AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Iontronic components: From liquid- to solid-states

Tao Xiao1,2,§Xing Zhao1,§Yuchun Zhang1Yong Yan1,2,3( )
CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
University of Chinese Academy of Sciences, Beijing 100049, China
School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China

§ Tao Xiao and Xing Zhao contributed equally to this work.

Show Author Information

Graphical Abstract

Inspired by the ionic information processing within living organisms, liquid-state iontronic components have been extensively studied. However, the inevitable Faraday process pushes us to discover the solid-state counterparts for future neuromorphic computing.

Abstract

In modern electronics, the ionic charges have not occupied the same role as the electrons mainly because of their relatively low mobilities. However, these “slow” charge carriers contribute to brain computing with high efficiency and extremely low power consumption. Inspired by the “ionic” life, iontronic components have recently attracted considerable attention. In this review, we first introduce the progress of iontronic devices operating with the involvement of water, specifically, two types of systems—nanofluidic and hydrogels. Next, the issues and challenges within these liquid-state ionic devices are summarized. To avoid the negative impact of water, we also propose two solid-state materials—ionogels and charged metal nanoparticles—to construct several basic ionic devices such as diodes and transistors. Finally, we summarize this review and outlook the promising directions for the further developments of iontronic devices.

References

[1]

Gouaux, E.; MacKinnon, R. Principles of selective ion transport in channels and pumps. Science 2005, 310, 1461–1465.

[2]

Chun, H. G.; Chung, T. D. Iontronics. Annu. Rev. Anal. Chem. 2015, 8, 441–462.

[3]

Guo, Y. H.; Bae, J.; Fang, Z. W.; Li, P. P.; Zhao, F.; Yu, G. H. Hydrogels and hydrogel-derived materials for energy and water sustainability. Chem. Rev. 2020, 120, 7642–7707.

[4]

Putra, B. R.; Tshwenya, L.; Buckingham, M. A.; Chen, J. Y.; Aoki, K. J.; Mathwig, K.; Arotiba, O. A.; Thompson, A. K.; Li, Z. K.; Marken, F. Microscale ionic diodes: An overview. Electroanalysis 2021, 33, 1398–1418.

[5]

Terabe, K.; Tsuchiya, T.; Tsuruoka, T. A variety of functional devices realized by ionic nanoarchitectonics, complementing electronics components. Adv. Electron. Mater. 2022, 8, 2100645.

[6]

Li, T. M.; Xiao, K. Solid-state iontronic devices: Mechanisms and applications. Adv. Mater. Technol. 2022, 7, 2200205.

[7]

Terabe, K.; Tsuchiya, T.; Tsuruoka, T. Solid state ionics for the development of artificial intelligence components. Jpn. J. Appl. Phys. 2022, 61, SM0803.

[8]

Quirion, R. Brain organoids: Are they for real. Front. Sci. 2023, 1, 1148127.

[9]

Laughlin, S. B.; van Steveninck, R. R. D. R.; Anderson, J. C. The metabolic cost of neural information. Nat. Neurosci. 1998, 1, 36–41.

[10]

Lovrecek, B.; Despic, A.; Bockris, J. O. M. Electrolytic junctions with rectifying properties. J. Phys. Chem. 1959, 63, 750–751.

[11]

Daiguji, H. Ion transport in nanofluidic channels. Chem. Soc. Rev. 2010, 39, 901–911.

[12]

Gonella, G.; Backus, E. H. G.; Nagata, Y.; Bonthuis, D. J.; Loche, P.; Schlaich, A.; Netz, R. R.; Kühnle, A.; McCrum, I. T.; Koper, M. T. M. et al. Water at charged interfaces. Nat. Rev. Chem. 2021, 5, 466–485.

[13]

Zhu, C. J.; Xian, W. P.; Song, Y. P.; Zuo, X. H.; Wang, Y. Q.; Ma, S. Q.; Sun, Q. Manipulating charge density in nanofluidic membranes for optimal osmotic energy production density. Adv. Funct. Mater. 2022, 32, 2109210.

[14]

Cao, L.; Chen, I. C.; Chen, C. L.; Shinde, D. B.; Liu, X. W.; Li, Z.; Zhou, Z. Y.; Zhang, Y. T.; Han, Y.; Lai, Z. P. Giant osmotic energy conversion through vertical-aligned ion-permselective nanochannels in covalent organic framework membranes. J. Am. Chem. Soc. 2022, 144, 12400–12409.

[15]

Yang, J. L.; Tu, B.; Zhang, G. J.; Liu, P. C.; Hu, K.; Wang, J. R.; Yan, Z.; Huang, Z. W.; Fang, M. N.; Hou, J. J. et al. Advancing osmotic power generation by covalent organic framework monolayer. Nat. Nanotechnol. 2022, 17, 622–628.

[16]

Keplinger, C.; Sun, J. Y.; Foo, C. C.; Rothemund, P.; Whitesides, G. M.; Suo, Z. G. Stretchable, transparent, ionic conductors. Science 2013, 341, 984–987.

