li, Y. Y.; Deng, L.; Wei, N.; Weng, Y. K.; Dong, S.; Qi, D. P.; Qiu, J.; Chen, X. D.; Wu, T. High-performance photothermal conversion of narrow-bandgap Ti2O3 nanoparticles. Adv. Mater. 2017, 29, 1603730.

[71]

Liu, Y. M.; Yu, S. T.; Feng, R.; Bernard, A.; Liu, Y.; Zhang, Y.; Duan, H. Z.; Shang, W.; Tao, P.; Song, C. Y. et al. A bioinspired, reusable, paper-based system for high-performance large-scale evaporation. Adv. Mater. 2015, 27, 2768–2774.

[72]

Zhang, L. B.; Tang, B.; Wu, J. B.; Li, R. Y.; Wang, P. Hydrophobic light-to-heat conversion membranes with self-healing ability for interfacial solar heating. Adv. Mater. 2015, 27, 4889–4894.

[73]

Zhao, F.; Zhou, X. Y.; Shi, Y.; Qian, X.; Alexander, M.; Zhao, X. P.; Mendez, S.; Yang, R. G.; Qu, L. T. T.; Yu, G. H. Highly efficient solar vapour generation via hierarchically nanostructured gels. Nat. Nanotechnol. 2018, 13, 489–495.

[74]

Ni, G.; Li, G.; Boriskina, S. V.; Li, H. X.; Yang, W. L.; Zhang, T. J.; Chen, G. Steam generation under one sun enabled by a floating structure with thermal concentration. Nat. Energy 2016, 1, 16126.

[75]

Chang, C.; Tao, P.; Xu, J. L.; Fu, B. W.; Song, C. Y.; Wu, J. B.; Shang, W.; Deng, T. High-efficiency superheated steam generation for portable sterilization under ambient pressure and low solar flux. ACS Appl. Mater. Interfaces 2019, 11, 18466–18474.

[76]

Huang, J.; He, Y. R.; Hu, Y. W.; Wang, X. Z. Steam generation enabled by a high efficiency solar absorber with thermal concentration. Energy 2018, 165, 1282–1291.

[77]

Cooper, T. A.; Zandavi, S. H.; Ni, G. W.; Tsurimaki, Y.; Huang, Y.; Boriskina, S. V.; Chen, G. Contactless steam generation and superheating under one sun illumination. Nat. Commun. 2018, 9, 5086.

[78]

Xu, Z. Y.; Zhang, L. N.; Zhao, L.; Li, B. J.; Bhatia, B.; Wang, C. X.; Wilke, K. L.; Song, Y.; Labban, O.; Lienhard, J. H. et al. Ultrahigh-efficiency desalination via a thermally-localized multistage solar still. Energy Environ. Sci. 2020, 13, 830–839.

[79]

Chiavazzo, E.; Morciano, M.; Viglino, F.; Fasano, M.; Asinari, P. Passive solar high-yield seawater desalination by modular and low-cost distillation. Nat. Sustain. 2018, 1, 763–772.

[80]

Booten, C.; Rao, P.; Rapp, V.; Jackson, R.; Prasher, R. Theoretical minimum thermal load in buildings. Joule 2021, 5, 24–46.

[81]

Bange, K.; Gambke, T. Electrochromic materials for optical switching devices. Adv. Mater. 1990, 2, 10–16.

[82]

Michaelis, A.; Berneth, H.; Haarer, D.; Kostromine, S.; Neigl, R.; Schmidt, R. Electrochromic dye system for smart window applications. 3.0.CO;2-R">Adv. Mater. 2001, 13, 1825–1828.

[83]

Hao, Q.; Li, W.; Xu, H. Y.; Wang, J. W.; Yin, Y.; Wang, H. Y.; Ma, L. B.; Ma, F.; Jiang, X. C.; Schmidt, O. G. et al. VO2/TiN plasmonic thermochromic smart coatings for room-temperature applications. Adv. Mater. 2018, 30, 1705421.

