Journal Home > Volume 17 , Issue 3

The earth-abundant and robust aluminum ferrite, AlFeO3 (AFO), is mainly studied in the context of ferroelectrics. Herein, we demonstrate that AFO can be used as a stable solar absorber in photoelectrochemical cells for solar water splitting, exhibiting attractive performance. This is the first report on the photoelectrochemical activity of AFO. AFO thin-film photoelectrodes prepared by solution-processing methods are composed of vertically oriented thin nanosheets, featuring the rhombohedral symmetry (R3c) and n-type conductivity. The as-prepared AFO photoanodes generate a photocurrent density of +0.78 mA·cm−2 at 1.23 V vs. reversible hydrogen electrode (RHE) with the photocurrent onset potential (Uonset) close to the flat band potential of 0.5 V vs. RHE in the presence of hole scavengers. Remarkably, the Uonset of AFO for solar water splitting coincides with the flat band potential as well, which is rare in n-type inorganic absorbers. We also report other properties of AFO associated with photoelectrochemical performance. AFO films exhibit a band gap energy of 2.31 eV and positive band edges with low dispersion. Moreover, the carrier lifetimes in AFO films are up to millisecond timescales under the mediation of defect traps. Based on the photoelectrochemical behavior and optoelectronic properties, we believe that AFO has great potential for application in photoelectrochemical cells.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Nanostructured AlFeO3 thin films as a novel photoanode for photoelectrochemical water splitting

Show Author's information Xin Sun1Min Wang1Qi Geng1Shuailin Chen1Xiaojun Lv1Xunlei Ding2Meicheng Li1( )
State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, School of New Energy, North China Electric Power University, Beijing 102206, China
School of Mathematics and Physics, North China Electric Power University, Beijing 102206, China

Abstract

The earth-abundant and robust aluminum ferrite, AlFeO3 (AFO), is mainly studied in the context of ferroelectrics. Herein, we demonstrate that AFO can be used as a stable solar absorber in photoelectrochemical cells for solar water splitting, exhibiting attractive performance. This is the first report on the photoelectrochemical activity of AFO. AFO thin-film photoelectrodes prepared by solution-processing methods are composed of vertically oriented thin nanosheets, featuring the rhombohedral symmetry (R3c) and n-type conductivity. The as-prepared AFO photoanodes generate a photocurrent density of +0.78 mA·cm−2 at 1.23 V vs. reversible hydrogen electrode (RHE) with the photocurrent onset potential (Uonset) close to the flat band potential of 0.5 V vs. RHE in the presence of hole scavengers. Remarkably, the Uonset of AFO for solar water splitting coincides with the flat band potential as well, which is rare in n-type inorganic absorbers. We also report other properties of AFO associated with photoelectrochemical performance. AFO films exhibit a band gap energy of 2.31 eV and positive band edges with low dispersion. Moreover, the carrier lifetimes in AFO films are up to millisecond timescales under the mediation of defect traps. Based on the photoelectrochemical behavior and optoelectronic properties, we believe that AFO has great potential for application in photoelectrochemical cells.

Keywords: nanosheets, photoanode, photoelectrochemistry, AlFeO3, onset potential

References(66)

[1]

Montoya, J. H.; Seitz, L. C.; Chakthranont, P.; Vojvodic, A.; Jaramillo, T. F.; Nørskov, J. K. Materials for solar fuels and chemicals. Nat. Mater. 2017, 16, 70–81.

[2]

Cheng, W. H.; Richter, M. H.; May, M. M.; Ohlmann, J.; Lackner, D.; Dimroth, F.; Hannappel, T.; Atwater, H. A.; Lewerenz, H. J. Monolithic photoelectrochemical device for direct water splitting with 19% efficiency. ACS Energy Lett. 2018, 3, 1795–1800.

[3]

Young, J. L.; Steiner, M. A.; Döscher, H.; France, R. M.; Turner, J. A.; Deutsch, T. G. Direct solar-to-hydrogen conversion via inverted metamorphic multi-junction semiconductor architectures. Nat. Energy 2017, 2, 17028.

[4]

Cheng, W. H.; de la Calle, A.; Atwater, H. A.; Stechel, E. B.; Xiang, C. X. Hydrogen from sunlight and water: A side-by-side comparison between photoelectrochemical and solar thermochemical water-splitting. ACS Energy Lett. 2021, 6, 3096–3113.

[5]

Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q. X.; Santori, E. A.; Lewis, N. S. Solar water splitting cells. Chem. Rev. 2010, 110, 6446–6473.