[17]

Reiss, H. Chemical effects due to the ionization of impurities in semiconductors. J. Chem. Phys. 1953, 21, 1209–1217.

[18]

Fuller, C. S. Some analogies between semiconductors and electrolyte solutions. Rec. Chem. Progr. 1956, 17, 75–93.

[19]

Yan, R. X.; Liang, W. J.; Fan, R.; Yang, P. D. Nanofluidic diodes based on nanotube heterojunctions. Nano Lett. 2009, 9, 3820–3825.

[20]

Lei, Y. H.; Wang, W.; Wu, W. G.; Li, Z. H. Nanofluidic diode in a suspended nanoparticle crystal. Appl. Phys. Lett. 2010, 96, 263102.

[21]

Li, J.; Li, D. Q. A surface charge governed nanofluidic diode based on a single polydimethylsiloxane (PDMS) nanochannel. J. Colloid Interface Sci. 2021, 596, 54–63.

[22]

Guan, W. H.; Fan, R.; Reed, M. A. Field-effect reconfigurable nanofluidic ionic diodes. Nat. Commun. 2011, 2, 506.

[23]

Vlassiouk, I.; Smirnov, S.; Siwy, Z. Nanofluidic ionic diodes. Comparison of analytical and numerical solutions. ACS Nano 2008, 2, 1589–1602.

[24]

Perera, R. T.; Johnson, R. P.; Edwards, M. A.; White, H. S. Effect of the electric double layer on the activation energy of ion transport in conical nanopores. J. Phys. Chem. C 2015, 119, 24299–24306.

[25]

Siwy, Z.; Fuliński, A. Fabrication of a synthetic nanopore ion pump. Phys. Rev. Lett. 2002, 89, 198103.

[26]

Kovarik, M. L.; Zhou, K. M.; Jacobson, S. C. Effect of conical nanopore diameter on Ion current rectification. J. Phys. Chem. B 2009, 113, 15960–15966.

[27]

Yao, H. J.; Cheng, Y. X.; Zeng, J.; Mo, D.; Duan, J. L.; Liu, J. D.; Zhai, P. F.; Sun, Y. M.; Liu, J. Bivalent ion transport through graphene/PET nanopore. Appl. Phys. A 2016, 122, 509.

[28]

Ali, M.; Ramirez, P.; Mafé, S.; Neumann, R.; Ensinger, W. A pH-tunable nanofluidic diode with a broad range of rectifying properties. ACS Nano 2009, 3, 603–608.

[29]

Martin, C. R.; Nishizawa, M.; Jirage, K.; Kang, M.; Lee, S. B. Controlling ion-transport selectivity in gold nanotubule membranes. 3.0.CO;2-W">Adv. Mater. 2001, 13, 1351–1362.

[30]

Hou, X.; Dong, H.; Zhu, D. B.; Jiang, L. Fabrication of stable single nanochannels with controllable ionic rectification. Small 2010, 6, 361–365.

[31]

Nishizawa, M.; Menon, V. P.; Martin, C. R. Metal nanotubule membranes with electrochemically switchable ion-transport selectivity. Science 1995, 268, 700–702.

[32]

Siwy, Z. S. Ion-current rectification in nanopores and nanotubes with broken symmetry. Adv. Funct. Mater. 2006, 16, 735–746.

[33]
Liu, G. C.; Gao, M. J.; Chen, W.; Hu, X. Y.; Song, L. B.; Liu, B.; Zhao, Y. D. pH-modulated ion-current rectification in a cysteine-functionalized glass nanopipette. Electrochem. Commun. 2018, 97, 6–10.
[34]

Liu, G. C.; Chen, W.; Gao, M. J.; Song, L. B.; Hu, X. Y.; Zhao, Y. D. Ion-current-rectification-based customizable pH response in glass nanopipettes via silanization. Electrochem. Commun. 2018, 93, 95–99.

[35]

Liu, S. J.; Dong, Y. T.; Zhao, W. B.; Xie, X.; Ji, T. R.; Yin, X. H.; Liu, Y.; Liang, Z. W.; Momotenko, D.; Liang, D. H. et al. Studies of ionic current rectification using polyethyleneimines coated glass nanopipettes. Anal. Chem. 2012, 84, 5565–5573.

[36]

Siwy, Z.; Heins, E.; Harrell, C. C.; Kohli, P.; Martin, C. R. Conical-nanotube ion-current rectifiers: The role of surface charge. J. Am. Chem. Soc. 2004, 126, 10850–10851.

[37]

Xiao, K.; Xie, G. H.; Zhang, Z.; Kong, X. Y.; Liu, Q.; Li, P.; Wen, L. P.; Jiang, L. Enhanced stability and controllability of an ionic diode based on funnel-shaped nanochannels with an extended critical region. Adv. Mater. 2016, 28, 3345–3350.

[38]

Hao, Y. W.; Zhang, X. Q.; Jiang, L. Quantum-confined superfluid. Nanoscale Horiz. 2019, 4, 1029–1036.

[39]

Wen, L. P.; Zhang, X. Q.; Tian, Y.; Jiang, L. Quantum-confined superfluid: From nature to artificial. Sci. China Mater. 2018, 61, 1027–1032.