[84]

Zhou, Y.; Wang, S. C.; Peng, J. Q.; Tan, Y. T.; Li, C. C.; Boey, F. Y. C.; Long, Y. Liquid thermo-responsive smart window derived from hydrogel. Joule 2020, 4, 2458–2474.

[85]

Kim, J.; Ong, G. K.; Wang, Y.; LeBlanc, G.; Williams, T. E.; Mattox, T. M.; Helms, B. A.; Milliron, D. J. Nanocomposite architecture for rapid, spectrally-selective electrochromic modulation of solar transmittance. Nano Lett. 2015, 15, 5574–5579.

[86]

Beaujuge, P. M.; Ellinger, S.; Reynolds, J. R. The donor-acceptor approach allows a black-to-transmissive switching polymeric electrochrome. Nat. Mater. 2008, 7, 795–799.

[87]

Baetens, R.; Jelle, B. P.; Gustavsen, A. Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: A state-of-the-art review. Solar Energy Mater. Solar Cells 2010, 94, 87–105.

[88]

Qazilbash, M. M.; Brehm, M.; Chae, B. G.; Ho, P. C.; Andreev, G. O.; Kim, B. J.; Yun, S. J.; Balatsky, A. V.; Maple, M. B.; Keilmann, F. et al. Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging. Science 2007, 318, 1750–1753.

[89]

Cui, Y. Y.; Ke, Y. J.; Liu, C.; Chen, Z.; Wang, N.; Zhang, L. M.; Zhou, Y.; Wang, S. C.; Gao, Y. F.; Long, Y. Thermochromic VO2 for energy-efficient smart windows. Joule 2018, 2, 1707–1746.

[90]

Shen, N.; Chen, S.; Shi, R.; Niu, S. Z.; Amini, A.; Cheng, C. Phase transition hysteresis of tungsten doped VO2 synergistically boosts the function of smart windows in ambient conditions. ACS Appl. Electron. Mater. 2021, 3, 3648–3656.

[91]

Tang, K. C.; Dong, K. C.; Li, J. C.; Gordon, M. P.; Reichertz, F. G.; Kim, H.; Rho, Y.; Wang, Q. J.; Lin, C. Y.; Grigoropoulos, C. P. et al. Temperature-adaptive radiative coating for all-season household thermal regulation. Science 2021, 374, 1504–1509.

[92]

Wang, S. C.; Jiang, T. Y.; Meng, Y.; Yang, R. G.; Tan, G.; Long, Y. Scalable thermochromic smart windows with passive radiative cooling regulation. Science 2021, 374, 1501–1504.

[93]

Li, X. H.; Liu, C.; Feng, S. P.; Fang, N. X. Broadband light management with thermochromic hydrogel microparticles for smart windows. Joule 2019, 3, 290–302.

[94]

Sala, R. L.; Goncalves, R. H.; Camargo, E. R.; Leite, E. R. Thermosensitive poly(N-vinylcaprolactam) as a transmission light regulator in smart windows. Solar Energy Mater. Solar Cells 2018, 186, 266–272.

[95]

La, T. G.; Li, X. D.; Kumar, A.; Fu, Y. Y.; Yang, S.; Chung, H. J. Highly flexible, multipixelated thermosensitive smart windows made of tough hydrogels. ACS Appl. Mater. Interfaces 2017, 9, 33100–33106.

[96]

Yang, Y. S.; Zhou, Y.; Chiang, F. B. Y.; Long, Y. Temperature-responsive hydroxypropylcellulose based thermochromic material and its smart window application. RSC Adv. 2016, 6, 61449–61453.

[97]

Granqvist, C. G. Electrochromics for smart windows: Oxide-based thin films and devices. Thin Solid Films 2014, 564, 1–38.

[98]

Casini, M. Active dynamic windows for buildings: A review. Renew. Energy 2018, 119, 923–934.

[99]

Granqvist, C. G.; Azens, A.; Hjelm, A.; Kullman, L.; Niklasson, G. A.; Rönnow, D.; Mattsson, M. S.; Veszelei, M.; Vaivars, G. Recent advances in electrochromics for smart windows applications. Solar Energy 1998, 63, 199–216.