[6]

Lee, D. K.; Lee, D.; Lumley, M. A.; Choi, K. S. Progress on ternary oxide-based photoanodes for use in photoelectrochemical cells for solar water splitting. Chem. Soc. Rev. 2019, 48, 2126–2157.

[7]

Yang, W.; Prabhakar, R. R.; Tan, J. W.; Tilley, S. D.; Moon, J. Strategies for enhancing the photocurrent, photovoltage, and stability of photoelectrodes for photoelectrochemical water splitting. Chem. Soc. Rev. 2019, 48, 4979–5015.

[8]

Sivula, K.; van de Krol, R. Semiconducting materials for photoelectrochemical energy conversion. Nat. Rev. Mater. 2016, 1, 15010.

[9]

Yang, X. G.; Liu, R.; He, Y. M.; Thorne, J.; Zheng, Z.; Wang, D. W. Enabling practical electrocatalyst-assisted photoelectron-chemical water splitting with earth abundant materials. Nano Res. 2015, 8, 56–81.

[10]

Spitler, M. T.; Modestino, M. A.; Deutsch, T. G.; Xiang, C. X.; Durrant, J. R.; Esposito, D. V.; Haussener, S.; Maldonado, S.; Sharp, I. D.; Parkinson, B. A. et al. Practical challenges in the development of photoelectrochemical solar fuels production. Sustain. Energy Fuels 2020, 4, 985–995.

[11]

Díez-García, M. I.; Gómez, R. Progress in ternary metal oxides as photocathodes for water splitting cells: Optimization strategies. Sol. RRL 2022, 6, 2100871.

[12]

Radmilovic, A.; Smart, T. J.; Ping, Y.; Choi, K. S. Combined experimental and theoretical investigations of N-type BiFeO3 for use as a photoanode in a photoelectrochemical cell. Chem. Mater. 2020, 32, 3262–3270.

[13]

Regue, M.; Ahmet, I. Y.; Bassi, P. S.; Johnson, A. L.; Fiechter, S.; van de Krol, R.; Abdi, F. F.; Eslava, S. Zn-doped Fe2TiO5 pseudobrookite-based photoanodes grown by aerosol-assisted chemical vapor deposition. ACS Appl. Energy Mater. 2020, 3, 12066–12077.

[14]

Kim, J. H.; Kim, J. H.; Jang, J. W.; Kim, J. Y.; Choi, S. H.; Magesh, G.; Lee, J.; Lee, J. S. Awakening solar water-splitting activity of ZnFe2O4 nanorods by hybrid microwave annealing. Adv. Energy Mater. 2015, 5, 1401933.

[15]

Wheeler, G. P.; Choi, K. S. Photoelectrochemical properties and stability of nanoporous p-type LaFeO3 photoelectrodes prepared by electrodeposition. ACS Energy Lett. 2017, 2, 2378–2382.

[16]

Díez-García, M. I.; Celorrio, V.; Calvillo, L.; Tiwari, D.; Gómez, R.; Fermín, D. J. YFeO3 photocathodes for hydrogen evolution. Electrochim. Acta 2017, 246, 365–371.

[17]

Jang, Y. J.; Park, Y. B.; Kim, H. E.; Choi, Y. H.; Choi, S. H.; Lee, J. S. Oxygen-intercalated CuFeO2 photocathode fabricated by hybrid microwave annealing for efficient solar hydrogen production. Chem. Mater. 2016, 28, 6054–6061.

[18]

Kim, J. H.; Kim, H. E.; Kim, J. H.; Lee, J. S. Ferrites: Emerging light absorbers for solar water splitting. J. Mater. Chem. A 2020, 8, 9447–9482.

[19]

Hamasaki, Y.; Shimizu, T.; Taniguchi, H.; Taniyama, T.; Yasui, S.; Itoh, M. Epitaxial growth of metastable multiferroic AlFeO3 film on SrTiO3 (111) substrate. Appl. Phys. Lett. 2014, 104, 082906.

[20]

Saha, R.; Shireen, A.; Shirodkar, S. N.; Waghmare, U. V.; Sundaresan, A.; Rao, C. N. R. Multiferroic and magnetoelectric nature of GaFeO3, AlFeO3 and related oxides. Solid State Commun. 2012, 152, 1964–1968.

[21]

Li, Y.; Wang, Y. G.; Wang, N.; Wang, F. L.; Jain, A. Magnetoelectric (1−x)AlFeO3-XBaTiO3 solid solutions with ferroelectric relaxor behavior near room temperature. Ceram. Int. 2020, 46, 7930–7938.

