AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Gas diffusion in catalyst layer of flow cell for CO2 electroreduction toward C2+ products

Xiqing Wang1Qin Chen1Yajiao Zhou1Yao Tan1Ye Wang2Hongmei Li1,3Yu Chen1Mahmoud Sayed4Ramadan A. Geioushy4Nageh K. Allam5Junwei Fu1( )Yifei Sun2,6( )Min Liu1 ( )
Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics and Electronics, Central South University, Changsha 410083, China
School of Energy and Power Engineering, Beihang University, Beijing 100191, China
School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450002, China
Central Metallurgical Research and Development Institute (CMRDI), P.O. Box 87, Helwan 11421, Cairo, Egypt
Energy Materials Laboratory, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
Research Center for Advanced Energy and Carbon Neutrality, Beihang University, Beijing 100191, China
Show Author Information

Graphical Abstract

Through optimizing the CO2 reactant and CO intermediate gas diffusion by catalyst layers (CLs) with different thicknesses in flow cell, an excellent selectivity for C2+ products of ~ 79% at a high current density of 400 mA·cm−2 was obtained.

Abstract

The use of gas diffusion electrode (GDE) based flow cell can realize industrial-scale CO2 reduction reactions (CO2RRs). Controlling local CO2 and CO intermediate diffusion plays a key role in CO2RR toward multi-carbon (C2+) products. In this work, local CO2 and CO intermediate diffusion through the catalyst layer (CL) was investigated for improving CO2RR toward C2+ products. The gas permeability tests and finite element simulation results indicated CL can balance the CO2 gas diffusion and residence time of the CO intermediate, leading to a sufficient CO concentration with a suitable CO2/H2O supply for high C2+ products. As a result, an excellent selectivity of C2+ products ~ 79% at a high current density of 400 mA·cm−2 could be obtained on the optimal 500 nm Cu CL (Cu500). This work provides a new insight into the optimization of CO2/H2O supply and local CO concentration by controlling CL for C2+ products in CO2RR flow cell.

Electronic Supplementary Material

Download File(s)
12274_2023_5910_MOESM1_ESM.pdf (5 MB)

References

[1]

Wang, Y. X.; Shen, H.; Livi, K. J. T.; Raciti, D.; Zong, H.; Gregg, J.; Onadeko, M.; Wan, Y. D.; Watson, A.; Wang, C. Copper nanocubes for CO2 reduction in gas diffusion electrodes. Nano Lett. 2019, 19, 8461–8468.

[2]

Weekes, D. M.; Salvatore, D. A.; Reyes, A.; Huang, A. X.; Berlinguette, C. P. Electrolytic CO2 reduction in a flow cell. Acc. Chem. Res. 2018, 51, 910–918.

[3]

Overa, S.; Ko, B. H.; Zhao, Y. R.; Jiao, F. Electrochemical approaches for CO2 conversion to chemicals: A journey toward practical applications. Acc. Chem. Res. 2022, 55, 638–648.

[4]

Tan, X. Y.; Yu, C.; Ren, Y. W.; Cui, S.; Li, W. B.; Qiu, J. S. Recent advances in innovative strategies for the CO2 electroreduction reaction. Energy Environ. Sci. 2021, 14, 765–780.

[5]

Ju, H.; Kaur, G.; Kulkarni, A. P.; Giddey, S. Challenges and trends in developing technology for electrochemically reducing CO2 in solid polymer electrolyte membrane reactors. J. CO2 Util. 2019, 32, 178–186.

[6]

De Luna, P.; Hahn, C.; Higgins, D.; Jaffer, S. A.; Jaramillo, T. F.; Sargent, E. H. What would it take for renewably powered electrosynthesis to displace petrochemical processes. Science. 2019, 364, eaav3506.

[7]

Zhou, Y. J.; Liang, Y. Q.; Fu, J. W.; Liu, K.; Chen, Q.; Wang, X. Q.; Li, H. M.; Zhu, L.; Hu, J. H.; Pan, H. et al. Vertical Cu nanoneedle arrays enhance the local electric field promoting C2 hydrocarbons in the CO2 electroreduction. Nano Lett. 2022, 22, 1963–1970.

