Journal Home > Volume 17 , Issue 1

Harvesting clean energy from water evaporation has been extensively investigated due to its sustainability. To achieve high efficiency, energy conversion materials should contain multiple features which are difficult to be simultaneously obtained from single-component materials. Here we use composite laminar membranes assembled by nanosheets of graphene oxide and mica, and find a sustained power density induced by water evaporation that is two orders of magnitude larger than that from membranes made by either of the components. The power output is attributed to selective proton transport driven by water evaporation through the interlayer nanochannels in the membranes. This process relies on the synergistic effects from negatively charged and hydrophilic mica surfaces that are important for proton selectivity and water transport, and the tunable electrical conductivity of graphene oxide that provides optimized internal resistance. The demonstrated composite membranes offer a strategy of enhancing power generation by combining the advantages from each of their components.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Composite laminar membranes for electricity generation from water evaporation

Show Author's information Xiao Wang1Gang Yuan1Han Zhou1Yu Jiang1Shuo Wang1Jiaojiao Ma1Chongyang Yang1Sheng Hu1,2,3( )
State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China

Abstract

Harvesting clean energy from water evaporation has been extensively investigated due to its sustainability. To achieve high efficiency, energy conversion materials should contain multiple features which are difficult to be simultaneously obtained from single-component materials. Here we use composite laminar membranes assembled by nanosheets of graphene oxide and mica, and find a sustained power density induced by water evaporation that is two orders of magnitude larger than that from membranes made by either of the components. The power output is attributed to selective proton transport driven by water evaporation through the interlayer nanochannels in the membranes. This process relies on the synergistic effects from negatively charged and hydrophilic mica surfaces that are important for proton selectivity and water transport, and the tunable electrical conductivity of graphene oxide that provides optimized internal resistance. The demonstrated composite membranes offer a strategy of enhancing power generation by combining the advantages from each of their components.

Keywords: graphene oxide, mica, surface charge, water evaporation, ion selectivity, electrical double layer

References(35)

[1]

Chi, J. G.; Liu, C. R.; Che, L. F.; Li, D. J.; Fan, K.; Li, Q.; Yang, W. H.; Dong, L. X.; Wang, G. F.; Wang, Z. L. Harvesting water-evaporation-induced electricity based on liquid–solid triboelectric nanogenerator. Adv. Sci. 2022, 9, 2201586.

[2]

Yoon, S. G.; Yang, Y.; Yoo, J.; Jin, H. D.; Lee, W. H.; Park, J.; Kim, Y. S. Natural evaporation-driven ionovoltaic electricity generation. ACS Appl. Electron. Mater. 2019, 1, 1746–1751.

[3]

Feng, Z. H.; Zhu, R. B.; Chen, F. D.; Zhu, Y. Z.; Zhou, Y. Z.; Guan, P. Y.; Kuo, Y. C.; Fan, J. J.; Wan, T.; Li, M. Y. et al. Recent advances in water-induced electricity generation based on 2D materials: A review. J. Mater. Res. 2023, 38, 1757–1779.

[4]

Yin, J.; Zhou, J. X.; Fang, S. M.; Guo, W. L. Hydrovoltaic energy on the way. Joule 2020, 4, 1852–1855.

[5]

Wang, X. F.; Lin, F. R.; Wang, X.; Fang, S. M.; Tan, J.; Chu, W. C.; Rong, R.; Yin, J.; Zhang, Z. H.; Liu, Y. P. et al. Hydrovoltaic technology: From mechanism to applications. Chem. Soc. Rev. 2022, 51, 4902–4927.

[6]

Kaur, M.; Nagao, T. Minireview on solar desalination and hydropower generation by water evaporation: Recent challenges and perspectives in materials science. Energy Fuels 2022, 36, 11443–11456.

[7]

Zhang, Z. H.; Li, X. M.; Yin, J.; Xu, Y.; Fei, W. W.; Xue, M. M.; Wang, Q.; Zhou, J. X.; Guo, W. L. Emerging hydrovoltaic technology. Nat. Nanotechnol. 2018, 13, 1109–1119.

