AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Synthesis of carbon dots with predictable photoluminescence by the aid of machine learning

Chenyu Xing1Gaoyu Chen1Xia Zhu1Jiakun An1Jianchun Bao1( )Xuan Wang2Xiuqing Zhou2Xiuli Du2( )Xiangxing Xu1,3( )
Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
School of Mathematical Sciences, Nanjing Normal University, Nanjing 210023, China
State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
Show Author Information

Graphical Abstract

Machine learning (ML) models were used to predict the strongest and longest photoluminescence (PL) peaks (λs and λl) of carbon dots (CDs) prepared from different precursor combinations.

Abstract

Carbon dots (CDs) have wide application potentials in optoelectronic devices, biology, medicine, chemical sensors, and quantum techniques due to their excellent fluorescent properties. However, synthesis of CDs with controllable spectrum is challenging because of the diversity of the CD components and structures. In this report, machine learning (ML) algorithms were applied to help the synthesis of CDs with predictable photoluminescence (PL) under the excitation wavelengths of 365 and 532 nm. The combination of precursors was used as the variable. The PL peaks of the strongest intensity ( λs) and the longest wavelength ( λl) were used as target functions. Among six investigated ML models, the random forest (RF) model showed outstanding performance in the prediction of the PL peaks.

Electronic Supplementary Material

Download File(s)
12274_2023_5893_MOESM1_ESM.pdf (1.3 MB)

References

[1]

Efros, A. L.; Brus, L. E. Nanocrystal quantum dots: From discovery to modern development. ACS Nano 2021, 15, 6192–6210.

[2]

Wang, G.; Ji, J. W.; Zhang, X. W.; Zhang, Y.; Wang, Q. B.; You, X. Z.; Xu, X. X. Colloidal nanocrystals fluoresced by surface coordination complexes. Sci. Rep. 2014, 4, 5480.

[3]

Xu, X. X.; Ji, J. W.; Wang, G.; You, X. Z. Exciton coupling of surface complexes on a nanocrystal surface. Chemphyschem 2014, 15, 2536–2541.

[4]

Hinterding, S. O. M.; Salzmann, B. B. V.; Vonk, S. J. W.; Vanmaekelbergh, D.; Weckhuysen, B. M.; Hutter, E. M.; Rabouw, F. T. Single trap states in single CdSe nanoplatelets. ACS Nano 2021, 15, 7216–7225.

[5]

Pietryga, J. M.; Park, Y. S.; Lim, J.; Fidler, A. F.; Bae, W. K.; Brovelli, S.; Klimov, V. I. Spectroscopic and device aspects of nanocrystal quantum dots. Chem. Rev. 2016, 116, 10513–10622.

[6]

Kagan, C. R.; Bassett, L. C.; Murray, C. B.; Thompson, S. M. Colloidal quantum dots as platforms for quantum information science. Chem. Rev. 2021, 121, 3186–3233.

[7]

Xu, G. X.; Zeng, S. W.; Zhang, B. T.; Swihart, M. T.; Yong, K. T.; Prasad, P. N. New generation cadmium-free quantum dots for biophotonics and nanomedicine. Chem. Rev. 2016, 116, 12234–12327.

[8]

Lan, M. H.; Zhao, S. J.; Zhang, Z. Y.; Yan, L.; Guo, L.; Niu, G. L.; Zhang, J. F.; Zhao, J. F.; Zhang, H. Y.; Wang, P. F. et al. Two-photon-excited near-infrared emissive carbon dots as multifunctional agents for fluorescence imaging and photothermal therapy. Nano Res. 2017, 10, 3113–3123.

[9]

Zhu, P. D.; Wang, S. Y.; Zhang, Y. Q.; Li, Y. F.; Liu, Y. P.; Li, W. J.; Wang, Y. Y.; Yan, X.; Luo, D. X. Carbon dots in biomedicine: A review. ACS Appl. Bio Mater. 2022, 5, 2031–2045.

[10]

Jiang, Z. Y.; Guan, L. N.; Xu, X. J.; Wang, E. R.; Wang, C. L. Applications of carbon dots in electrochemical energy storage. ACS Appl. Electron. Mater. 2022, 4, 5144–5164.

[11]

Chung, Y. J.; Kim, J.; Park, C. B. Photonic carbon dots as an emerging nanoagent for biomedical and healthcare applications. ACS Nano 2020, 14, 6470–6497.

[12]

Anwar, S.; Ding, H. Z.; Xu, M. S.; Hu, X. L.; Li, Z. Z.; Wang, J. M.; Liu, L.; Jiang, L.; Wang, D.; Dong, C. et al. Recent advances in synthesis, optical properties, and biomedical applications of carbon dots. ACS Appl. Bio Mater. 2019, 2, 2317–2338.