[8]

Zhou, Y. J.; Ni, G. H.; Wu, K. Z.; Chen, Q.; Wang, X. Q.; Zhu, W. W.; He, Z.; Li, H. M.; Fu, J. W.; Liu, M. Porous Zn conformal coating on dendritic-like Ag with enhanced selectivity and stability for CO2 electroreduction to CO. Adv. Sustain. Syst. 2023, 7, 2200374.

[9]

Zhu, L.; Lin, Y. Y.; Liu, K.; Cortés, E.; Li, H. M.; Hu, J. H.; Yamaguchi, A.; Liu, X. L.; Miyauchi, M.; Fu, J. W. et al. Tuning the intermediate reaction barriers by a CuPd catalyst to improve the selectivity of CO2 electroreduction to C2 products. Chin. J. Catal. 2021, 42, 1500–1508.

[10]

Ma, D.; Jin, T.; Xie, K. Y.; Huang, H. T. An overview of flow cell architecture design and optimization for electrochemical CO2 reduction. J. Mater. Chem. A. 2021, 9, 20897–20918.

[11]

Jones, J. P.; Prakash, G. K. S.; Olah, G. A. Electrochemical CO2 reduction: Recent advances and current trends. Isr. J. Chem. 2014, 54, 1451–1466.

[12]

Salvatore, D. A.; Weekes, D. M.; He, J. F.; Dettelbach, K. E.; Li, Y. C.; Mallouk, T. E.; Berlinguette, C. P. Electrolysis of gaseous CO2 to CO in a flow cell with a bipolar membrane. ACS Energy Lett. 2018, 3, 149–154.

[13]

Liang, S. Y.; Altaf, N.; Huang, L.; Gao, Y. S.; Wang, Q. Electrolytic cell design for electrochemical CO2 reduction. J. CO2 Util. 2020, 35, 90–105.

[14]

Kuo, L. K.; Dinh, C. T. Toward efficient catalysts for electrochemical CO2 conversion to C2 products. Curr. Opin. Electrochem. 2021, 30, 100807.

[15]

Park, S.; Wijaya, D. T.; Na, J.; Lee, C. W. Towards the large-scale electrochemical reduction of carbon dioxide. Catalysts. 2021, 11, 253.

[16]

Xie, Y.; Ou, P. F.; Wang, X.; Xu, Z. Y.; Li, Y. C.; Wang, Z. Y.; Huang, J. E.; Wicks, J.; McCallum, C.; Wang, N. et al. High carbon utilization in CO2 reduction to multi-carbon products in acidic media. Nat. Catal. 2022, 5, 564–570.

[17]

Wakerley, D.; Lamaison, S.; Wicks, J.; Clemens, A.; Feaster, J.; Corral, D.; Jaffer, S. A.; Sarkar, A.; Fontecave, M.; Duoss, E. B. et al. Gas diffusion electrodes, reactor designs and key metrics of low-temperature CO2 electrolysers. Nat. Energy. 2022, 7, 130–143.

[18]

Yang, Y.; Li, F. W. Reactor design for electrochemical CO2 conversion toward large-scale applications. Curr. Opin. Green Sustain. Chem. 2021, 27, 100419.

[19]

Li, L.; Liu, Z. Y.; Yu, X. H.; Zhong, M. Achieving high single-pass carbon conversion efficiencies in durable CO2 electroreduction in strong acids via electrode structure engineering. Angew. Chem., Int. Ed. 2023, 62, e202300226.

[20]

Zhang, J.; Guo, C. X.; Fang, S. S.; Zhao, X. T.; Li, L.; Jiang, H. Y.; Liu, Z. Y.; Fan, Z. Q.; Xu, W. G.; Xiao, J. P. et al. Accelerating electrochemical CO2 reduction to multi-carbon products via asymmetric intermediate binding at confined nanointerfaces. Nat. Commun. 2023, 14, 1298.

[21]

Nitopi, S.; Bertheussen, E.; Scott, S. B.; Liu, X. Y.; Engstfeld, A. K.; Horch, S.; Seger, B.; Stephens, I. E. L.; Chan, K.; Hahn, C. et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem. Rev. 2019, 119, 7610–7672.

[22]

Chang, Y. B.; Zhang, C.; Lu, X. L.; Zhang, W.; Lu, T. B. Graphdiyene enables ultrafine Cu nanoparticles to selectively reduce CO2 to C2+ products. Nano Res. 2022, 15, 195–201.