[40]

Cheng, L. J.; Guo, L. J. Rectified ion transport through concentration gradient in homogeneous silica nanochannels. Nano Lett. 2007, 7, 3165–3171.

[41]

Nandigana, V. V. R.; Jo, K.; Timperman, A.; Aluru, N. R. Asymmetric-fluidic-reservoirs induced high rectification nanofluidic diode. Sci. Rep. 2018, 8, 13941.

[42]

Dong, Q. Z.; Jiang, J. Q.; Wang, Y. T.; Zhai, J. Geometric tailoring of macroscale Ti3C2Tx MXene lamellar membrane for logic gate circuits. ACS Nano 2021, 15, 19266–19274.

[43]
Li, J.; Zhang, K. P.; Li, D. Q. pH-regulated ionic diode based on an asymmetric shaped multiple-layer polymer membrane. Anal. Chem. 2023, 95, 1419–1427.
[44]

Pérez-Mitta, G.; Marmisollé, W. A.; Trautmann, C.; Toimil-Molares, M. E.; Azzaroni, O. An all-plastic field-effect nanofluidic diode gated by a conducting polymer layer. Adv. Mater. 2017, 29, 1700972.

[45]
Bao, B.; Hao, J. R.; Bian, X. J.; Zhu, X. B.; Xiao, K.; Liao, J. W.; Zhou, J. J.; Zhou, Y. H.; Jiang, L. 3D porous hydrogel/conducting polymer heterogeneous membranes with electro-/pH-modulated ionic rectification. Adv. Mater. 2017, 29, 1702926.
[46]

Lu, J. H.; Jiang, Y. N.; Xiong, T. Y.; Yu, P.; Jiang, W.; Mao, L. Q. Light-regulated nanofluidic ionic diodes with heterogeneous channels stemming from asymmetric growth of metal–organic frameworks. Anal. Chem. 2022, 94, 4328–4334.

[47]

Zhang, Q. Q.; Hu, Z. Y.; Liu, Z. Y.; Zhai, J.; Jiang, L. Light-gating titania/alumina heterogeneous nanochannels with regulatable ion rectification characteristic. Adv. Funct. Mater. 2014, 24, 424–431.

[48]

Zhang, D.; Wang, Q. Q.; Fan, X.; Zhang, M. L.; Zhai, J.; Jiang, L. An effective dark–vis–UV ternary biomimetic switching based on N3/spiropyran-modified nanochannels. Adv. Mater. 2018, 30, 1804862.

[49]

Liu, P.; Xie, G. H.; Li, P.; Zhang, Z.; Yang, L. S.; Zhao, Y. Y.; Zhu, C. C.; Kong, X. Y.; Jiang, L.; Wen, L. P. A universal tunable nanofluidic diode via photoresponsive host–guest interactions. NPG Asia Mater. 2018, 10, 849–857.

[50]

Yang, J. L.; Hu, X. Y.; Kong, X.; Jia, P.; Ji, D. Y.; Quan, D.; Wang, L. L.; Wen, Q.; Lu, D. N.; Wu, J. Z. et al. Photo-induced ultrafast active ion transport through graphene oxide membranes. Nat. Commun. 2019, 10, 1171.

[51]

Wang, D. Y.; Zheng, S.; Liu, H.; Tang, J. Y.; Miao, W. N.; Wang, H. T.; Tian, Y.; Yang, H.; Jiang, L. A magnetic gated nanofluidic based on the integration of a superhydrophilic nanochannels and a reconfigurable ferrofluid. Adv. Mater. 2019, 31, 1805953.

[52]

Xiao, K.; Chen, L.; Xie, G. H.; Li, P.; Kong, X. Y.; Wen, L. P.; Jiang, L. A bio-inspired dumbbell-shaped nanochannel with a controllable structure and ionic rectification. Nanoscale 2018, 10, 6850–6854.

[53]

Xiao, K.; Chen, L.; Zhang, Z.; Xie, G. H.; Li, P.; Kong, X. Y.; Wen, L. P.; Jiang, L. A tunable ionic diode based on a biomimetic structure-tailorable nanochannel. Angew. Chem., Int. Ed. 2017, 56, 8168–8172.

[54]

Zhang, Z.; Kong, X. Y.; Xiao, K.; Xie, G. H.; Liu, Q.; Tian, Y.; Zhang, H. C.; Ma, J.; Wen, L. P.; Jiang, L. A bioinspired multifunctional heterogeneous membrane with ultrahigh ionic rectification and highly efficient selective ionic gating. Adv. Mater. 2016, 28, 144–150.

[55]

Hou, X.; Yang, F.; Li, L.; Song, Y. L.; Jiang, L.; Zhu, D. B. A biomimetic asymmetric responsive single nanochannel. J. Am. Chem. Soc. 2010, 132, 11736–11742.

[56]

Zhang, Z.; Xie, G. H.; Xiao, K.; Kong, X. Y.; Li, P.; Tian, Y.; Wen, L. P.; Jiang, L. Asymmetric multifunctional heterogeneous membranes for pH- and temperature-cooperative smart ion transport modulation. Adv. Mater. 2016, 28, 9613–9619.

