Journal Home > Volume 17 , Issue 3

Atomic transition-metal-nitrogen-carbon electrocatalysts hold great promise as alternatives to benchmark Pt in the oxygen reduction reaction. The pristine metal centers with quasi square-planar D4h configuration, however, still suffer from unfavorable energetics and thereby strong activity/selectivity trade-off during the catalytic process. Here we present a ligand-field engineering of single-atom Ni-N-C catalysts to boost the sluggish kinetics via rationally constructing prototypical asymmetrically ligated Ni-N3O1 sites. The as-obtained Ni-supported multi-walled carbon nanotubes with molten salt-treated (defined as Ni/CNS) catalyst delivered an excellent H2O2 selectivity (> 90%) within a wide potential window (0.2–0.7 V vs. reversible hydrogen electrode (RHE)) and robust stability (for 10 h) in alkaline medium. Combined electron paramagnetic resonance and theoretical analysis rationalize this finding and demonstrate that the broken symmetry facilitates the electron transfer of a σ* to O–O orbital as compared to the Ni-N4 counterpart, playing an indispensable role in efficient O2 activation.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Asymmetrically ligated single atomic nickel sites for efficient hydrogen peroxide electrosynthesis

Show Author's information Xusheng ChengJinwen HuWenzhe ShangJingya GuoCuncun XinSonglin ZhangSuchan SongWei Liu( )Yantao Shi( )
State Key laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemistry, Dalian University of Technology, Dalian 116024, China

Abstract

Atomic transition-metal-nitrogen-carbon electrocatalysts hold great promise as alternatives to benchmark Pt in the oxygen reduction reaction. The pristine metal centers with quasi square-planar D4h configuration, however, still suffer from unfavorable energetics and thereby strong activity/selectivity trade-off during the catalytic process. Here we present a ligand-field engineering of single-atom Ni-N-C catalysts to boost the sluggish kinetics via rationally constructing prototypical asymmetrically ligated Ni-N3O1 sites. The as-obtained Ni-supported multi-walled carbon nanotubes with molten salt-treated (defined as Ni/CNS) catalyst delivered an excellent H2O2 selectivity (> 90%) within a wide potential window (0.2–0.7 V vs. reversible hydrogen electrode (RHE)) and robust stability (for 10 h) in alkaline medium. Combined electron paramagnetic resonance and theoretical analysis rationalize this finding and demonstrate that the broken symmetry facilitates the electron transfer of a σ* to O–O orbital as compared to the Ni-N4 counterpart, playing an indispensable role in efficient O2 activation.

Keywords: oxygen reduction, H2O2 production, single nickel sites, broken D4h

References(44)

[1]

Liu, J. J.; Gong, Z. C.; Yan, M. M.; He, G. C.; Gong, H. S.; Ye, G. L.; Fei, H. L. Electronic structure regulation of single-atom catalysts for electrochemical oxygen reduction to H2O2. Small 2022, 18, 2103824.

[2]

Huang, X. F.; Oleynikov, P.; He, H. L.; Mayoral, A.; Mu, L. Q.; Lin, F.; Zhang, Y. B. Docking MOF crystals on graphene support for highly selective electrocatalytic peroxide production. Nano Res. 2022, 15, 145–152.

[3]

Zhang, E. H.; Tao, L.; An, J. K.; Zhang, J. W.; Meng, L. Z.; Zheng, X. B.; Wang, Y.; Li, N.; Du, S. X.; Zhang, J. T. et al. Engineering the local atomic environments of indium single-atom catalysts for efficient electrochemical production of hydrogen peroxide. Angew. Chem., Int. Ed. 2022, 61, e202117347.

[4]

Yan, M. M.; Wei, Z. X.; Gong, Z. C.; Johannessen, B.; Ye, G. L.; He, G. C.; Liu, J. J.; Zhao, S. L.; Cui, C. Y.; Fei, H. L. Sb2S3-templated synthesis of sulfur-doped Sb-N-C with hierarchical architecture and high metal loading for H2O2 electrosynthesis. Nat. Commun. 2023, 14, 368.

[5]

Cao, P. K.; Quan, X.; Nie, X. W.; Zhao, K.; Liu, Y. M.; Chen, S.; Yu, H. T.; Chen, J. G. Metal single-site catalyst design for electrocatalytic production of hydrogen peroxide at industrial-relevant currents. Nat. Commun. 2023, 14, 172.

[6]

Zhuang, Z. C.; Xia, L. X.; Huang, J. Z.; Zhu, P.; Li, Y.; Ye, C. L.; Xia, M. G.; Yu, R. H.; Lang, Z. Q.; Zhu, J. X. et al. Continuous modulation of electrocatalytic oxygen reduction activities of single-atom catalysts through p-n junction rectification. Angew. Chem., Int. Ed. 2023, 62, e202212335.

