Journal Home > Volume 17 , Issue 3

The development of infrared (IR) surveillance technology has led to a growing interest in thermal camouflage. However, the trade-off relationship between low IR-emissivity and thermal insulation hinders the advance of thermal camouflage materials. Herein, guided by multi-physics simulation, we show a design of asymmetric aramid nanofibers/MXene (ANF/MXene) aerogel film that realizes high-efficient thermal camouflage applications. The rationale is that the asymmetric structure contains a thermal-insulation three-dimensional (3D) network part to prevent effective heat transfer and a low IR-emissivity (~ 0.3) dense surface layer to suppress radiative heat emission. It is remarkable that the synergy mechanism in the topology structure contributes to over 40% reduction of target radiation temperature. Impressively, the tailored asymmetric ANF/MXene aerogel film also enables sound mechanical properties such as a Young’s modulus of 44.4 MPa and a tensile strength of 1.3 MPa, superior to most aerogel materials. It also exhibits great Joule heating performances including low driving voltage (4 V), fast thermal response (< 10 s), and long-term stability, further enabling its versatile thermal camouflage applications. This work offers an innovative design concept to configure multifunctional structures for next-generation thermal management applications.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Tailoring of a robust asymmetric aramid nanofibers/MXene aerogel film for enhanced infrared thermal camouflage and Joule heating performances

Show Author's information Wanbin DangWei Guo( )Wenting ChenQiuyu Zhang( )
Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710072, China

Abstract

The development of infrared (IR) surveillance technology has led to a growing interest in thermal camouflage. However, the trade-off relationship between low IR-emissivity and thermal insulation hinders the advance of thermal camouflage materials. Herein, guided by multi-physics simulation, we show a design of asymmetric aramid nanofibers/MXene (ANF/MXene) aerogel film that realizes high-efficient thermal camouflage applications. The rationale is that the asymmetric structure contains a thermal-insulation three-dimensional (3D) network part to prevent effective heat transfer and a low IR-emissivity (~ 0.3) dense surface layer to suppress radiative heat emission. It is remarkable that the synergy mechanism in the topology structure contributes to over 40% reduction of target radiation temperature. Impressively, the tailored asymmetric ANF/MXene aerogel film also enables sound mechanical properties such as a Young’s modulus of 44.4 MPa and a tensile strength of 1.3 MPa, superior to most aerogel materials. It also exhibits great Joule heating performances including low driving voltage (4 V), fast thermal response (< 10 s), and long-term stability, further enabling its versatile thermal camouflage applications. This work offers an innovative design concept to configure multifunctional structures for next-generation thermal management applications.

Keywords: thermal insulation, asymmetric aerogel film, Joule heating performance, low infrared (IR)-emissivity, IR thermal camouflage

References(42)

[1]

Liu, H. D.; Wang, C. Y.; Chen, G. R.; Liao, Y. T.; Mao, M. R.; Cheng, T.; Libanori, A.; Xiao, X.; Hu, X. J.; Liu, K. et al. Moisture assisted photo-engineered textiles for visible and self-adaptive infrared dual camouflage. Nano Energy 2022, 93, 106855.

[2]

Ahn, J.; Lim, T.; Yeo, C. S.; Hong, T.; Jeong, S. M.; Park, S. Y.; Ju, S. Infrared invisibility cloak based on polyurethane-tin oxide composite microtubes. ACS Appl. Mater. Interfaces 2019, 11, 14296–14304.

[3]

Pan, M. Y.; Huang, Y.; Li, Q.; Luo, H.; Zhu, H. Z.; Kaur, S.; Qiu, M. Multi-band middle-infrared-compatible camouflage with thermal management via simple photonic structures. Nano Energy 2020, 69, 104449.

[4]

Salihoglu, O.; Uzlu, H. B.; Yakar, O.; Aas, S.; Balci, O.; Kakenov, N.; Balci, S.; Olcum, S.; Süzer, S.; Kocabas, C. Graphene-based adaptive thermal camouflage. Nano Lett. 2018, 18, 4541–4548.

[5]

Woo, H. K.; Zhou, K.; Kim, S. K.; Manjarrez, A.; Hoque, M. J.; Seong, T. Y.; Cai, L. L. Visibly transparent and infrared reflective coatings for personal thermal management and thermal camouflage. Adv. Funct. Mater. 2022, 32, 2201432.