[23]

Jiang, J. C.; Chen, J. C.; Zhao, M. D.; Yu, Q.; Wang, Y. G.; Li, J. Rational design of copper-based single-atom alloy catalysts for electrochemical CO2 reduction. Nano Res. 2022, 15, 7116–7123.

[24]

Ahmad, T.; Liu, S.; Sajid, M.; Li, K.; Ali, M.; Liu, L.; Chen, W. Electrochemical CO2 reduction to C2+ products using Cu-based electrocatalysts: A review. Nano Res. Energy. 2022, 1, e9120021.

[25]

Wang, X. Q.; Chen, Q.; Zhou, Y. J.; Li, H. M.; Fu, J. W.; Liu, M. Cu-based bimetallic catalysts for CO2 reduction reaction. Adv. Sensor Energy Mater. 2022, 1, 100023.

[26]

Duong, H. P.; Tran, N. H.; Rousse, G.; Zanna, S.; Schreiber, M. W.; Fontecave, M. Highly selective copper-based Catalysts for electrochemical conversion of carbon monoxide to ethylene using a gas-fed flow electrolyzer. ACS Catal. 2022, 12, 10285–10293.

[27]

Ozden, A.; Wang, Y. H.; Li, F. W.; Luo, M. C.; Sisler, J.; Thevenon, A.; Rosas-Hernández, A.; Burdyny, T.; Lum, Y.; Yadegari, H. et al. Cascade CO2 electroreduction enables efficient carbonate-free production of ethylene. Joule. 2021, 5, 706–719.

[28]

Sisler, J.; Khan, S.; Ip, A. H.; Schreiber, M. W.; Jaffer, S. A.; Bobicki, E. R.; Dinh, C. T.; Sargent, E. H. Ethylene electrosynthesis: A comparative techno-economic analysis of alkaline vs. membrane electrode assembly vs. CO2-CO-C2H4 tandems. ACS Energy Lett. 2021, 6, 997–1002.

[29]

Dinh, C. T.; Burdyny, T.; Kibria, G.; Seifitokaldani, A.; Gabardo, C. M.; García de Arquer, F. P.; Kiani, A.; Edwards, J. P.; De Luna, P.; Bushuyev, O. S. et al. CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science 2018, 360, 783–787.

[30]

Firouzjaie, H. A.; Mustain, W. E. Catalytic advantages, challenges, and priorities in alkaline membrane fuel cells. ACS Catal. 2020, 10, 225–234.

[31]

Ma, M.; Clark, E. L.; Therkildsen, K. T.; Dalsgaard, S.; Chorkendorff, I.; Seger, B. Insights into the carbon balance for CO2 electroreduction on Cu using gas diffusion electrode reactor designs. Energy Environ. Sci. 2020, 13, 977–985.

[32]

Rabiee, H.; Ge, L.; Zhang, X. Q.; Hu, S. H.; Li, M. R.; Yuan, Z. G. Gas diffusion electrodes (GDEs) for electrochemical reduction of carbon dioxide, carbon monoxide, and dinitrogen to value-added products: A review. Energy Environ. Sci. 2021, 14, 1959–2008.

[33]

Wang, Q. Y.; Liu, K.; Fu, J. W.; Cai, C.; Li, H. J. W.; Long, Y.; Chen, S. Y.; Liu, B.; Li, H. M.; Li, W. Z. et al. Atomically dispersed s-block magnesium sites for electroreduction of CO2 to CO. Angew. Chem., Int. Ed. 2021, 60, 25241–25245.

[34]

Chen, K. J.; Cao, M. Q.; Lin, Y. Y.; Fu, J. W.; Liao, H. X.; Zhou, Y. J.; Li, H. M.; Qiu, X. Q.; Hu, J. H.; Zheng, X. S. et al. Ligand engineering in nickel phthalocyanine to boost the electrocatalytic reduction of CO2. Adv. Funct. Mater. 2022, 32, 2111322.

[35]

Bondue, C. J.; Graf, M.; Goyal, A.; Koper, M. T. M. Suppression of hydrogen evolution in acidic electrolytes by electrochemical CO2 reduction. J. Am. Chem. Soc. 2021, 143, 279–285.