[22]

Shah, J. H.; Ye, H. Y.; Liu, Y.; Idris, A. M.; Malik, A. S.; Zhang, Y.; Han, H. X.; Li, C. Exploration of the intrinsic factors limiting the photocurrent density in ferroelectric BiFeO3 thin film. J. Mater. Chem. A 2020, 8, 6863–6873.

[23]

Huang, W.; Harnagea, C.; Tong, X.; Benetti, D.; Sun, S. H.; Chaker, M.; Rosei, F.; Nechache, R. Epitaxial Bi2FeCrO6 multiferroic thin-film photoanodes with ultrathin p-type NiO layers for improved solar water oxidation. ACS Appl. Mater. Interfaces 2019, 11, 13185–13193.

[24]

Wang, S. F.; Zhang, C. F.; Sun, G. G.; Chen, B.; Xiang, X.; Wang, H.; Fang, L. M.; Tian, Q.; Ding, Q. P.; Zu, X. T. Fabrication of a novel light emission material AlFeO3 by a modified polyacrylamide gel route and characterization of the material. Opt. Mater. 2013, 36, 482–488.

[25]

Saha, R.; Shireen, A.; Shirodkar, S. N.; Singh, M. S.; Waghmare, U. V.; Sundaresan, A.; Rao, C. N. R. Phase transitions of AlFeO3 and GaFeO3 from the chiral orthorhombic (Pna21) structure to the rhombohedral ( R3¯c) structure. Inorg. Chem. 2011, 50, 9527–9532.

[26]

Sun, X.; Tiwari, D.; Fermin, D. J. High interfacial hole-transfer efficiency at GaFeO3 thin film photoanodes. Adv. Energy Mater. 2020, 10, 2002784.

[27]

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

[28]

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

[29]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[30]

Jain, A.; Hautier, G.; Moore, C. J.; Ping Ong, S.; Fischer, C. C.; Mueller, T.; Persson, K. A.; Ceder, G. A high-throughput infrastructure for density functional theory calculations. Comput. Mater. Sci. 2011, 50, 2295–2310.

[31]

Wang, L.; Maxisch, T.; Ceder, G. Oxidation energies of transition metal oxides within the GGA + U framework. Phys. Rev. B 2006, 73, 195107.

[32]

Sun, X.; Tiwari, D.; Fermin, D. J. Promoting active electronic states in LaFeO3 thin-films photocathodes via alkaline-earth metal substitution. ACS Appl. Mater. Interfaces 2020, 12, 31486–31495.

[33]

Wheeler, G. P.; Baltazar, V. U.; Smart, T. J.; Radmilovic, A.; Ping, Y.; Choi, K. S. Combined theoretical and experimental investigations of atomic doping to enhance photon absorption and carrier transport of LaFeO3 photocathodes. Chem. Mater. 2019, 31, 5890–5899.

[34]

She, S. X.; Yu, J.; Tang, W. Q.; Zhu, Y. L.; Chen, Y. B.; Sunarso, J.; Zhou, W.; Shao, Z. P. Systematic study of oxygen evolution activity and stability on La1−xSrxFeO3−δ perovskite electrocatalysts in alkaline media. ACS Appl. Mater. Interfaces 2018, 10, 11715–11721.

[35]

Grosvenor, A. P.; Kobe, B. A.; Biesinger, M. C.; McIntyre, N. S. Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds. Surf. Interface Anal. 2004, 36, 1564–1574.

[36]

Liu, Y. P.; Quiñonero, J.; Yao, L.; Da Costa, X.; Mensi, M.; Gómez, R.; Sivula, K.; Guijarro, N. Defect engineered nanostructured LaFeO3 photoanodes for improved activity in solar water oxidation. J. Mater. Chem. A 2021, 9, 2888–2898.

[37]

Dupin, J. C.; Gonbeau, D.; Vinatier, P.; Levasseur, A. Systematic XPS studies of metal oxides, hydroxides and peroxides. Phys. Chem. Chem. Phys. 2000, 2, 1319–1324.

[38]

Stoerzinger, K. A.; Comes, R.; Spurgeon, S. R.; Thevuthasan, S.; Ihm, K.; Crumlin, E. J.; Chambers, S. A. Influence of LaFeO3 surface termination on water reactivity. J. Phys. Chem. Lett. 2017, 8, 1038–1043.