[6]

Hu, R.; Xi, W.; Liu, Y. D.; Tang, K. C.; Song, J. L.; Luo, X. B.; Wu, J. Q.; Qiu, C. W. Thermal camouflaging metamaterials. Mater. Today 2021, 45, 120–141.

[7]

Liu, B. W.; Cao, M.; Zhang, Y. Y.; Wang, Y. Z.; Zhao, H. B. Multifunctional protective aerogel with superelasticity over-196 to 500 °C. Nano Res. 2022, 15, 7797–7805.

[8]

Thapliyal, P. C.; Singh, K. Aerogels as promising thermal insulating materials: An overview. J. Mater. 2014, 2014, 127049.

[9]

Wu, Y.; Zhao, Y.; Zhou, M.; Tan, S. J.; Peymanfar, R.; Aslibeiki, B.; Ji, G. B. Ultrabroad microwave absorption ability and infrared stealth property of nano-micro CuS@rGO lightweight aerogels. Nano-Micro Lett. 2022, 14, 171.

[10]

Cheng, Y. J.; Sun, X. X.; Yang, S.; Wang, D.; Liang, L.; Wang, S. S.; Ning, Y. H.; Yin, W. L.; Li, Y. B. Multifunctional elastic rGO hybrid aerogels for microwave absorption, infrared stealth and heat insulation. Chem. Eng. J. 2023, 452, 139376.

[11]

Lyu, J.; Liu, Z. W.; Wu, X. H.; Li, G. Y.; Fang, D.; Zhang, X. T. Nanofibrous Kevlar aerogel films and their phase-change composites for highly efficient infrared stealth. ACS Nano 2019, 13, 2236–2245.

[12]

Su, H.; Lin, P. C.; Lu, H.; Zhao, X.; Sheng, X. X.; Chen, Y. Janus-type hydroxyapatite-incorporated Kevlar aerogel@Kevlar aerogel supported phase-change material gel toward wearable personal thermal management. ACS Appl. Mater. Interfaces 2022, 14, 12617–12629.

[13]

Zhang, X. H.; Ni, X. X.; He, M. Y.; Gao, Y. J.; Li, C. X.; Mo, X. L.; Sun, G.; You, B. A synergistic strategy for fabricating an ultralight and thermal insulating aramid nanofiber/polyimide aerogel. Mater. Chem. Front. 2021, 5, 804–816.

[14]

Zhang, X. X.; Cheng, X. T.; Si, Y.; Yu, J. Y.; Ding, B. All-ceramic and elastic aerogels with nanofibrous-granular binary synergistic structure for thermal superinsulation. ACS Nano 2022, 16, 5487–5495.

[15]

Liu, Z. W.; Lyu, J.; Ding, Y.; Bao, Y. Q.; Sheng, Z. Z.; Shi, N.; Zhang, X. T. Nanoscale Kevlar liquid crystal aerogel fibers. ACS Nano 2022, 16, 15237–15248.

[16]

Yang, S. X.; Xie, C. J.; Qiu, T.; Tuo, X. L. The aramid-coating-on-aramid strategy toward strong, tough, and foldable polymer aerogel films. ACS Nano 2022, 16, 14334–14343.

[17]

Wang, J. F.; Shen, M. M.; Liu, Z. X.; Wang, W. J. MXene materials for advanced thermal management and thermal energy utilization. Nano Energy 2022, 97, 107177.

[18]

Shen, M. M.; Ni, J. H.; Cao, Y. X.; Yang, Y. Y.; Wang, W. J.; Wang, J. F. Low infrared emitter from Ti3C2Tx MXene towards highly-efficient electric/solar and passive radiative heating. J. Mater. Sci. Technol. 2023, 133, 32–40.

[19]

Shi, M. K.; Shen, M. M.; Guo, X. Y.; Jin, X. X.; Cao, Y. X.; Yang, Y. Y.; Wang, W. J.; Wang, J. F. Ti3C2Tx MXene-decorated nanoporous polyethylene textile for passive and active personal precision heating. ACS Nano 2021, 15, 11396–11405.

[20]

Li, K. R.; Li, Z. P.; Xiong, Z.; Wang, Y. X.; Yang, H. T.; Xu, W. X.; Jing, L.; Ding, M.; Zhu, J.; Ho, J. S. et al. Thermal camouflaging MXene robotic skin with bio-inspired stimulus sensation and wireless communication. Adv. Funct. Mater. 2022, 32, 2110534.

