Journal Home > Volume 16 , Issue 11

The spin Hall resonance effect (SHRE) characterized by a large spin Hall conductivity (SHC) holds immense promise for achieving spin logic and memory devices. However, the identification of a material capable of achieving intrinsic SHRE remains elusive. Herein, we present compelling evidence of intrinsic SHRE within the Bi-based Janus BiXY (X = S, Se and Te; Y = Cl, Br and I) monolayers through first-principles calculations and an effective Hamiltonian model. We attribute the unusual scenario to the warping effect in the Janus monolayers which induces a non-zero out-of-plane spin component, accompanied by additional Rashba degenerate points. Furthermore, we develop a comprehensive effective Rashba Hamiltonian, incorporating high order terms of k to accurately describe the intrinsic SHRE and establish the resilience of this phenomenon in the Janus monolayers. Our study presents a captivating platform for exploring intrinsic SHRE and opens up exciting avenues for the development of novel spintronic devices.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Intrinsic spin Hall resonance in Bi-based Janus monolayers

Show Author's information Lei SunXikui Ma( )Jian LiuYangyang LiMingwen Zhao( )
School of Physics, Shandong University, Jinan 250100, China

Abstract

The spin Hall resonance effect (SHRE) characterized by a large spin Hall conductivity (SHC) holds immense promise for achieving spin logic and memory devices. However, the identification of a material capable of achieving intrinsic SHRE remains elusive. Herein, we present compelling evidence of intrinsic SHRE within the Bi-based Janus BiXY (X = S, Se and Te; Y = Cl, Br and I) monolayers through first-principles calculations and an effective Hamiltonian model. We attribute the unusual scenario to the warping effect in the Janus monolayers which induces a non-zero out-of-plane spin component, accompanied by additional Rashba degenerate points. Furthermore, we develop a comprehensive effective Rashba Hamiltonian, incorporating high order terms of k to accurately describe the intrinsic SHRE and establish the resilience of this phenomenon in the Janus monolayers. Our study presents a captivating platform for exploring intrinsic SHRE and opens up exciting avenues for the development of novel spintronic devices.

Keywords: high-term Rashba effect, out-of-plane spin polarization, intrinsic spin Hall resonance

References(77)

[1]

Wolf, S. A.; Awschalom, D. D.; Buhrman, R. A.; Daughton, J. M.; Von Molnár, S.; Roukes, M. L.; Chtchelkanova, A. Y.; Treger, D. M. Spintronics: A spin-based electronics vision for the future. Science 2001, 294, 1488–1495.

[2]

Žutić, I.; Fabian, J.; Sarma, S. D. Spintronics: Fundamentals and applications. Rev. Mod. Phys. 2004, 76, 323–410.

[3]

Bader, S. D.; Parkin, S. S. P. Spintronics. Annu. Rev. Condens. Matter Phys. 2010, 1, 71–88.

[4]

Jungwirth, T.; Marti, X.; Wadley, P.; Wunderlich, J. Antiferromagnetic spintronics. Nat. Nanotechnol. 2016, 11, 231–241.

[5]

Baltz, V.; Manchon, A.; Tsoi, M.; Moriyama, T.; Ono, T.; Tserkovnyak, Y. Antiferromagnetic spintronics. Rev. Mod. Phys. 2018, 90, 015005.

[6]

Šmejkal, L.; Mokrousov, Y.; Yan, B. H.; MacDonald, A. H. Topological antiferromagnetic spintronics. Nat. Phys. 2018, 14, 242–251.

[7]

Guo, L. D.; Gu, X. R.; Zhu, X. W.; Sun, X. N. Recent advances in molecular spintronics: Multifunctional spintronic devices. Adv. Mater. 2019, 31, 1805355.

[8]

He, Q. L.; Hughes, T. L.; Armitage, N. P.; Tokura, Y.; Wang, K. L. Topological spintronics and magnetoelectronics. Nat. Mater. 2022, 21, 15–23.

[9]

Kim, S. K.; Beach, G. S. D.; Lee, K. J.; Ono, T.; Rasing, T.; Yang, H. Ferrimagnetic spintronics. Nat. Mater. 2022, 21, 24–34.