[36]

Chen, Q.; Liu, K.; Zhou, Y. J.; Wang, X. Q.; Wu, K. Z.; Li, H. M.; Pensa, E.; Fu, J. W.; Miyauchi, M.; Cortés, E. et al. Ordered Ag nanoneedle arrays with enhanced electrocatalytic CO2 reduction via structure-induced inhibition of hydrogen evolution. Nano Lett. 2022, 22, 6276–6284.

[37]

Zhang, Y. J., Sethuraman, V.; Michalsky, R.; Peterson, A. A. Competition between CO2 reduction and H2 evolution on transition-metal electrocatalysts. ACS Catal. 2014, 4, 3742–3748.

[38]

Wu, Y. M.; Garg, S.; Li, M. R.; Idros, M. N.; Li, Z. H.; Lin, R. J.; Chen, J.; Wang, G. X.; Rufford, T. E. Effects of microporous layer on electrolyte flooding in gas diffusion electrodes and selectivity of CO2 electrolysis to CO. J. Power Sources 2022, 522, 230998.

[39]

Kong, X. D.; Wang, C.; Xu, Z. F.; Zhong, Y. Z.; Liu, Y.; Qin, L.; Zeng, J.; Geng, Z. G. Enhancing CO2 electroreduction selectivity toward multicarbon products via tuning the local H2O/CO2 molar ratio. Nano Lett. 2022, 22, 8000–8007.

[40]

Zhang, T. Y.; Bui, J. C.; Li, Z. Y.; Bell, A. T.; Weber, A. Z.; Wu, J. J. Highly selective and productive reduction of carbon dioxide to multicarbon products via in situ CO management using segmented tandem electrodes. Nat. Catal. 2022, 5, 202–211.

[41]

Ling, P. Q.; Liu, Y. H.; Wang, Z. Q.; Li, L.; Hu, J.; Zhu, J. F.; Yan, W. S.; Jiang, H. J.; Hou, Z. H.; Sun, Y. F. et al. Surface engineering on commercial Cu foil for steering C2H4/CH4 ratio in CO2 electroreduction. Nano Lett. 2022, 22, 2988–2994.

[42]

Ren, D.; Gao, J.; Zakeeruddin, S. M.; Grätzel, M. New insights into the interface of electrochemical flow cells for carbon dioxide reduction to ethylene. J. Phys. Chem. Lett. 2021, 12, 7583–7589.

[43]

Weng, L. C.; Bell, A. T.; Weber, A. Z. Modeling gas-diffusion electrodes for CO2 reduction. Phys. Chem. Chem. Phys. 2018, 20, 16973–16984.

[44]

Ge, L.; Zhu, Z. H.; Li, F.; Liu, S. M.; Wang, L.; Tang, X. G.; Rudolph, V. Investigation of gas permeability in carbon nanotube (CNT)-polymer matrix membranes via modifying CNTs with functional groups/metals and controlling modification location. J. Phys. Chem. C. 2011, 115, 6661–6670.

[45]

Yeo, I.; Jung, H.; Song, T. H. Gas permeation characteristics through heat-sealed flanges of vacuum insulation panels. Vacuum. 2014, 104, 70–76.

[46]

Sebők, B.; Kiss, G.; Dobos, G.; Réti, F.; Majoros, T.; Krafcsik, O. H. Novel instrument and method for the investigation of small permeation fluxes of gases through different membranes. Measurement. 2013, 46, 3516–3524.

[47]

Niu, Z. Z.; Chi, L. P.; Liu, R.; Chen, Z.; Gao, M. R. Rigorous assessment of CO2 electroreduction products in a flow cell. Energy Environ. Sci. 2021, 14, 4169–4176.

Nano Research
Pages 1101-1106
Cite this article:
Wang X, Chen Q, Zhou Y, et al. Gas diffusion in catalyst layer of flow cell for CO2 electroreduction toward C2+ products. Nano Research, 2024, 17(3): 1101-1106. https://doi.org/10.1007/s12274-023-5910-9
Topics:

1577

Views

32

Crossref

30

Web of Science

27

Scopus

0

CSCD

Altmetrics

Received: 23 April 2023
Revised: 06 May 2023
Accepted: 09 May 2023
Published: 07 August 2023
© Tsinghua University Press 2023
Return