[100]

Nagasu, M.; Koshida, N. Photointercalation effect of thin WO3 films. Appl. Phys. Lett. 1990, 57, 1324–1325.

[101]

Saenger, M. F.; Höing, T.; Robertson, B. W.; Billa, R. B.; Hofmann, T.; Schubert, E.; Schubert, M. Polaron and phonon properties in proton intercalated amorphous tungsten oxide thin films. Phys. Rev. B 2008, 78, 245205.

[102]

Zhang, L.; Chao, D. L.; Yang, P. H.; Weber, L.; Li, J.; Kraus, T.; Fan, H. J. Flexible pseudocapacitive electrochromics via inkjet printing of additive-free tungsten oxide nanocrystal ink. Adv. Energy Mater. 2020, 10, 2000142.

[103]

Zhang, J.; Tu, J. P.; Xia, X. H.; Wang, X. L.; Gu, C. D. Hydrothermally synthesized WO3 nanowire arrays with highly improved electrochromic performance. J. Mater. Chem. 2011, 21, 5492–5498.

[104]

Azam, A.; Kim, J.; Park, J.; Novak, T. G.; Tiwari, A. P.; Song, S. H.; Kim, B.; Jeon, S. Two-dimensional WO3 nanosheets chemically converted from layered WS2 for high-performance electrochromic devices. Nano Lett. 2018, 18, 5646–5651.

[105]

Adhikari, S.; Sarkar, D. High efficient electrochromic WO3 nanofibers. Electrochim. Acta 2014, 138, 115–123.

[106]

Li, Y. Q.; McMaster, W. A.; Wei, H.; Chen, D. H.; Caruso, R. A. Enhanced electrochromic properties of WO3 nanotree-like structures synthesized via a two-step solvothermal process showing promise for electrochromic window application. ACS Appl. Nano Mater. 2018, 1, 2552–2558.

[107]

Cong, S.; Tian, Y. Y.; Li, Q. W.; Zhao, Z. G.; Geng, F. X. Single-crystalline tungsten oxide quantum dots for fast pseudocapacitor and electrochromic applications. Adv. Mater. 2014, 26, 4260–4267.

[108]

Llordés, A.; Garcia, G.; Gazquez, J.; Milliron, D. J. Tunable near-infrared and visible-light transmittance in nanocrystal-in-glass composites. Nature 2013, 500, 323–326.

[109]

Neo, W. T.; Ye, Q.; Chua, S. J.; Xu, J. W. Conjugated polymer-based electrochromics: Materials, device fabrication and application prospects. J. Mater. Chem. C 2016, 4, 7364–7376.

[110]

Camurlu, P. Polypyrrole derivatives for electrochromic applications. RSC Adv. 2014, 4, 55832–55845.

[111]

Yun, T. G.; Park, M.; Kim, D. H.; Kim, D.; Cheong, J. Y.; Bae, J. G.; Han, S. M.; Kim, I. D. All-transparent stretchable electrochromic supercapacitor wearable patch device. ACS Nano 2019, 13, 3141–3150.

[112]

Chen, X. L.; Lin, H. J.; Deng, J.; Zhang, Y.; Sun, X. M.; Chen, P. N.; Fang, X.; Zhang, Z. T.; Guan, G. Z.; Peng, H. S. Electrochromic fiber-shaped supercapacitors. Adv. Mater. 2014, 26, 8126–8132.

[113]

Zhang, W.; Li, H. Z.; Hopmann, E.; Elezzabi, A. Y. Nanostructured inorganic electrochromic materials for light applications. Nanophotonics 2021, 10, 825–850.

[114]

Granqvist, C. G.; Hjortsberg, A. Radiative cooling to low temperatures: General considerations and application to selectively emitting SiO films. J. Appl. Phys. 1981, 52, 4205–4220.

[115]

Chae, D.; Kim, M.; Jung, P. H.; Son, S.; Seo, J.; Liu, Y. T.; Lee, B. J.; Lee, H. Spectrally selective inorganic-based multilayer emitter for daytime radiative cooling. ACS Appl. Mater. Interfaces 2020, 12, 8073–8081.