[8]

Xue, G. B.; Xu, Y.; Ding, T. P.; Li, J.; Yin, J.; Fei, W. W.; Cao, Y. Z.; Yu, J.; Yuan, L. Y.; Gong, L. et al. Water-evaporation-induced electricity with nanostructured carbon materials. Nat. Nanotechnol. 2017, 12, 317–321.

[9]

Qin, Y. S.; Wang, Y. S.; Sun, X. Y.; Li, Y. J.; Xu, H.; Tan, Y. S.; Li, Y.; Song, T.; Sun, B. Q. Constant electricity generation in nanostructured silicon by evaporation-driven water flow. Angew. Chem., Int. Ed. 2020, 59, 10619–10625.

[10]

Ding, T. P.; Liu, K.; Li, J.; Xue, G. B.; Chen, Q.; Huang, L.; Hu, B.; Zhou, J. All-printed porous carbon film for electricity generation from evaporation-driven water flow. Adv. Funct. Mater. 2017, 27, 1700551.

[11]

Ma, Q. L.; He, Q. Y.; Yin, P. F.; Cheng, H. F.; Cui, X. Y.; Yun, Q. B.; Zhang, H. Rational design of MOF-based hybrid nanomaterials for directly harvesting electric energy from water evaporation. Adv. Mater. 2020, 32, 2003720.

[12]

Yun, T. G.; Bae, J.; Rothschild, A.; Kim, I. D. Transpiration driven electrokinetic power generator. ACS Nano 2019, 13, 12703–12709.

[13]

Zhou, X. B.; Zhang, W. L.; Zhang, C. L.; Tan, Y.; Guo, J. C.; Sun, Z. N.; Deng, X. Harvesting electricity from water evaporation through microchannels of natural wood. ACS Appl. Mater. Interfaces 2020, 12, 11232–11239.

[14]

Garemark, J.; Ram, F.; Liu, L. L.; Sapouna, I.; Ruiz, M. C. F.; Larsson, P. T.; Li, Y. Y. Advancing hydrovoltaic energy harvesting from wood through cell wall nanoengineering. Adv. Funct. Mater. 2023, 33, 2208933.

[15]

Kumar, R.; Kay, G.; Beaton, G.; Liu, G. J.; Stamplecoskie, K. Tuning the functionalization of graphite for hydrovoltaic power generation. ACS Appl. Mater. Interfaces 2023, 15, 7511–7517.

[16]

Zhao, X. H.; Xiong, Z. J.; Qiao, Z.; Bo, X.; Pang, D.; Sun, J. C.; Bian, J. M. Robust and flexible wearable generator driven by water evaporation for sustainable and portable self-power supply. Chem. Eng. J. 2022, 434, 134671.

[17]

Li, J. Y.; Dai, Y. X.; Jiao, S. P.; Liu, X. H. MOFs/ketjen black-coated filter paper for spontaneous electricity generation from water evaporation. Polymers (Basel) 2022, 14, 3509.

[18]

Qi, X.; Miao, T. T.; Chi, C.; Zhang, G.; Zhang, C.; Du, Y. Z.; An, M.; Ma, W. G.; Zhang, X. Ultralight PEDOT:PSS/graphene oxide composite aerogel sponges for electric power harvesting from thermal fluctuations and moist environment. Nano Energy 2020, 77, 105096.

[19]

Li, L. H.; Hao, M. M.; Yang, X. Q.; Sun, F. Q.; Bai, Y. Y.; Ding, H. Y.; Wang, S. Q.; Zhang, T. Sustainable and flexible hydrovoltaic power generator for wearable sensing electronics. Nano Energy 2020, 72, 104663.

[20]

Ji, B. X.; Chen, N.; Shao, C. X.; Liu, Q. W.; Gao, J.; Xu, T.; Cheng, H. H.; Qu, L. T. Intelligent multiple-liquid evaporation power generation platform using distinctive Jaboticaba-like carbon nanosphere@TiO2 nanowires. J. Mater. Chem. A 2019, 7, 6766–6772.