[7]

Li, X. Y.; Zhuang, Z. C.; Chai, J.; Shao, R. W.; Wang, J. H.; Jiang, Z. L.; Zhu, S. W.; Gu, H. F.; Zhang, J.; Ma, Z. T. et al. Atomically strained metal sites for highly efficient and selective photooxidation. Nano Lett. 2023, 23, 2905–2914.

[8]

Hao, J. C.; Zhu, H.; Zhuang, Z. C.; Zhao, Q.; Yu, R. H.; Hao, J. C.; Kang, Q.; Lu, S. L.; Wang, X. F.; Wu, J. S. et al. Competitive trapping of single atoms onto a metal carbide surface. ACS Nano 2023, 17, 6955–6965.

[9]

Zhang, E. H.; Hu, X.; Meng, L. Z.; Qiu, M.; Chen, J. X.; Liu, Y. J.; Liu, G. Y.; Zhuang, Z. C.; Zheng, X. B.; Zheng, L. R. et al. Single-atom yttrium engineering janus electrode for rechargeable Na-S batteries. J. Am. Chem. Soc. 2022, 144, 18995–19007.

[10]

Chen, S. Y.; Luo, T.; Li, X. Q.; Chen, K. J.; Fu, J. W.; Liu, K.; Cai, C.; Wang, Q. Y.; Li, H. M.; Chen, Y. et al. Identification of the highly active Co-N4 coordination motif for selective oxygen reduction to hydrogen peroxide. J. Am. Chem. Soc. 2022, 144, 14505–14516.

[11]

Zou, H. Y.; Arachchige, L. J.; Dai, H.; Liu, H.; Jiao, F. F.; Hu, W.; Li, F.; Wei, S. T.; Sun, C. H.; Duan, L. L. Pushing the limit of atomically dispersed Au catalysts for electrochemical H2O2 production by precise electronic perturbation of the active site. Chem. Catal. 2023, 3, 100583.

[12]

Suntivich, J.; Gasteiger, H. A.; Yabuuchi, N.; Nakanishi, H.; Goodenough, J. B.; Shao-Horn, Y. Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries. Nat. Chem. 2011, 3, 546–550.

[13]

Wang, Y. L.; Shi, R.; Shang, L.; Waterhouse, G. I. N.; Zhao, J. Q.; Zhang, Q. H.; Gu, L.; Zhang, T. R. High-efficiency oxygen reduction to hydrogen peroxide catalyzed by nickel single-atom catalysts with tetradentate N2O2 coordination in a three-phase flow cell. Angew. Chem., Int. Ed. 2020, 59, 13057–13062.

[14]

Gong, Y. N.; Jiao, L.; Qian, Y. Y.; Pan, C. Y.; Zheng, L. R.; Cai, X. C.; Liu, B.; Yu, S. H.; Jiang, H. L. Regulating the coordination environment of MOF-templated single-atom nickel electrocatalysts for boosting CO2 reduction. Angew. Chem., Int. Ed. 2020, 59, 2705–2709.

[15]

Sa, Y. J.; Jung, H.; Shin, D.; Jeong, H. Y.; Ringe, S.; Kim, H.; Hwang, Y. J.; Joo, S. H. Thermal transformation of molecular Ni2+-N4 sites for enhanced CO2 electroreduction activity. ACS Catal. 2020, 10, 10920–10931.

[16]

Yang, X.; Cheng, J.; Lv, H. K.; Yang, X.; Ding, L. W.; Xu, Y.; Zhang, K.; Sun, W. F.; Zhou, J. H. Sulfur-doped unsaturated Ni-N3 coordination for efficient electroreduction of CO2. Chem. Eng. J. 2022, 450, 137950.

[17]

Xin, C. C.; Shang, W. Z.; Hu, J. W.; Zhu, C.; Guo, J. Y.; Zhang, J. W.; Dong, H. P.; Liu, W.; Shi, Y. T. Integration of morphology and electronic structure modulation on atomic iron-nitrogen-carbon catalysts for highly efficient oxygen reduction. Adv. Funct. Mater. 2022, 32, 2108345.

[18]

Hu, J. W.; Shang, W. Z.; Xin, C. C.; Guo, J. Y.; Cheng, X. S.; Zhang, S. L.; Song, S. C.; Liu, W.; Ju, F.; Hou, J. G. et al. Uncovering dynamic edge-sites in atomic Co-N-C electrocatalyst for selective hydrogen peroxide production. Angew. Chem., Int. Ed. 2023, 62, e202304754.