[57]

Wang, R.; Sun, Y.; Zhang, F.; Song, M. M.; Tian, D. M.; Li, H. B. Temperature-sensitive artificial channels through pillar[5]arene-based host–guest interactions. Angew. Chem., Int. Ed. 2017, 56, 5294–5298.

[58]

Shang, X. M.; Xie, G. H.; Kong, X. Y.; Zhang, Z.; Zhang, Y. Q.; Tian, W.; Wen, L. P.; Jiang, L. An artificial CO2-driven ionic gate inspired by olfactory sensory neurons in mosquitoes. Adv. Mater. 2017, 29, 1603884.

[59]

Xie, G. H.; Xiao, K.; Zhang, Z.; Kong, X. Y.; Liu, Q.; Li, P.; Wen, L. P.; Jiang, L. A bioinspired switchable and tunable carbonate-activated nanofluidic diode based on a single nanochannel. Angew. Chem., Int. Ed. 2015, 54, 13664–13668.

[60]

Zheng, Y. B.; Zhao, S.; Cao, S. H.; Cai, S. L.; Cai, X. H.; Li, Y. Q. A temperature, pH and sugar triple-stimuli-responsive nanofluidic diode. Nanoscale 2017, 9, 433–439.

[61]

Wu, R.; Hao, J. R.; Cui, Y. S.; Zhou, J. L.; Zhao, D. Y.; Zhang, S. T.; Wang, J.; Zhou, Y. H.; Jiang, L. Multi-control of ion transport in a field-effect iontronic device based on sandwich-structured nanochannels. Adv. Funct. Mater. 2023, 33, 2208095.

[62]

Lin, K. B.; Lin, C. Y.; Polster, J. W.; Chen, Y. F.; Siwy, Z. S. Charge inversion and calcium gating in mixtures of ions in nanopores. J. Am. Chem. Soc. 2020, 142, 2925–2934.

[63]

Zhang, Q. Q.; Zhang, Z.; Zhou, H. J.; Xie, Z. Q.; Wen, L. P.; Liu, Z. Y.; Zhai, J.; Diao, X. G. Redox switch of ionic transport in conductive polypyrrole-engineered unipolar nanofluidic diodes. Nano Res. 2017, 10, 3715–3725.

[64]

Wen, L. P.; Liu, Q.; Ma, J.; Tian, Y.; Li, C. H.; Bo, Z. S.; Jiang, L. Malachite green derivative-functionalized single nanochannel: Light-and-pH dual-driven ionic gating. Adv. Mater. 2012, 24, 6193–6198.

[65]

Karnik, R.; Fan, R.; Yue, M.; Li, D. Y.; Yang, P. D.; Majumdar, A. Electrostatic control of ions and molecules in nanofluidic transistors. Nano Lett. 2005, 5, 943–948.

[66]

Nam, S. W.; Rooks, M. J.; Kim, K. B.; Rossnagel, S. M. Ionic field effect transistors with sub-10 nm multiple nanopores. Nano Lett. 2009, 9, 2044–2048.

[67]

Cheng, L. J.; Guo, L. J. Ionic current rectification, breakdown, and switching in heterogeneous oxide nanofluidic devices. ACS Nano 2009, 3, 575–584.

[68]

Gabrielsson, E. O.; Tybrandt, K.; Berggren, M. Polyphosphonium-based ion bipolar junction transistors. Biomicrofluidics 2014, 8, 064116.

[69]

Li, T.; Li, S. X.; Kong, W. Q.; Chen, C. J.; Hitz, E.; Jia, C.; Dai, J. Q.; Zhang, X.; Briber, R.; Siwy, Z. et al. A nanofluidic ion regulation membrane with aligned cellulose nanofibers. Sci. Adv. 2019, 5, eaau4238.

[70]

Lucas, R. A.; Lin, C. Y.; Baker, L. A.; Siwy, Z. S. Ionic amplifying circuits inspired by electronics and biology. Nat. Commun. 2020, 11, 1568.

[71]

Sansom, M. S. P.; Shrivastava, I. H.; Bright, J. N.; Tate, J.; Capener, C. E.; Biggin, P. C. Potassium channels: Structures, models, simulations. Biochim. Biophys. Acta Biomembr. 2002, 1565, 294–307.

[72]

Zhang, X. Q.; Jiang, L. Quantum-confined ion superfluid in nerve signal transmission. Nano Res. 2019, 12, 1219–1221.

[73]

Xue, Y. H.; Xia, Y.; Yang, S.; Alsaid, Y.; Fong, K. Y.; Wang, Y.; Zhang, X. Atomic-scale ion transistor with ultrahigh diffusivity. Science 2021, 372, 501–503.

[74]

Cayre, O. J.; Chang, S. T.; Velev, O. D. Polyelectrolyte diode: Nonlinear current response of a junction between aqueous ionic gels. J. Am. Chem. Soc. 2007, 129, 10801–10806.