[21]

Li, L.; Shi, M. K.; Liu, X. Y.; Jin, X. X.; Cao, Y. X.; Yang, Y. Y.; Wang, W. J.; Wang, J. F. Ultrathin titanium carbide (MXene) films for high-temperature thermal camouflage. Adv. Funct. Mater. 2021, 31, 2101381.

[22]

Li, Y.; Xiong, C.; Huang, H.; Peng, X. D.; Mei, D. Q.; Li, M.; Liu, G. Z.; Wu, M. C.; Zhao, T. S.; Huang, B. L. 2D Ti3C2Tx MXenes: Visible black but infrared white materials. Adv. Mater. 2021, 33, 2103054.

[23]

Feng, S. Y.; Yi, Y.; Chen, B. X.; Deng, P. C.; Zhou, Z. H.; Lu, C. H. Rheology-guided assembly of a highly aligned MXene/cellulose nanofiber composite film for high-performance electromagnetic interference shielding and infrared stealth. ACS Appl. Mater. Interfaces 2022, 14, 36060–36070.

[24]

Choi, H.; Kim, T.; Kim, T.; Moon, S.; Yoo, S.; Parale, V. G.; Dhavale, R. P.; Kang, K.; Sohn, H.; Park, H. H. Ultralow dielectric cross-linked silica aerogel nanocomposite films for interconnect technology. Appl. Mater. Today 2022, 28, 101536.

[25]

Li, X. L.; Sheng, X. X.; Fang, Y.; Hu, X. P.; Gong, S.; Sheng, M. J.; Lu, X.; Qu, J. P. Wearable Janus-type film with integrated all-season active/passive thermal management, thermal camouflage, and ultra-high electromagnetic shielding efficiency tunable by origami process. Adv. Funct. Mater. 2023, 33, 2212776.

[26]

Dang, W. B.; Liu, Z. X.; Wang, L. N.; Chen, Y. H.; Qi, M.; Zhang, Q. Y. A flexible, robust and multifunctional montmorillonite/aramid Nanofibers@MXene electromagnetic shielding nanocomposite with an alternating structure for enhanced joule heating and fire-resistant protective performance. Nanoscale 2022, 14, 11305–11315.

[27]

Hu, Y. H.; Yang, G.; Zhou, J. T.; Li, H. Y.; Shi, L.; Xu, X. L.; Cheng, B. W.; Zhuang, X. P. Proton donor-regulated mechanically robust aramid nanofiber aerogel membranes for high-temperature thermal insulation. ACS Nano 2022, 16, 5984–5993.

[28]

Yang, B.; Wang, L.; Zhang, M. Y.; Luo, J. J.; Ding, X. Y. Timesaving, high-efficiency approaches to fabricate aramid nanofibers. ACS Nano 2019, 13, 7886–7897.

[29]

Zhu, J.; Yang, M.; Emre, A.; Bahng, J. H.; Xu, L. Z.; Yeom, J.; Yeom, B.; Kim, Y.; Johnson, K.; Green, P. et al. Branched aramid nanofibers. Angew. Chem., Int. Ed. 2017, 56, 11744–11748.

[30]

Luo, J. Q.; Zhao, S.; Zhang, H. B.; Deng, Z. M.; Li, L. L.; Yu, Z. Z. Flexible, stretchable and electrically conductive MXene/natural rubber nanocomposite films for efficient electromagnetic interference shielding. Compos. Sci. Technol. 2019, 182, 107754.

[31]

Yang, M.; Cao, K. Q.; Sui, L.; Qi, Y.; Zhu, J.; Waas, A.; Arruda, E. M.; Kieffer, J.; Thouless, M. D.; Kotov, N. A. Dispersions of aramid nanofibers: A new nanoscale building block. ACS Nano 2011, 5, 6945–6954.

[32]

Du, Y. Q.; Xu, J.; Fang, J. Y.; Zhang, Y. T.; Liu, X. Y.; Zuo, P. Y.; Zhuang, Q. X. Ultralight, highly compressible, thermally stable MXene/aramid nanofiber anisotropic aerogels for electromagnetic interference shielding. J. Mater. Chem. A 2022, 10, 6690–6700.