[19]
FTsalt-FACT Salt Phase Diagrams (367) [Online]. https://www.crct.polymtl.ca/fact/documentation/ftsalt/ftsalt_figs.htm. (accessed May 31, 2023)
[20]

Tian, Y. H.; Li, M.; Wu, Z. Z.; Sun, Q.; Yuan, D.; Johannessen, B.; Xu, L.; Wang, Y.; Dou, Y. H.; Zhao, H. J. et al. Edge-hosted atomic Co-N4 sites on hierarchical porous carbon for highly selective two-electron oxygen reduction reaction. Angew. Chem., Int. Ed. 2022, 61, e202213296.

[21]

Zhu, H.; Sun, S. H.; Hao, J. C.; Zhuang, Z. C.; Zhang, S. G.; Wang, T. D.; Kang, Q.; Lu, S. L.; Wang, X. F.; Lai, F. L. et al. A high-entropy atomic environment converts inactive to active sites for electrocatalysis. Energy Environ. Sci. 2023, 16, 619–628.

[22]

Li, W. H.; Yang, J. R.; Wang, D. S. Long-range interactions in diatomic catalysts boosting electrocatalysis. Angew. Chem., Int. Ed. 2022, 61, e202213318.

[23]

Liu, Z. H.; Du, Y.; Zhang, P. F.; Zhuang, Z. C.; Wang, D. S. Bringing catalytic order out of chaos with nitrogen-doped ordered mesoporous carbon. Matter 2021, 4, 3161–3194.

[24]

Wang, K.; Lu, Z. J.; Lei, J.; Liu, Z. Y.; Li, Y. Z.; Cao, Y. L. Modulation of ligand fields in a single-atom site by the molten salt strategy for enhanced oxygen bifunctional activity for zinc-air batteries. ACS Nano 2022, 16, 11944–11956.

[25]

Xu, H.; Wang, D.; Yang, P. X.; Du, L.; Lu, X. Y.; Li, R. P.; Liu, L. L.; Zhang, J. Q.; An, M. Z. A hierarchically porous Fe-N-C synthesized by dual melt-salt-mediated template as advanced electrocatalyst for efficient oxygen reduction in zinc-air battery. Appl. Catal. B: Environ. 2022, 305, 121040.

[26]

Li, L. Q.; Tang, C.; Zheng, Y.; Xia, B. Q.; Zhou, X. L.; Xu, H. L.; Qiao, S. Z. Tailoring selectivity of electrochemical hydrogen peroxide generation by tunable pyrrolic-nitrogen-carbon. Adv. Energy Mater. 2020, 10, 2000789.

[27]

Chen, S. C.; Chen, Z. H.; Siahrostami, S.; Higgins, D.; Nordlund, D.; Sokaras, D.; Kim, T. R.; Liu, Y. Z.; Yan, X. Z.; Nilsson, E. et al. Designing boron nitride islands in carbon materials for efficient electrochemical synthesis of hydrogen peroxide. J. Am. Chem. Soc. 2018, 140, 7851–7859.

[28]

Yang, Q.; Jia, Y.; Wei, F. F.; Zhuang, L. Z.; Yang, D. J.; Liu, J. Z.; Wang, X.; Lin, S.; Yuan, P.; Yao, X. D. Understanding the activity of Co-N4−xCx in atomic metal catalysts for oxygen reduction catalysis. Angew. Chem., Int. Ed. 2020, 59, 6122–6127.

[29]

Lu, Z. Y.; Chen, G. X.; Siahrostami, S.; Chen, Z. H.; Liu, K.; Xie, J.; Liao, L.; Wu, T.; Lin, D. C.; Liu, Y. Y. et al. High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials. Nat. Catal. 2018, 1, 156–162.

[30]

Kim, H. W.; Ross, M. B.; Kornienko, N.; Zhang, L.; Guo, J. H.; Yang, P. D.; McCloskey, B. D. Efficient hydrogen peroxide generation using reduced graphene oxide-based oxygen reduction electrocatalysts. Nat. Catal. 2018, 1, 282–290.

[31]

Jiang, K.; Back, S.; Akey, A. J.; Xia, C.; Hu, Y. F.; Liang, W. T.; Schaak, D.; Stavitski, E.; Nørskov, J. K.; Siahrostami, S. et al. Highly selective oxygen reduction to hydrogen peroxide on transition metal single atom coordination. Nat. Commun. 2019, 10, 3997.