[75]

Nyamayaro, K.; Keyvani, P.; D’Acierno, F.; Poisson, J.; Hudson, Z. M.; Michal, C. A.; Madden, J. D. W.; Hatzikiriakos, S. G.; Mehrkhodavandi, P. Toward biodegradable electronics: Ionic diodes based on a cellulose nanocrystal-agarose hydrogel. ACS Appl. Mater. Interfaces 2020, 12, 52182–52191.

[76]

Wang, Y.; Wang, Z. J.; Su, Z. L.; Cai, S. Q. Stretchable and transparent ionic diode and logic gates. Extreme Mech. Lett. 2019, 28, 81–86.

[77]

Zhang, Y.; Jeong, C. K.; Wang, J. J.; Chen, X.; Choi, K. H.; Chen, L. Q.; Chen, W.; Zhang, Q. M.; Wang, Q. Hydrogel ionic diodes toward harvesting ultralow-frequency mechanical energy. Adv. Mater. 2021, 33, 2103056.

[78]

Koo, H. J.; Chang, S. T.; Velev, O. D. Ion-current diode with aqueous gel/SiO2 nanofilm interfaces. Small 2010, 6, 1393–1397.

[79]

Zhu, C. C.; Teng, Y. F.; Xie, G. H.; Li, P.; Qian, Y. C.; Niu, B.; Liu, P.; Chen, W. P.; Kong, X. Y.; Jiang, L. et al. Bioinspired hydrogel-based nanofluidic ionic diodes: Nano-confined network tuning and ion transport regulation. Chem. Commun. 2020, 56, 8123–8126.

[80]

Plett, T. S.; Cai, W. J.; Le Thai, M.; Vlassiouk, I. V.; Penner, R. M.; Siwy, Z. S. Solid-state ionic diodes demonstrated in conical nanopores. J. Phys. Chem. C 2017, 121, 6170–6176.

[81]

Tybrandt, K.; Larsson, K. C.; Richter-Dahlfors, A.; Berggren, M. Ion bipolar junction transistors. Proc. Natl. Acad. Sci. USA 2010, 107, 9929–9932.

[82]

Tybrandt, K.; Gabrielsson, E. O.; Berggren, M. Toward complementary ionic circuits: The npn ion bipolar junction transistor. J. Am. Chem. Soc. 2011, 133, 10141–10145.

[83]

Tybrandt, K.; Forchheimer, R.; Berggren, M. Logic gates based on ion transistors. Nat. Commun. 2012, 3, 871.

[84]

Huo, R.; Bao, G. Y.; He, Z. X.; Li, X.; Ma, Z. W.; Yang, Z.; Moakhar, R.; Jiang, S. B.; Chung-Tze-Cheong, C.; Nottegar, A. et al. Tough transient ionic junctions printed with ionic microgels. Adv. Funct. Mater. 2023, 33, 2213677.

[85]

So, J. H.; Koo, H. J.; Dickey, M. D.; Velev, O. D. Ionic current rectification in soft-matter diodes with liquid-metal electrodes. Adv. Funct. Mater. 2012, 22, 625–631.

[86]

Harrell, C. C.; Kohli, P.; Siwy, Z.; Martin, C. R. DNA-nanotube artificial ion channels. J. Am. Chem. Soc. 2004, 126, 15646–15647.

[87]

Maglia, G.; Heron, A. J.; Hwang, W. L.; Holden, M. A.; Mikhailova, E.; Li, Q. H.; Cheley, S.; Bayley, H. Droplet networks with incorporated protein diodes show collective properties. Nat. Nanotechnol. 2009, 4, 437–440.

[88]

Guo, Z. H.; Wang, H. L.; Shao, Y. S.; Li, L. W.; Jia, L. Y.; Pu, X. Flexible ionic diodes with high rectifying ratio and wide temperature tolerance. Adv. Funct. Mater. 2022, 32, 2112432.

[89]

Yang, Z. J.; Zhuang, Q.; Yan, Y.; Ahumada, G.; Grzybowski, B. A. An electrocatalytic reaction as a basis for chemical computing in water droplets. J. Am. Chem. Soc. 2021, 143, 16908–16912.

[90]

Mei, T. T.; Zhang, H. J.; Xiao, K. Bioinspired artificial ion pumps. ACS Nano 2022, 16, 13323–13338.

[91]

Cheng, C. Y.; McGonigal, P. R.; Schneebeli, S. T.; Li, H.; Vermeulen, N. A.; Ke, C. F.; Stoddart, J. F. An artificial molecular pump. Nat. Nanotechnol. 2015, 10, 547–553.

[92]

Jakešová, M.; Sjöström, T. A.; Đerek, V.; Poxson, D.; Berggren, M.; Głowacki, E. D.; Simon, D. T. Wireless organic electronic ion pumps driven by photovoltaics. npj Flex. Electron. 2019, 3, 14.

[93]

Zhang, Z.; Li, P.; Kong, X. Y.; Xie, G. H.; Qian, Y. C.; Wang, Z. Q.; Tian, Y.; Wen, L. P.; Jiang, L. Bioinspired heterogeneous ion pump membranes: Unidirectional selective pumping and controllable gating properties stemming from asymmetric ionic group distribution. J. Am. Chem. Soc. 2018, 140, 1083–1090.