[13]

Zhang, M. R.; Su, R. G.; Zhong, J.; Fei, L.; Cai, W.; Guan, Q. W.; Li, W. J.; Li, N.; Chen, Y. S.; Cai, L. L. et al. Red/orange dual-emissive carbon dots for pH sensing and cell imaging. Nano Res. 2019, 12, 815–821.

[14]

Sinha, S.; Kim, P. H.; Switzer, C. 2’, 5’-Linked DNA is a template for polymerase-directed DNA synthesis. J. Am. Chem. Soc. 2004, 126, 40–41.

[15]

Brumbaugh, J.; Schleifenbaum, A.; Gasch, A.; Sattler, M.; Schultz, C. A dual parameter FRET probe for measuring PKC and PKA activity in living cells. J. Am. Chem. Soc. 2006, 128, 24–25.

[16]

Zhu, S. J.; Song, Y. B.; Zhao, X. H.; Shao, J. R.; Zhang, J. H.; Yang, B. The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): Current state and future perspective. Nano Res. 2015, 8, 355–381.

[17]

Hassan, M.; Gomes, V. G.; Dehghani, A.; Ardekani, S. M. Engineering carbon quantum dots for photomediated theranostics. Nano Res. 2018, 11, 1–41.

[18]

Ji, Z. H.; Zhang, L. L.; Tang, D. M.; Chen, C. M.; Nordling, T. E. M.; Zhang, Z. D.; Ren, C. L.; Da, B.; Li, X.; Guo, S. Y. et al. High-throughput screening and machine learning for the efficient growth of high-quality single-wall carbon nanotubes. Nano Res. 2021, 14, 4610–4615.

[19]

Thakkar, A.; Johansson, S.; Jorner, K.; Buttar, D.; Reymond, J. L.; Engkvist, O. Artificial intelligence and automation in computer aided synthesis planning. React. Chem. Eng. 2021, 6, 27–51.

[20]

Kamakura, Y.; Chinapang, P.; Masaoka, S.; Saeki, A.; Ogasawara, K.; Nishitani, S. R.; Yoshikawa, H.; Katayama, T.; Tamai, N.; Sugimoto, K. et al. Semiconductive nature of lead-based metal-organic frameworks with three-dimensionally extended sulfur secondary building units. J. Am. Chem. Soc. 2020, 142, 27–32.

[21]

Talapatra, A.; Uberuaga, B. P.; Stanek, C. R.; Pilania, G. A machine learning approach for the prediction of formability and thermodynamic stability of single and double perovskite oxides. Chem. Mater. 2021, 33, 845–858.

[22]

Lu, S. H.; Zhou, Q. H.; Ma, L.; Guo, Y.; Wang, J. L. Rapid discovery of ferroelectric photovoltaic perovskites and material descriptors via machine learning. Small Methods 2019, 3, 1900360.

[23]

Gladkikh, V.; Kim, D. Y.; Hajibabaei, A.; Jana, A.; Myung, C. W.; Kim, K. S. Machine learning for predicting the band gaps of ABX3 perovskites from elemental properties. J. Phys. Chem. C 2020, 124, 8905–8918.

[24]

Chen, H. A.; Tang, P. H.; Chen, G. J.; Chang, C. C.; Pao, C. W. Microstructure maps of complex perovskite materials from extensive Monte Carlo sampling using machine learning enabled energy model. J. Phys. Chem. Lett. 2021, 12, 3591–3599.

[25]

Voznyy, O.; Levina, L.; Fan, J. Z.; Askerka, M.; Jain, A.; Choi, M. J.; Ouellette, O.; Todorović, P.; Sagar, L. K.; Sargent, E. H. Machine learning accelerates discovery of optimal colloidal quantum dot synthesis. ACS Nano 2019, 13, 11122–11128.

[26]

Chen, G. Y.; Zhu, X.; Xing, C. Y.; Wang, Y. K.; Xu, X. X.; Bao, J. C.; Huang, J. H.; Zhao, Y. R.; Wang, X.; Zhou, X. Q. et al. Machine learning-assisted microfluidic synthesis of perovskite quantum dots. Adv. Photonics Res. 2023, 4, 2200230.

[27]

Muyassiroh, D. A. M.; Permatasari, F. A.; Iskandar, F. Machine learning-driven advanced development of carbon-based luminescent nanomaterials. J. Mater. Chem. C 2022, 10, 17431–17450.

[28]

Wang, X.; Wang, B.; Wang, H. S.; Zhang, T. Y.; Qi, H. H.; Wu, Z. Y.; Ma, Y. R.; Huang, H.; Shao, M. W.; Liu, Y. et al. Carbon-dot-based white-light-emitting diodes with adjustable correlated color temperature guided by machine learning. Angew. Chem., Int. Ed. 2021, 60, 12585–12590.