[32]

Tang, C.; Jiao, Y.; Shi, B. Y.; Liu, J. N.; Xie, Z. H.; Chen, X.; Zhang, Q.; Qiao, S. Z. Coordination tunes selectivity: Two-electron oxygen reduction on high-loading molybdenum single-atom catalysts. Angew. Chem., Int. Ed. 2020, 59, 9171–9176.

[33]

Zhao, Q. L.; Wang, Y. A.; Lai, W. H.; Xiao, F.; Lyu, Y. X.; Liao, C. Z.; Shao, M. H. Approaching a high-rate and sustainable production of hydrogen peroxide: Oxygen reduction on Co-N-C single-atom electrocatalysts in simulated seawater. Energy Environ. Sci. 2021, 14, 5444–5456.

[34]

Li, B. Q.; Zhao, C. X.; Liu, J. N.; Zhang, Q. Electrosynthesis of hydrogen peroxide synergistically catalyzed by atomic Co-Nx-C sites and oxygen functional groups in noble-metal-free electrocatalysts. Adv. Mater. 2019, 31, 1808173.

[35]

Gong, H. S.; Wei, Z. X.; Gong, Z. C.; Liu, J. J.; Ye, G. L.; Yan, M. M.; Dong, J. C.; Allen, C.; Liu, J. B.; Huang, K. et al. Low-coordinated Co-N-C on oxygenated graphene for efficient electrocatalytic H2O2 production. Adv. Funct. Mater. 2022, 32, 2106886.

[36]

Zhang, X.; Xia, Y.; Xia, C.; Wang, H. T. Insights into practical-scale electrochemical H2O2 synthesis. Trends Chem. 2020, 2, 942–953.

[37]

Giulimondi, V.; Mitchell, S.; Pérez-Ramírez, J. Challenges and opportunities in engineering the electronic structure of single-atom catalysts. ACS Catal. 2023, 13, 2981–2997.

[38]

Zhang, J.; Zeng, D. W.; Zhu, Q.; Wu, J. J.; Huang, Q. W.; Xie, C. S. Effect of nickel vacancies on the room-temperature NO2 sensing properties of mesoporous NiO nanosheets. J. Phys. Chem. C 2016, 120, 3936–3945.

[39]

Liu, Z. H.; Du, Y.; Yu, R. H.; Zheng, M. B.; Hu, R.; Wu, J. S.; Xia, Y. Y.; Zhuang, Z. C.; Wang, D. S. Tuning mass transport in electrocatalysis down to sub-5 nm through nanoscale grade separation. Angew. Chem., Int. Ed. 2023, 62, e202212653.

[40]

Zhuang, Z. C.; Li, Y. H.; Yu, R. H.; Xia, L. X.; Yang, J. R.; Lang, Z. Q.; Zhu, J. X.; Huang, J. Z.; Wang, J. O.; Wang, Y. et al. Reversely trapping atoms from a perovskite surface for high-performance and durable fuel cell cathodes. Nat. Catal. 2022, 5, 300–310.

[41]

Zhuang, Z. C.; Li, Y.; Li, Y. H.; Huang, J. Z.; Wei, B.; Sun, R.; Ren, Y. J.; Ding, J.; Zhu, J. X.; Lang, Z. Q. et al. Atomically dispersed nonmagnetic electron traps improve oxygen reduction activity of perovskite oxides. Energy Environ. Sci. 2021, 14, 1016–1028.

[42]

Sharifi, T.; Hu, G. Z.; Jia, X. E.; Wagberg, T. Formation of active sites for oxygen reduction reactions by transformation of nitrogen functionalities in nitrogen-doped carbon nanotubes. ACS Nano 2012, 6, 8904–8912.

[43]

Deng, Z. P.; Wang, X. L. Mechanism investigation of enhanced electrochemical H2O2 production performance on oxygen-rich hollow porous carbon spheres. Nano Res. 2022, 15, 4599–4605.

[44]

Guo, D. H.; Shibuya, R.; Akiba, C.; Saji, S.; Kondo, T.; Nakamura, J. Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science 2016, 351, 361–365.

File
12274_2023_5899_MOESM1_ESM.pdf (1.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 10 May 2023
Revised: 02 June 2023
Accepted: 05 June 2023
Published: 14 August 2023
Issue date: March 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 22002013 and 52272193), the Fundamental Research Funds for the Central Universities (Nos. DUT22LAB602 and DUT20RC(3)021), and Liao Ning Revitalization Talents Program (No. XLYC2008032). The authors would like to thank NSRL (BL12B-a), BSRF (1W1B), and SSRF (BL11B) for the synchrotron radiation beam time. The authors would like to thank the Instrumental Analysis Center of Dalian University of Technology.

Return