[10]

Kato, Y. K.; Myers, R. C.; Gossard, A. C.; Awschalom, D. D. Observation of the spin hall effect in semiconductors. Science 2004, 306, 1910–1913.

[11]

Murakami, S.; Nagaosa, N.; Zhang, S. C. Dissipationless quantum spin current at room temperature. Science 2003, 301, 1348–1351.

[12]

Hirsch, J. E. Spin hall effect. Phys. Rev. Lett. 1999, 83, 1834–1837.

[13]

Zhang, S. F. Spin hall effect in the presence of spin diffusion. Phys. Rev. Lett. 2000, 85, 393–396.

[14]

Safeer, C. K.; Ingla-Aynés, J.; Ontoso, N.; Herling, F.; Yan, W. J.; Hueso, L. E.; Casanova, F. Spin hall effect in bilayer graphene combined with an insulator up to room temperature. Nano Lett. 2020, 20, 4573–4579.

[15]

Wunderlich, J.; Kaestner, B.; Sinova, J.; Jungwirth, T. Experimental observation of the spin-Hall effect in a two-dimensional spin-orbit coupled semiconductor system. Phys. Rev. Lett. 2005, 94, 047204.

[16]

Day, C. Two groups observe the spin hall effect in semiconductors. Phys. Today 2005, 58, 17–19.

[17]

Sinova, J.; Valenzuela, S. O.; Wunderlich, J.; Back, C. H.; Jungwirth, T. Spin Hall effects. Rev. Mod. Phys. 2015, 87, 1213–1260.

[18]

Sinova, J.; Culcer, D.; Niu, Q.; Sinitsyn, N. A.; Jungwirth, T.; MacDonald, A. H. Universal intrinsic spin hall effect. Phys. Rev. Lett. 2004, 92, 126603.

[19]

Safeer, C. K.; Ingla-Aynés, J.; Herling, F.; Garcia, J. H.; Vila, M.; Ontoso, N.; Calvo, M. R.; Roche, S.; Hueso, L. E.; Casanova, F. Room-temperature spin hall effect in graphene/MoS2 van der waals heterostructures. Nano Lett. 2019, 19, 1074–1082.

[20]

Bychkov, Y. A.; Rashba, E. I. Oscillatory effects and the magnetic susceptibility of carriers in inversion layers. J. Phys. C Solid State Phys. 1984, 17, 6039–6045.

[21]

Bychkov, Y. A.; Rashba, E. I. Properties of a 2D electron gas with lifted spectral degeneracy. JETP Lett. 1984, 39, 78–83.

[22]

Petersen, L.; Hedegård, P. A simple tight-binding model of spin-orbit splitting of sp-derived surface states. Surf. Sci. 2000, 459, 49–56.

[23]

Inoue, J. I.; Bauer, G. E. W.; Molenkamp, L. W. Suppression of the persistent spin Hall current by defect scattering. Phys. Rev. B 2004, 70, 041303.

[24]
Dimitrova, O. V. Vanishing spin-hall conductivity in 2D disordered Rashba electron gas. 2004, arXiv: cond-mat/0405339. arXiv.org e-Print archive. https://arxiv.org/abs/cond-mat/0405339v2 (accessed Sep 16, 2004).
[25]

Murakami, S. Absence of vertex correction for the spin Hall effect in p-type semiconductors. Phys. Rev. B 2004, 69, 241202.

[26]

Shen, S. Q.; Ma, M.; Xie, X. C.; Zhang, F. C. Resonant spin hall conductance in two-dimensional electron systems with a Rashba interaction in a perpendicular magnetic field. Phys. Rev. Lett. 2004, 92, 256603.

[27]

Ma, T. X.; Liu, Q. Sign changes and resonance of intrinsic spin Hall effect in two-dimensional hole gas. Appl. Phys. Lett. 2006, 89, 112102.

[28]

Bhattacharya, A.; Islam, S. K. F. Photoinduced spin-Hall resonance in a k3-Rashba spin-orbit coupled two-dimensional hole system. Phys. Rev. B 2021, 104, L081411.

[29]

De Gennes, P. G. Soft matter. Rev. Mod. Phys. 1992, 64, 645–648.