[39]

Liang, Y.; Cui, Y.; Chao, Y.; Han, N.; Sunarso, J.; Liang, P.; He, X.; Zhang, C.; Liu, S. M. Exsolution of CoFe(Ru) nanoparticles in Ru-doped (La0.8Sr0.2)0.9Co0.1Fe0.8Ru0.1O3−δ for efficient oxygen evolution reaction. Nano Res. 2022, 15, 6977–6986.

[40]

Stoerzinger, K. A.; Wang, L.; Ye, Y. F.; Bowden, M.; Crumlin, E. J.; Du, Y. G.; Chambers, S. A. Linking surface chemistry to photovoltage in Sr-substituted LaFeO3 for water oxidation. J. Mater. Chem. A 2018, 6, 22170–22178.

[41]

Sun, X.; Tiwari, D.; Fermin, D. J. Nanostructured LaFeO3 photocathodes with onset potentials for the hydrogen evolution reaction over 1.4 V vs. RHE. J. Electrochem. Soc. 2019, 166, H764–H768.

[42]

Meng, X. Y.; Liu, D. Y.; Qin, G. W. Band engineering of multicomponent semiconductors: A general theoretical model on the anion group. Energy Environ. Sci. 2018, 11, 692–701.

[43]

Sun, X.; Tiwari, D.; Li, M. C.; Fermin, D. J. Decoupling the impact of bulk and surface point defects on the photoelectrochemical properties of LaFeO3 thin films. Chem. Sci. 2022, 13, 11252–11259.

[44]

Sun, X.; Wang, M.; Li, H. F.; Meng, L. X.; Lv, X. J.; Li, L.; Li, M. C. Pristine GaFeO3 photoanodes with surface charge transfer efficiency of almost unity at 1.23 V for photoelectrochemical water splitting. Adv. Sci. 2023, 10, 2205907.

[45]

Tiwari, D.; Alibhai, D.; Cherns, D.; Fermin, D. J. Crystal and electronic structure of bismuth thiophosphate, BiPS4: An earth-abundant solar absorber. Chem. Mater. 2020, 32, 1235–1242.

[46]
Sun, X. Complex ferrite thin films for photoelectrochemical water splitting. Ph.D. Dissertation, University of Bristol, Bristol, UK, 2020.
[47]

Quiñonero, J.; Pastor, F. J.; Orts, J. M.; Gómez, R. Photoelectrochemical behavior and computational insights for pristine and doped NdFeO3 thin-film photocathodes. ACS Appl. Mater. Interfaces 2021, 13, 14150–14159.

[48]

Kment, S.; Riboni, F.; Pausova, S.; Wang, L.; Wang, L. Y.; Han, H.; Hubicka, Z.; Krysa, J.; Schmuki, P.; Zboril, R. Photoanodes based on TiO2 and α-Fe2O3 for solar water splitting-superior role of 1D nanoarchitectures and of combined heterostructures. Chem. Soc. Rev. 2017, 46, 3716–3769.

[49]

Li, H. Y.; Chen, Y. B.; Xi, S. B.; Wang, J. X.; Sun, S. N.; Sun, Y. M.; Du, Y. H.; Xu, Z. J. Degree of geometric tilting determines the activity of FeO6 octahedra for water oxidation. Chem. Mater. 2018, 30, 4313–4320.

[50]

Corby, S.; Rao, R. R.; Steier, L.; Durrant, J. R. The kinetics of metal oxide photoanodes from charge generation to catalysis. Nat. Rev. Mater. 2021, 6, 1136–1155.

[51]

Hankin, A.; Bedoya-Lora, F. E.; Alexander, J. C.; Regoutz, A.; Kelsall, G. H. Flat band potential determination: Avoiding the pitfalls. J. Mater. Chem. A 2019, 7, 26162–26176.

[52]

Zhang, H. M.; Lee, J. S. Hybrid microwave annealing synthesizes highly crystalline nanostructures for (photo)electrocatalytic water splitting. Acc. Chem. Res. 2019, 52, 3132–3142.

[53]

Nelson, J. Continuous-time random-walk model of electron transport in nanocrystalline TiO2 electrodes. Phys. Rev. B 1999, 59, 15374–15380.

[54]

Anta, J. A.; Mora-Seró, I.; Dittrich, T.; Bisquert, J. Interpretation of diffusion coefficients in nanostructured materials from random walk numerical simulation. Phys. Chem. Chem. Phys. 2008, 10, 4478–4485.