[21]

Yoon, S. G.; Jin, H. D.; Lee, W. H.; Han, J.; Cho, Y. H.; Kim, Y. S. Evaporative electrical energy generation via diffusion-driven ion-electron-coupled transport in semiconducting nanoporous channel. Nano Energy 2021, 80, 105522.

[22]

Singh, M.; Yadav, A.; Kumar, S.; Agarwal, P. Annealing induced electrical conduction and band gap variation in thermally reduced graphene oxide films with different sp2/sp3 fraction. Appl. Surf. Sci. 2015, 326, 236–242.

[23]

Mitra, S.; Kamaja, C. K.; Katiyar, M. Facile formation of porous, multilayer reduced graphene oxide electrodes using electrophoretic deposition and flash sintering. Carbon 2023, 202, 186–195.

[24]

Gudarzi, M. M. Colloidal stability of graphene oxide: Aggregation in two dimensions. Langmuir 2016, 32, 5058–5068.

[25]

Tivony, R.; Klein, J. Probing the surface properties of gold at low electrolyte concentration. Langmuir 2016, 32, 7346–7355.

[26]

Li, A. T.; Han, K.; Zhou, Y. H.; Ye, H. Q.; Liu, G. G.; Kung, H. H. Incorporating multivalent metal cations into graphene oxide: Towards highly-aqueous-stable free-standing membrane via vacuum filtration with polymeric filters. Mater. Today Commun. 2017, 11, 139–146.

[27]

Secchi, E.; Niguès, A.; Jubin, L.; Siria, A.; Bocquet, L. Scaling behavior for ionic transport and its fluctuations in individual carbon nanotubes. Phys. Rev. Lett. 2016, 116, 154501.

[28]

Chai, L.; Klein, J. Interactions between molecularly smooth gold and mica surfaces across aqueous solutions. Langmuir 2009, 25, 11533–11540.

[29]

Leng, Y. S.; Cummings, P. T. Hydration structure of water confined between mica surfaces. J. Chem. Phys. 2006, 124, 074711.

[30]

Pastré, D.; Piétrement, O.; Fusil, S.; Landousy, F.; Jeusset, J.; David, M. O.; Hamon, L.; Le Cam, E.; Zozime, A. Adsorption of DNA to mica mediated by divalent counterions: A theoretical and experimental study. Biophys. J. 2003, 85, 2507–2518.

[31]

Linse, P.; Claesson, P. M. Modeling of bottle-brush polymer adsorption onto mica and silica surfaces: Effect of side-chain length. Macromolecules 2010, 43, 2076–2083.

[32]

Gomez, S. A. S.; Jordan, D. S.; Troiano, J. M.; Geiger, F. M. Uranyl adsorption at the muscovite (mica)/water interface studied by second harmonic generation. Environ. Sci. Technol. 2012, 46, 11154–11161.

[33]

Perram, J. W.; Stiles, P. J. On the nature of liquid junction and membrane potentials. Phys. Chem. Chem. Phys. 2006, 8, 4200–4213.

[34]

Wang, H.; Su, L. M.; Yagmurcukardes, M.; Chen, J. W.; Jiang, Y.; Li, Z.; Quan, A. C.; Peeters, F. M.; Wang, C.; Geim, A. K. et al. Blue energy conversion from holey-graphene-like membranes with a high density of subnanometer pores. Nano Lett. 2020, 20, 8634–8639.

[35]

Van Der Heyden, F. H. J.; Bonthuis, D. J.; Stein, D.; Meyer, C.; Dekker, C. Electrokinetic energy conversion efficiency in nanofluidic channels. Nano Lett. 2006, 6, 2232–2237.

File
12274_2023_5906_MOESM1_ESM.pdf (2.3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 26 April 2023
Revised: 22 May 2023
Accepted: 07 June 2023
Published: 24 July 2023
Issue date: January 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

The authors acknowledge support from the National Key Research and Development Program of China (No. 2019YFA0705400), the National Natural Science Foundation of China (Nos. 21972121 and 22021001), and the Fundamental Research Funds for the Central Universities (No. 20720210017).

Return