[30]

Lu, A. Y.; Zhu, H. Y.; Xiao, J.; Chuu, C. P.; Han, Y. M.; Chiu, M. H.; Cheng, C. C.; Yang, C. W.; Wei, K. H.; Yang, Y. M. et al. Janus monolayers of transition metal dichalcogenides. Nat. Nanotechnol. 2017, 12, 744–749.

[31]

Zhang, J.; Jia, S.; Kholmanov, I.; Dong, L.; Er, D.; Chen, W. B.; Guo, H.; Jin, Z. H.; Shenoy, V. B.; Shi, L. et al. Janus monolayer transition-metal dichalcogenides. ACS Nano 2017, 11, 8192–8198.

[32]

Zhang, C. M.; Nie, Y. H.; Sanvito, S.; Du, A. J. First-principles prediction of a room-temperature ferromagnetic Janus VSSe monolayer with piezoelectricity, ferroelasticity, and large valley polarization. Nano Lett. 2019, 19, 1366–1370.

[33]

Hajra, D.; Sailus, R.; Blei, M.; Yumigeta, K.; Shen, Y. X.; Tongay, S. Epitaxial synthesis of highly oriented 2D Janus Rashba semiconductor BiTeCl and BiTeBr layers. ACS Nano 2020, 14, 15626–15632.

[34]

Ju, L.; Bie, M.; Tang, X.; Shang, J.; Kou, L. Z. Janus WSSe monolayer: An excellent photocatalyst for overall water splitting. ACS Appl. Mater. Interfaces 2020, 12, 29335–29343.

[35]

Wan, X.; Chen, E. Z.; Yao, J.; Gao, M. L.; Miao, X.; Wang, S.; Gu, Y. Y.; Xiao, S. Q.; Zhan, R. Z.; Chen, K. et al. Synthesis and characterization of metallic Janus MoSH monolayer. ACS Nano 2021, 15, 20319–20331.

[36]

Fan, Y. C.; Wang, J. R.; Zhao, M. W. Spontaneous full photocatalytic water splitting on 2D MoSe2/SnSe2 and WSe2/SnSe2 vdW heterostructures. Nanoscale 2019, 11, 14836–14843.

[37]

Li, F. P.; Wei, W.; Zhao, P.; Huang, B. B.; Dai, Y. Electronic and optical properties of pristine and vertical and lateral heterostructures of Janus MoSSe and WSSe. J. Phys. Chem. Lett. 2017, 8, 5959–5965.

[38]

McConnell, M. D.; Kraeutler, M. J.; Yang, S.; Composto, R. J. Patchy and multiregion Janus particles with tunable optical properties. Nano Lett. 2010, 10, 603–609.

[39]

Zhao, Y. F.; Shen, Y. H.; Hu, H.; Tong, W. Y.; Duan, C. G. Combined piezoelectricity and ferrovalley properties in Janus monolayer VClBr. Phys. Rev. B 2021, 103, 115124.

[40]

Dong, L.; Lou, J.; Shenoy, V. B. Large in-plane and vertical piezoelectricity in Janus transition metal dichalchogenides. ACS Nano 2017, 11, 8242–8248.

[41]

Chen, Y.; Liu, J. Y.; Yu, J. B.; Guo, Y. G.; Sun, Q. Symmetry-breaking induced large piezoelectricity in Janus tellurene materials. Phys. Chem. Chem. Phys. 2019, 21, 1207–1216.

[42]

Trivedi, D. B.; Turgut, G.; Qin, Y.; Sayyad, M. Y.; Hajra, D.; Howell, M.; Liu, L.; Yang, S. J.; Patoary, N. H.; Li, H. et al. Room-temperature synthesis of 2D Janus crystals and their heterostructures. Adv. Mater. 2020, 32, 2006320.

[43]

Liang, J. H.; Wang, W. W.; Du, H. F.; Hallal, A.; Garcia, K.; Chshiev, M.; Fert, A.; Yang, H. X. Very large Dzyaloshinskii-Moriya interaction in two-dimensional Janus manganese dichalcogenides and its application to realize skyrmion states. Phys. Rev. B 2020, 101, 184401.

[44]

Yuan, J. R.; Yang, Y. M.; Cai, Y. Q.; Wu, Y. H.; Chen, Y. P.; Yan, X. H.; Shen, L. Intrinsic skyrmions in monolayer Janus magnets. Phys. Rev. B 2020, 101, 094420.