[29]

Luo, J. B.; Chen, J.; Liu, H.; Huang, C. Z.; Zhou, J. High-efficiency synthesis of red carbon dots using machine learning. Chem. Commun. 2022, 58, 9014–9017.

[30]

Senanayake, R. D.; Yao, X. X.; Froehlich, C. E.; Cahill, M. S.; Sheldon, T. R.; McIntire, M.; Haynes, C. L.; Hernandez, R. Machine learning-assisted carbon dot synthesis: Prediction of emission color and wavelength. J. Chem. Inf. Model. 2022, 62, 5918–5928.

[31]

Wang, X. Y.; Chen, B. B.; Zhang, J.; Zhou, Z. R.; Lv, J.; Geng, X. P.; Qian, R. C. Exploiting deep learning for predictable carbon dot design. Chem. Commun. 2021, 57, 532–535.

[32]

Hong, Q.; Wang, X. Y.; Gao, Y. T.; Lv, J.; Chen, B. B.; Li, D. W.; Qian, R. C. Customized carbon dots with predictable optical properties synthesized at room temperature guided by machine learning. Chem. Mater. 2022, 34, 998–1009.

[33]

Chen, J.; Luo, J. B.; Hu, M. Y.; Zhou, J.; Huang, C. Z.; Liu, H. Controlled synthesis of multicolor carbon dots assisted by machine learning. Adv. Funct. Mater. 2023, 33, 2210095.

[34]

Han, Y.; Tang, B. J.; Wang, L.; Bao, H.; Lu, Y. H.; Guan, C. T.; Zhang, L.; Le, M. Y.; Liu, Z.; Wu, M. H. Machine-learning-driven synthesis of carbon dots with enhanced quantum yields. ACS Nano 2020, 14, 14761–14768.

[35]

Weiss, C. J. A creative commons textbook for teaching scientific computing to chemistry students with python and jupyter notebooks. J. Chem. Educ. 2021, 98, 489–494.

[36]

Lafuente, D.; Cohen, B.; Fiorini, G.; García, A. A.; Bringas, M.; Morzan, E.; Onna, D. A gentle introduction to machine learning for chemists: An undergraduate workshop using python notebooks for visualization, data processing, analysis, and modeling. J. Chem. Educ. 2021, 98, 2892–2898.

[37]

Mombrú, D.; Romero, M.; Faccio, R.; Mombrú, Á. W. Electronic structure of edge-modified graphene quantum dots interacting with polyaniline: Vibrational and optical properties. J. Phys. Chem. C 2017, 121, 16576–16583.

[38]

Wang, L.; Li, W. T.; Yin, L. Q.; Liu, Y. J.; Guo, H. Z.; Lai, J. W.; Han, Y.; Li, G.; Li, M.; Zhang, J. H. et al. Full-color fluorescent carbon quantum dots. Sci. Adv. 2020, 6, eabb6772.

[39]
Tepliakov, N. V.; Kundelev, E. V.; Khavlyuk, P. D.; Xiong, Y.; Leonov, M. Y.; Zhu, W. R.; Baranov, A. V.; Fedorov, A. V.; Rogach, A. L.; Rukhlenko, I. D. sp2-sp3-Hybridized atomic domains determine optical features of carbon dots. ACS Nano 2019, 13, 10737–10744.
[40]

Semenok, D. V.; Zhou, D.; Kvashnin, A. G.; Huang, X. L.; Galasso, M.; Kruglov, I. A.; Ivanova, A. G.; Gavriliuk, A. G.; Chen, W. H.; Tkachenko, N. V. et al. Novel strongly correlated europium superhydrides. J. Phys. Chem. Lett. 2021, 12, 32–40.

[41]

Righetto, M.; Privitera, A.; Fortunati, I.; Mosconi, D.; Zerbetto, M.; Curri, M. L.; Corricelli, M.; Moretto, A.; Agnoli, S.; Franco, L. et al. Spectroscopic insights into carbon dot systems. J. Phys. Chem. Lett. 2017, 8, 2236–2242.

Nano Research
Pages 1984-1989
Cite this article:
Xing C, Chen G, Zhu X, et al. Synthesis of carbon dots with predictable photoluminescence by the aid of machine learning. Nano Research, 2024, 17(3): 1984-1989. https://doi.org/10.1007/s12274-023-5893-6
Topics:

925

Views

10

Crossref

12

Web of Science

10

Scopus

2

CSCD

Altmetrics

Received: 05 May 2023
Revised: 04 June 2023
Accepted: 04 June 2023
Published: 14 July 2023
© Tsinghua University Press 2023
Return