[33]

Xie, F.; Jia, F. F.; Zhuo, L. H.; Lu, Z. Q.; Si, L. M.; Huang, J. Z.; Zhang, M. Y.; Ma, Q. Ultrathin MXene/aramid nanofiber composite paper with excellent mechanical properties for efficient electromagnetic interference shielding. Nanoscale 2019, 11, 23382–23391.

[34]

Wang, J.; Ma, X. Y.; Zhou, J. L.; Du, F. L.; Teng, C. Bioinspired, high-strength, and flexible MXene/aramid fiber for electromagnetic interference shielding papers with joule heating performance. ACS Nano 2022, 16, 6700–6711.

[35]

Lu, J. Y.; Cheng, L.; Liao, C.; Jia, P. F.; Song, L.; Wang, B. B.; Hu, Y. Ultrathin and mechanically robust mussel byssus-inspired MXene@aramid nanofibers materials with superior endurance in harsh environments for tunable EMI shielding performance. Adv. Mater. Interfaces 2022, 9, 2101359.

[36]

Ma, Z. L.; Kang, S. L.; Ma, J. Z.; Shao, L.; Zhang, Y. L.; Liu, C.; Wei, A. J.; Xiang, X. L.; Wei, L. F.; Gu, J. W. Ultraflexible and mechanically strong double-layered aramid nanofiber-Ti3C2Tx MXene/silver nanowire nanocomposite papers for high-performance electromagnetic interference shielding. ACS Nano 2020, 14, 8368–8382.

[37]

Liu, C. X.; Ma, Y. N.; Xie, Y. M.; Zou, J. J.; Wu, H.; Peng, S. H.; Qian, W.; He, D. P.; Zhang, X.; Li, B. W. et al. Enhanced electromagnetic shielding and thermal management properties in MXene/aramid nanofiber films fabricated by intermittent filtration. ACS Appl. Mater. Interfaces 2023, 15, 4516–4526.

[38]

Wang, Y. J.; Xia, S.; Li, H.; Wang, J. F. Unprecedentedly tough, folding-endurance, and multifunctional graphene-based artificial nacre with predesigned 3D nanofiber network as matrix. Adv. Funct. Mater. 2019, 29, 1903876.

[39]

Shen, L.; Zheng, B.; Liu, Z. Z.; Wang, Z. J.; Lin, S. S.; Dehdashti, S.; Li, E. P.; Chen, H. S. Large-scale far-infrared invisibility cloak hiding object from thermal detection. Adv. Opt. Mater. 2015, 3, 1738–1742.

[40]

An, Z. M.; Li, Y. P.; Luo, X. G.; Huang, Y. X.; Zhang, R. B.; Fang, D. N. Multilaminate metastructure for high-temperature radar-infrared Bi-stealth: Topological optimization and near-room-temperature synthesis. Matter 2022, 5, 1937–1952.

[41]

Shi, T.; Zheng, Z. H.; Liu, H.; Wu, D. Z.; Wang, X. D. Flexible and foldable composite films based on polyimide/phosphorene hybrid aerogel and phase change material for infrared stealth and thermal camouflage. Compos. Sci. Technol. 2022, 217, 109127.

[42]

Choe, A.; Yeom, J.; Kwon, Y.; Lee, Y.; Shin, Y. E.; Kim, J.; Ko, H. Stimuli-responsive micro/nanoporous hairy skin for adaptive thermal insulation and infrared camouflage. Mater. Horiz. 2020, 7, 3258–3265.

File
12274_2023_5895_MOESM1_ESM.pdf (1.2 MB)
12274_2023_5895_MOESM2_ESM.pdf (3.8 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 14 April 2023
Revised: 25 May 2023
Accepted: 04 June 2023
Published: 26 June 2023
Issue date: March 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 51673156 and 52202301), the Fundamental Research Funds for the Central Universities (No. D5000210607), the Natural Science Basic Research Plan in Shaanxi Province of China (No. 2022JQ-143), and China Postdoctoral Science Foundation (Nos. 2022M722587 and 2022TQ0256). The authors would like to acknowledge the support from the Analytical & Testing Center of Northwestern Polytechnical University for TEM and SEM testing. We thank Shiyanjia Lab (www.shiyanjia.com) for the help with theoretical calculation.

Return