[45]

Kovács-Krausz, Z.; Hoque, A. M.; Makk, P.; Szentpéteri, B.; Kocsis, M.; Fülöp, B.; Yakushev, M. V.; Kuznetsova, T. V.; Tereshchenko, O. E.; Kokh, K. A. et al. Electrically controlled spin injection from giant Rashba spin-orbit conductor BiTeBr. Nano Lett. 2020, 20, 4782–4791.

[46]

Li, S.; Xu, L. F.; Kong, X. G.; Kusunose, T.; Tsurumachi, N.; Feng, Q. Bismuth chalcogenide iodides Bi13S18I2 and BiSI: Solvothermal synthesis, photoelectric behavior, and photovoltaic performance. J. Mater. Chem. C 2020, 8, 3821–3829.

[47]

Ma, Y. D.; Dai, Y.; Wei, W.; Li, X. R.; Huang, B. B. Emergence of electric polarity in BiTeX (X = Br and I) monolayers and the giant Rashba spin splitting. Phys. Chem. Chem. Phys. 2014, 16, 17603–17609.

[48]

Maaß, H.; Bentmann, H.; Seibel, C.; Tusche, C.; Eremeev, S. V.; Peixoto, T. R. F.; Tereshchenko, O. E.; Kokh, K. A.; Chulkov, E. V.; Kirschner, J. et al. Spin-texture inversion in the giant Rashba semiconductor BiTeI. Nat. Commun. 2016, 7, 11621.

[49]

Zhang, S. H.; Liu, B. G. Anisotropic Rashba effect and charge and spin currents in monolayer BiTeI by controlling symmetry. Phys. Rev. B 2019, 100, 165429.

[50]

Fülöp, B.; Tajkov, Z.; Pető, J.; Kun, P.; Koltai, J.; Oroszlány, L.; Tóvári, E.; Murakawa, H.; Tokura, Y.; Bordács, S. et al. Exfoliation of single layer BiTeI flakes. 2D Mater. 2018, 5, 031013.

[51]

Alpichshev, Z.; Analytis, J. G.; Chu, J. H.; Fisher, I. R.; Chen, Y. L.; Shen, Z. X.; Fang, A.; Kapitulnik, A. STM imaging of electronic waves on the surface of Bi2Te3: Topologically protected surface states and hexagonal warping effects. Phys. Rev. Lett. 2010, 104, 016401.

[52]

Ast, C. R.; Henk, J.; Ernst, A.; Moreschini, L.; Falub, M. C.; Pacilé, D.; Bruno, P.; Kern, K.; Grioni, M. Giant spin splitting through surface alloying. Phys. Rev. Lett. 2007, 98, 186807.

[53]

Ma, D. S.; Yu, Z. M.; Pan, H.; Yao, Y. G. Trigonal warping induced unusual spin texture and strong spin polarization in graphene with the Rashba effect. Phys. Rev. B 2018, 97, 085416.

[54]

Chen, G. Y.; Huang, A.; Lin, Y. H.; Chen, C. J.; Lin, D. S.; Chang, P. Y.; Jeng, H. T.; Bihlmayer, G.; Hsu, P. J. Orbital-enhanced warping effect in px, py-derived Rashba spin splitting of monatomic bismuth surface alloy. npj Quantum Mater. 2020, 5, 89.

[55]

Frantzeskakis, E.; Grioni, M. Anisotropy effects on Rashba and topological insulator spin-polarized surface states: A unified phenomenological description. Phys. Rev. B 2011, 84, 155453.

[56]

Fu, L. Hexagonal warping effects in the surface states of the topological insulator Bi2Te3. Phys. Rev. Lett. 2009, 103, 266801.

[57]

Premper, J.; Trautmann, M.; Henk, J.; Bruno, P. Spin-orbit splitting in an anisotropic two-dimensional electron gas. Phys. Rev. B 2007, 76, 073310.

[58]

Varjovi, M. J.; Durgun, E. First-principles study on structural, vibrational, elastic, piezoelectric, and electronic properties of the Janus BiXY (X = S, Se, Te and Y = F, Cl, Br, I) monolayers. Phys. Rev. Mater. 2021, 5, 104001.