[94]

Xiao, K.; Chen, L.; Chen, R. T.; Heil, T.; Lemus, S. D. C.; Fan, F. T.; Wen, L. P.; Jiang, L.; Antonietti, M. Artificial light-driven ion pump for photoelectric energy conversion. Nat. Commun. 2019, 10, 74.

[95]

Zhang, H. C.; Hou, X.; Zeng, L.; Yang, F.; Li, L.; Yan, D. D.; Tian, Y.; Jiang, L. Bioinspired artificial single ion pump. J. Am. Chem. Soc. 2013, 135, 16102–16110.

[96]

Rabinowitz, J.; Cohen, C.; Shepard, K. L. An electrically actuated, carbon-nanotube-based biomimetic ion pump. Nano Lett. 2020, 20, 1148–1153.

[97]

Xiao, K.; Wan, C. J.; Jiang, L.; Chen, X. D.; Antonietti, M. Bioinspired ionic sensory systems: The successor of electronics. Adv. Mater. 2020, 32, 2000218.

[98]

Xiao, K.; Tu, B.; Chen, L.; Heil, T.; Wen, L. P.; Jiang, L.; Antonietti, M. Photo-driven ion transport for a photodetector based on an asymmetric carbon nitride nanotube membrane. Angew. Chem., Int. Ed. 2019, 58, 12574–12579.

[99]

Chun, K. Y.; Son, Y. J.; Jeon, E. S.; Lee, S.; Han, C. S. A self-powered sensor mimicking slow- and fast-adapting cutaneous mechanoreceptors. Adv. Mater. 2018, 30, 1706299.

[100]

Xie, G. H.; Li, P.; Zhang, Z.; Xiao, K.; Kong, X. Y.; Wen, L. P.; Jiang, L. Skin-inspired low-grade heat energy harvesting using directed ionic flow through conical nanochannels. Adv. Energy Mater. 2018, 8, 1800459.

[101]

Xiao, K.; Jiang, L.; Antonietti, M. Ion transport in nanofluidic devices for energy harvesting. Joule 2019, 3, 2364–2380.

[102]

Schroeder, T. B. H.; Guha, A.; Lamoureux, A.; VanRenterghem, G.; Sept, D.; Shtein, M.; Yang, J.; Mayer, M. An electric-eel-inspired soft power source from stacked hydrogels. Nature 2017, 552, 214–218.

[103]

Macha, M.; Marion, S.; Nandigana, V. V. R.; Radenovic, A. 2D materials as an emerging platform for nanopore-based power generation. Nat. Rev. Mater. 2019, 4, 588–605.

[104]

Steinberg-Yfrach, G.; Liddell, P. A.; Hung, S. C.; Moore, A. L.; Gust, D.; Moore, T. A. Conversion of light energy to proton potential in liposomes by artificial photosynthetic reaction centres. Nature 1997, 385, 239–241.

[105]

Xie, X. J.; Crespo, G. A.; Mistlberger, G.; Bakker, E. Photocurrent generation based on a light-driven proton pump in an artificial liquid membrane. Nat. Chem. 2014, 6, 202–207.

[106]

Hwang, J.; Sekimoto, T.; Hsu, W. L.; Kataoka, S.; Endo, A.; Daiguji, H. Thermal dependence of nanofluidic energy conversion by reverse electrodialysis. Nanoscale 2017, 9, 12068–12076.

[107]

Liu, P.; Sun, Y.; Zhu, C. C.; Niu, B.; Huang, X. D.; Kong, X. Y.; Jiang, L.; Wen, L. P. Neutralization reaction assisted chemical-potential-driven ion transport through layered titanium carbides membrane for energy harvesting. Nano Lett. 2020, 20, 3593–3601.

[108]

Sekine, Y.; Ikeda-Fukazawa, T. Structural changes of water in a hydrogel during dehydration. J. Chem. Phys. 2009, 130, 034501.

[109]

Le Floch, P.; Yao, X.; Liu, Q. H.; Wang, Z. J.; Nian, G. D.; Sun, Y.; Jia, L.; Suo, Z. G. Wearable and washable conductors for active textiles. ACS Appl. Mater. Interfaces 2017, 9, 25542–25552.

[110]

Han, J. H.; Kim, K. B.; Kim, H. C.; Chung, T. D. Ionic circuits based on polyelectrolyte diodes on a microchip. Angew. Chem., Int. Ed. 2009, 48, 3830–3833.

[111]

Ding, Y.; Zhang, J. J.; Chang, L.; Zhang, X. Q.; Liu, H. L.; Jiang, L. Preparation of high-performance ionogels with excellent transparency, good mechanical strength, and high conductivity. Adv. Mater. 2017, 29, 1704253.

[112]

Wang, M. X.; Zhang, P. Y.; Shamsi, M.; Thelen, J. L.; Qian, W.; Truong, V. K.; Ma, J.; Hu, J.; Dickey, M. D. Tough and stretchable ionogels by in situ phase separation. Nat. Mater. 2022, 21, 359–365.