[116]

Li, W.; Shi, Y.; Chen, Z.; Fan, S. H. Photonic thermal management of coloured objects. Nat. Commun. 2018, 9, 4240.

[117]

Yu, S. X.; Zhang, Q.; Wang, Y. F.; Lv, Y. W.; Ma, R. J. Photonic-structure colored radiative coolers for daytime subambient cooling. Nano Lett. 2022, 22, 4925–4932.

[118]

Shi, N. N.; Tsai, C. C.; Camino, F.; Bernard, G. D.; Yu, N. F.; Wehner, R. Keeping cool: Enhanced optical reflection and radiative heat dissipation in Saharan silver ants. Science 2015, 349, 298–301.

[119]

Zhou, L.; Zhao, J. T.; Huang, H. Y.; Nan, F.; Zhou, G. H.; Ou, Q. D. Flexible polymer photonic films with embedded microvoids for high-performance passive daytime radiative cooling. ACS Photonics 2021, 8, 3301–3307.

[120]

Li, J. L.; Liang, Y.; Li, W.; Xu, N.; Zhu, B.; Wu, Z.; Wang, X. Y.; Fan, S. H.; Wang, M. H.; Zhu, J. Protecting ice from melting under sunlight via radiative cooling. Sci. Adv. 2022, 8, eabj9756.

[121]

Miao, D. Y.; Cheng, N. B.; Wang, X. F.; Yu, J. Y.; Ding, B. Integration of janus wettability and heat conduction in hierarchically designed textiles for all-day personal radiative cooling. Nano Lett. 2022, 22, 680–687.

[122]

Yao, H. Z.; Cheng, H. H.; Liao, Q. H.; Hao, X. Z.; Zhu, K. X.; Hu, Y. J. Integrated radiative and evaporative cooling beyond daytime passive cooling power limit. Nano Res. Energy 2023, 2, e9120060.

[123]

Song, J. N.; Zhang, W. L.; Sun, Z. N.; Pan, M. Y.; Tian, F.; Li, X. H.; Ye, M.; Deng, X. Durable radiative cooling against environmental aging. Nat. Commun. 2022, 13, 4805.

[124]

Phelan, P. E.; Kaloush, K.; Miner, M.; Golden, J.; Phelan, B.; Silva III, H.; Taylor, R. A. Urban heat island: Mechanisms, implications, and possible remedies. Annu. Rev. Environ. Resour. 2015, 40, 285–307.

[125]

Hardy, J. D.; DuBois, E. F. Regulation of heat loss from the human body. Proc. Natl. Acad. Sci. USA 1937, 23, 624–631.

[126]

Hoyt, T.; Arens, E.; Zhang, H. Extending air temperature setpoints: Simulated energy savings and design considerations for new and retrofit buildings. Build. Environ. 2015, 88, 89–96.

[127]

Yang, L.; Yan, H. Y.; Lam, J. C. Thermal comfort and building energy consumption implications—A review. Appl. Energy 2014, 115, 164–173.

[128]

Tong, J. K.; Huang, X. P.; Boriskina, S. V.; Loomis, J.; Xu, Y. F.; Chen, G. Infrared-transparent visible-opaque fabrics for wearable personal thermal management. ACS Photonics 2015, 2, 769–778.

[129]

Hsu, P. C.; Song, A. Y.; Catrysse, P. B.; Liu, C.; Peng, Y. C.; Xie, J.; Fan, S. H.; Cui, Y. Radiative human body cooling by nanoporous polyethylene textile. Science 2016, 353, 1019–1023.

[130]

Liu, R.; Wang, X. W.; Yu, J. R.; Wang, Y.; Zhu, J.; Hu, Z. M. A novel approach to design nanoporous polyethylene/polyester composite fabric via TIPS for human body cooling. Macromol. Mater. Eng. 2018, 303, 1700456.