[59]

Henk, J.; Ernst, A.; Bruno, P. Spin polarization of the L-gap surface states on Au(111). Phys. Rev. B 2003, 68, 165416.

[60]

Henk, J.; Ernst, A.; Bruno, P. Spin polarization of the L-gap surface states on Au(111): A first-principles investigation. Surf. Sci. 2004, 566–568, 482–485.

[61]

Meier, F.; Dil, H.; Lobo-Checa, J.; Patthey, L.; Osterwalder, J. Quantitative vectorial spin analysis in angle-resolved photoemission: Bi/Ag(111) and Pb/Ag(111). Phys. Rev. B 2008, 77, 165431.

[62]

Bahramy, M. S.; Yang, B. J.; Arita, R.; Nagaosa, N. Emergence of non-centrosymmetric topological insulating phase in BiTeI under pressure. Nat. Commun. 2012, 3, 679.

[63]

Efetov, D. K.; Kim, P. Controlling electron-phonon interactions in graphene at ultrahigh carrier densities. Phys. Rev. Lett. 2010, 105, 256805.

[64]

Ye, J. T.; Craciun, M. F.; Koshino, M.; Russo, S.; Inoue, S.; Yuan, H. T.; Shimotani, H.; Morpurgo, A. F.; Iwasa, Y. Accessing the transport properties of graphene and its multilayers at high carrier density. Proc. Natl. Acad. Sci. USA 2011, 108, 13002–13006.

[65]

Li, L. J.; O’Farrell, E. C. T.; Loh, K. P.; Eda, G.; Özyilmaz, B.; Castro Neto, A. H. Controlling many-body states by the electric-field effect in a two-dimensional material. Nature 2016, 529, 185–189.

[66]

Ahn, G. H.; Amani, M.; Rasool, H.; Lien, D. H.; Mastandrea, J. P.; Ager III, J. W.; Dubey, M.; Chrzan, D. C.; Minor, A. M.; Javey, A. Strain-engineered growth of two-dimensional materials. Nat. Commun. 2017, 8, 608.

[67]

Akinwande, D.; Petrone, N.; Hone, J. Two-dimensional flexible nanoelectronics. Nat. Commun. 2014, 5, 5678.

[68]

Woods, C. R.; Withers, F.; Zhu, M. J.; Cao, Y.; Yu, G.; Kozikov, A.; Ben Shalom, M.; Morozov, S. V.; Van Wijk, M. M.; Fasolino, A. et al. Macroscopic self-reorientation of interacting two-dimensional crystals. Nat. Commun. 2016, 7, 10800.

[69]

Woods, C. R.; Britnell, L.; Eckmann, A.; Ma, R. S.; Lu, J. C.; Guo, H. M.; Lin, X.; Yu, G. L.; Cao, Y.; Gorbachev, R. V. et al. Commensurate-incommensurate transition in graphene on hexagonal boron nitride. Nat. Phys. 2014, 10, 451–456.

[70]

Plechinger, G.; Castellanos-Gomez, A.; Buscema, M.; Van Der Zant, H. S. J.; Steele, G. A.; Kuc, A.; Heine, T.; Schüller, C.; Korn, T. Control of biaxial strain in single-layer molybdenite using local thermal expansion of the substrate. 2D Mater. 2015, 2, 015006.

[71]

Wang, G. R.; Liu, L. Q.; Dai, Z. H.; Liu, Q.; Miao, H.; Zhang, Z. Biaxial compressive behavior of embedded monolayer graphene inside flexible poly (methyl methacrylate) matrix. Carbon 2015, 86, 69–77.

[72]

Kresse, G.; Hafner, J. Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B 1993, 48, 13115–13118.

[73]

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

[74]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[75]

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

[76]

Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.

[77]

Gmitra, M.; Konschuh, S.; Ertler, C.; Ambrosch-Draxl, C.; Fabian, J. Band-structure topologies of graphene: Spin-orbit coupling effects from first principles. Phys. Rev. B 2009, 80, 235431.

File
12274_2023_5908_MOESM1_ESM.pdf (662.4 KB)
Publication history
Copyright

Publication history

Received: 26 February 2023
Revised: 24 May 2023
Accepted: 07 June 2023
Published: 08 August 2023
Issue date: November 2023

Copyright

© Tsinghua University Press 2023
Return