[113]

Li, W. Z.; Li, L. L.; Zheng, S. J.; Liu, Z. Y.; Zou, X. Y.; Sun, Z.; Guo, J. N.; Yan, F. Recyclable, healable, and tough ionogels insensitive to crack propagation. Adv. Mater. 2022, 34, 2203049.

[114]

Cao, Z. Q.; Liu, H. L.; Jiang, L. Transparent, mechanically robust, and ultrastable ionogels enabled by hydrogen bonding between elastomers and ionic liquids. Mater. Horiz. 2020, 7, 912–918.

[115]

Cho, J. H.; Lee, J.; Xia, Y.; Kim, B.; He, Y. Y.; Renn, M. J.; Lodge, T. P.; Frisbie, C. D. Printable ion-gel gate dielectrics for low-voltage polymer thin-film transistors on plastic. Nat. Mater. 2008, 7, 900–906.

[116]

Cho, J. H.; Lee, J.; He, Y.; Kim, B. S.; Lodge, T. P.; Frisbie, C. D. High-capacitance ion gel gate dielectrics with faster polarization response times for organic thin film transistors. Adv. Mater. 2008, 20, 686–690.

[117]

Sun, Q. J.; Seung, W.; Kim, B. J.; Seo, S.; Kim, S. W.; Cho, J. H. Active matrix electronic skin strain sensor based on piezopotential-powered graphene transistors. Adv. Mater. 2015, 27, 3411–3417.

[118]

Sun, X. Q.; Luo, H. M.; Dai, S. Ionic liquids-based extraction: A promising strategy for the advanced nuclear fuel cycle. Chem. Rev. 2012, 112, 2100–2128.

[119]

Allen, D.; Baston, G.; Bradley, A. E.; Gorman, T.; Haile, A.; Hamblett, I.; Hatter, J. E.; Healey, M. J. F.; Hodgson, B.; Lewin, R. et al. An investigation of the radiochemical stability of ionic liquids. Green Chem. 2002, 4, 152–158.

[120]

Zhu, M. G.; Xiao, H. S.; Yan, G. P.; Sun, P. K.; Jiang, J. H.; Cui, Z.; Zhao, J. W.; Zhang, Z. Y.; Peng, L. M. Radiation-hardened and repairable integrated circuits based on carbon nanotube transistors with ion gel gates. Nat. Electron. 2020, 3, 622–629.

[121]

Jiang, F.; Poh, W. C.; Chen, J. T.; Gao, D. C.; Jiang, F.; Guo, X. Y.; Chen, J.; Lee, P. S. Ion rectification based on gel polymer electrolyte ionic diode. Nat. Commun. 2022, 13, 6669.

[122]

Kim, H. J.; Chen, B.; Suo, Z.; Hayward, R. C. Ionoelastomer junctions between polymer networks of fixed anions and cations. Science 2020, 367, 773–776.

[123]

Yan, Y.; Warren, S. C.; Fuller, P.; Grzybowski, B. A. Chemoelectronic circuits based on metal nanoparticles. Nat. Nanotechnol. 2016, 11, 603–608.

[124]

Zhao, X.; Tu, B.; Li, M. Y.; Feng, X. J.; Zhang, Y. C.; Fang, Q. J.; Li, T. H.; Grzybowski, B. A.; Yan, Y. Switchable counterion gradients around charged metallic nanoparticles enable reception of radio waves. Sci. Adv. 2018, 4, eaau3546.

[125]

Zhao, X.; Yang, L.; Guo, J. H.; Xiao, T.; Zhou, Y.; Zhang, Y. C.; Tu, B.; Li, T. H.; Grzybowski, B. A.; Yan, Y. Transistors and logic circuits based on metal nanoparticles and ionic gradients. Nat. Electron. 2021, 4, 109–115.

[126]
Kim, S.; Choi, H.; Kim, B.; Lim, G.; Kim, T.; Lee, M.; Ra, H.; Yeom, J.; Kim, M.; Kim, E. et al. Extreme ion-transport inorganic 2D membranes for nanofluidic applications. Adv. Mater., in press, https://doi.org/10.1002/adma.202206354.
[127]

Kim, S.; Choi, S.; Lee, H. G.; Jin, D. N.; Kim, G.; Kim, T.; Lee, J. S.; Shim, W. Neuromorphic van der Waals crystals for substantial energy generation. Nat. Commun. 2021, 12, 47.

[128]

Li, X. Y.; Zhang, H. C.; Wang, P. Y.; Hou, J.; Lu, J.; Easton, C. D.; Zhang, X. W.; Hill, M. R.; Thornton, A. W.; Liu, J. Z. et al. Fast and selective fluoride ion conduction in sub-1-nanometer metal-organic framework channels. Nat. Commun. 2019, 10, 2490.

[129]

Zhang, J. R.; Liu, W. C.; Dai, J. Q.; Xiao, K. Nanoionics from biological to artificial systems: An alternative beyond nanoelectronics. Adv. Sci. (Weinh. ) 2022, 9, 2200534.