[55]

Wang, X. L.; Feng, Z. C.; Shi, J. Y.; Jia, G. Q.; Shen, S.; Zhou, J.; Li, C. Trap states and carrier dynamics of TiO2 studied by photoluminescence spectroscopy under weak excitation condition. Phys. Chem. Chem. Phys. 2010, 12, 7083–7090.

[56]

Tang, J. W.; Durrant, J. R.; Klug, D. R. Mechanism of photocatalytic water splitting in TiO2. reaction of water with photoholes, importance of charge carrier dynamics, and evidence for four-hole chemistry. J. Am. Chem. Soc. 2008, 130, 13885–13891.

[57]

Fermín, D. J.; Ponomarev, E. A.; Peter, L. M. A kinetic study of CdS photocorrosion by intensity modulated photocurrent and photoelectrochemical impedance spectroscopy. J. Electroanal. Chem. 1999, 473, 192–203.

[58]

Shen, Z. C.; Zhuang, Y. B.; Li, W. W.; Huang, X. C.; Oropeza, F. E.; Hensen, E. J. M.; Hofmann, J. P.; Cui, M. Y.; Tadich, A.; Qi, D. C. et al. Increased activity in the oxygen evolution reaction by Fe4+-induced hole states in perovskite La1−xSrxFeO3. J. Mater. Chem. A 2020, 8, 4407–4415.

[59]

Xu, W. W.; Tian, W.; Meng, L. X.; Cao, F. R.; Li, L. Interfacial chemical bond-modulated Z-scheme charge transfer for efficient photoelectrochemical water splitting. Adv. Energy Mater. 2021, 11, 2003500.

[60]

Wang, S. C.; Liu, B. Y.; Wang, X.; Zhang, Y. J.; Huang, W. Nanoporous MoO3−x/BiVO4 photoanodes promoting charge separation for efficient photoelectrochemical water splitting. Nano Res. 2022, 15, 7026–7033.

[61]

Guijarro, N.; Bornoz, P.; Prévot, M.; Yu, X.; Zhu, X.; Johnson, M.; Jeanbourquin, X.; Le Formal, F.; Sivula, K. Evaluating spinel ferrites MFe2O4 (M = Cu, Mg, Zn) as photoanodes for solar water oxidation: Prospects and limitations. Sustain. Energy Fuels 2018, 2, 103–117.

[62]

Gärtner, W. W. Depletion-layer photoeffects in semiconductors. Phys. Rev. 1959, 116, 84–87.

[63]

Zhang, H. M.; Kim, J. H.; Kim, J. H.; Lee, J. S. Engineering highly ordered iron titanate nanotube array photoanodes for enhanced solar water splitting activity. Adv. Funct. Mater. 2017, 27, 1702428.

[64]

Hill, J. C.; Choi, K. S. Synthesis and characterization of high surface area CuWO4 and Bi2WO6 electrodes for use as photoanodes for solar water oxidation. J. Mater. Chem. A 2013, 1, 5006–5014.

[65]

McDonald, K. J.; Choi, K. S. A new electrochemical synthesis route for a BiOI electrode and its conversion to a highly efficient porous BiVO4 photoanode for solar water oxidation. Energy Environ. Sci. 2012, 5, 8553–8557.

[66]

Peter, L. M.; Gurudayal; Wong, L. H.; Abdi, F. F. Understanding the role of nanostructuring in photoelectrode performance for light-driven water splitting. J. Electroanal. Chem. 2018, 819, 447–458.

File
12274_2023_5896_MOESM1_ESM.pdf (4.2 MB)
12274_2023_5896_MOESM2_ESM.pdf (1.3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 17 April 2023
Revised: 29 May 2023
Accepted: 04 June 2023
Published: 01 July 2023
Issue date: March 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

The authors acknowledge the support from the project of State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources (Nos. LAPS21004 and LAPS202114), the National Natural Science Foundation of China (Nos. 52272200, 51972110, 52102245, 52102203, and 52072121), China Postdoctoral Science Foundation (No. 2022M721129), Beijing Science and Technology Project (No. Z211100004621010), Beijing Natural Science Foundation (Nos. 2222076 and 2222077), Hebei Natural Science Foundation (No. E2022502022), Huaneng Group Headquarters Science and Technology Project (No. HNKJ20-H88), 2022 Strategic Research Key Project of Science and Technology Commission of the Ministry of Education, the Fundamental Research Funds for the Central Universities (Nos. 2022MS030, 2021MS028, 2020MS023, and 2020MS028), and the NCEPU “Double First-Class” Program.

Return