[131]

Hsu, P. C.; Liu, C.; Song, A. Y.; Zhang, Z.; Peng, Y. C.; Xie, J.; Liu, K.; Wu, C. L.; Catrysse, P. B.; Cai, L. L. et al. A dual-mode textile for human body radiative heating and cooling. Sci. Adv. 2017, 3, e1700895.

[132]

Cai, L. L.; Song, A. Y.; Li, W.; Hsu, P. C.; Lin, D. C.; Catrysse, P. B.; Liu, Y. Y.; Peng, Y. C.; Chen, J.; Wang, H. X. et al. Spectrally selective nanocomposite textile for outdoor personal cooling. Adv. Mater. 2018, 30, 1802152.

[133]

Song, Y. N.; Lei, M. Q.; Lei, J.; Li, Z. M. Spectrally selective polyvinylidene fluoride textile for passive human body cooling. Mater. Today Energy 2020, 18, 100504.

[134]

Catrysse, P. B.; Song, A. Y.; Fan, S. H. Photonic structure textile design for localized thermal cooling based on a fiber blending scheme. ACS Photonics 2016, 3, 2420–2426.

[135]

Cai, L.; Peng, Y.; Xu, J.; Zhou, C.; Zhou, C.; Wu, P.; Lin, D.; Fan, S.; Cui, Y. Temperature regulation in colored infrared-transparent polyethylene textiles. Joule 2019, 30, 1478–1486.

[136]

Miao, D. G.; Jiang, S. X.; Liu, J.; Ning, X.; Shang, S. M.; Xu, J. T. Fabrication of copper and titanium coated textiles for sunlight management. J. Mater. Sci. Mater. Electron. 2017, 28, 9852–9858.

[137]

Miao, D. G.; Li, A. S.; Jiang, S. X.; Shang, S. M. Fabrication of Ag and AZO/Ag/AZO ceramic films on cotton fabrics for solar control. Ceram. Int. 2015, 41, 6312–6317.

[138]

Zhang, X. A.; Yu, S. J.; Xu, B. B.; Li, M.; Peng, Z. W.; Wang, Y. X.; Deng, S. L.; Wu, X. J.; Wu, Z. P.; Ouyang, M. et al. Dynamic gating of infrared radiation in a textile. Science 2019, 363, 619–623.

[139]

Luo, H.; Zhu, Y. N.; Xu, Z. Q.; Hong, Y.; Ghosh, P.; Kaur, S. Wu, M. B.; Yang, C. Y.; Qiu, M.; Li, Q. Outdoor personal thermal management with simultaneous electricity generation. Nano Lett. 2021, 21, 3879–3886.

[140]

Shi, M. K.; Shen, M. M.; Guo, X. Y.; Jin, X. X.; Cao, Y. X.; Yang, Y. Y.; Wang, W. J.; Wang, J. F. Ti3C2Tx MXene-decorated nanoporous polyethylene textile for passive and active personal precision heating. ACS Nano 2021, 15, 11396–11405.

[141]

He, C. Y.; Zhao, P.; Zhang, H.; Chen, K.; Liu, B. H.; Lu, Z. W.; Li, Y.; La, P. Q.; Liu, G.; Gao, X. H. Efficient warming textile enhanced by a high-entropy spectrally selective nanofilm with high solar absorption. Adv. Sci. 2023, 10, 2204817.

[142]

Zhang, Y.; Li, Y.; Li, K. Q.; Kwon, Y. S.; Tennakoon, T.; Wang, C. T.; Chan, K. C.; Fu, S. C.; Huang, B. L.; Chao, C. Y. H. A large-area versatile textile for radiative warming and biomechanical energy harvesting. Nano Energy 2022, 95, 106996.

Publication history
Copyright
Acknowledgements

Publication history

Received: 23 April 2023
Revised: 05 June 2023
Accepted: 11 June 2023
Published: 25 August 2023
Issue date: January 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by the financial support from the National Natural Science Foundation of China (Nos. 52022051, 22035005, 22075165, 52090032, and 52073159) and Tsinghua-Foshan Innovation Special Fund (No. 2020THFS0501).

Return