[130]

Robin, P.; Kavokine, N.; Bocquet, L. Modeling of emergent memory and voltage spiking in ionic transport through angstrom-scale slits. Science 2021, 373, 687–691.

[131]

Hou, Y. Q.; Hou, X. Bioinspired nanofluidic iontronics. Science 2021, 373, 628–629.

[132]

Xiong, T. Y.; Li, C. W.; He, X. L.; Xie, B. Y.; Zong, J. W.; Jiang, Y. A.; Ma, W. J.; Wu, F.; Fei, J. J.; Yu, P. et al. Neuromorphic functions with a polyelectrolyte-confined fluidic memristor. Science 2023, 379, 156–161.

[133]

Keene, S. T.; Lubrano, C.; Kazemzadeh, S.; Melianas, A.; Tuchman, Y.; Polino, G.; Scognamiglio, P.; Cinà, L.; Salleo, A.; van De Burgt, Y. et al. A biohybrid synapse with neurotransmitter-mediated plasticity. Nat. Mater. 2020, 19, 969–973.

[134]

Pereda, A. E. Electrical synapses and their functional interactions with chemical synapses. Nat. Rev. Neurosci. 2014, 15, 250–263.

[135]

Qin, S. C.; Wang, F. Q.; Liu, Y. J.; Wan, Q.; Wang, X. R.; Xu, Y. B.; Shi, Y.; Wang, X. M.; Zhang, R. A light-stimulated synaptic device based on graphene hybrid phototransistor. 2D Mater. 2017, 4, 035022.

[136]
Chen, F. D.; Zhang, S.; Hu, L.; Fan, J. J.; Lin, C. H.; Guan, P. Y.; Zhou, Y. Z.; Wan, T.; Peng, S. H.; Wang, C. H. et al. Bio-inspired artificial perceptual devices for neuromorphic computing and gesture recognition. Adv. Funct. Mater. 2023, 2300266.
[137]

Wang, Y.; Gong, Y.; Yang, L.; Xiong, Z. Y.; Lv, Z. Y.; Xing, X. C.; Zhou, Y.; Zhang, B.; Su, C. L.; Liao, Q. F. et al. MXene-ZnO memristor for multimodal in-sensor computing. Adv. Funct. Mater. 2021, 31, 2100144.

[138]

Zhou, F. C.; Zhou, Z.; Chen, J. W.; Choy, T. H.; Wang, J. L.; Zhang, N.; Lin, Z. Y.; Yu, S. M.; Kang, J. F.; Wong, H. S. P. et al. Optoelectronic resistive random access memory for neuromorphic vision sensors. Nat. Nanotechnol. 2019, 14, 776–782.

[139]

Roy, K.; Jaiswal, A.; Panda, P. Towards spike-based machine intelligence with neuromorphic computing. Nature 2019, 575, 607–617.

[140]

Fuller, E. J.; Keene, S. T.; Melianas, A.; Wang, Z. R.; Agarwal, S.; Li, Y. Y.; Tuchman, Y.; James, C. D.; Marinella, M. J.; Yang, J. J. et al. A. Parallel programming of an ionic floating-gate memory array for scalable neuromorphic computing. Science 2019, 364, 570–574.

[141]

Zhu, X. J.; Li, D.; Liang, X. G.; Lu, W. D. Ionic modulation and ionic coupling effects in MoS2 devices for neuromorphic computing. Nat. Mater. 2019, 18, 141–148.

[142]

Tang, J. S.; Yuan, F.; Shen, X. K.; Wang, Z. R.; Rao, M. Y.; He, Y. Y.; Sun, Y. H.; Li, X. Y.; Zhang, W. B.; Li, Y. J. et al. Bridging biological and artificial neural networks with emerging neuromorphic devices: Fundamentals, progress, and challenges. Adv. Mater. 2019, 31, 1902761.

[143]

Raspopovic, S. Advancing limb neural prostheses. Science 2020, 370, 290–291.

[144]

Li, C. C.; Li, G. F.; Jiang, G. Z.; Chen, D. S.; Liu, H. H. Surface EMG data aggregation processing for intelligent prosthetic action recognition. Neural Comput. Appl. 2020, 32, 16795–16806.

[145]

Guo, J. H.; Liu, L.; Bian, B. A.; Wang, J. Y.; Zhao, X.; Zhang, Y. C.; Yan, Y. Field-created coordinate cation bridges enable conductance modulation and artificial synapse within metal nanoparticles. Nano Lett. 2022, 22, 6794–6801.

Nano Research
Pages 13343-13357
Cite this article:
Xiao T, Zhao X, Zhang Y, et al. Iontronic components: From liquid- to solid-states. Nano Research, 2023, 16(12): 13343-13357. https://doi.org/10.1007/s12274-023-5914-5
Topics:
Part of a topical collection:

856

Views

0

Crossref

1

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 15 April 2023
Revised: 29 May 2023
Accepted: 11 June 2023
Published: 24 July 2023
© Tsinghua University Press 2023
Return