Journal Home > Volume 16 , Issue 10

The gas-phase dehydrogenation of 1,6-hexanediol (1,6-HDO) to ε-caprolactone (ε-CL) over the high-performance Cu-based catalysts is highly desirable, but with grand challenges, because the Cu nanoparticles (NPs) are easy to be sintered with the low Hüttig temperature (< 150 °C vs. > 250 °C of reaction temperature). Herein, we report a highly efficient silica-encapsulated nano-Cu catalyst (Cu@SiO2/SiO2) prepared via a complexation–impregnation method for the dehydrogenation of 1,6-HDO, exhibiting a 1,6-HDO conversion of 95.3% and ε-CL selectivity of 80.0% at 270 °C. The catalyst also has the outstanding thermal stability (without sintering up to 270 °C for 100 h on stream), which can be attributed to the effective encapsulation of the SiO2 shell. In addition, the reaction network of 1,6-HDO dehydrogenation is proved. Finally, the pyridine-diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and in-situ X-ray photoelectron spectroscopy (XPS) reveal that the Cu0 species favor the conversion of 1,6-HDO to ε-CL. The synergistic effect of Cu+ and Cu0 benefits the conversion of ε-CL to 2-methylcyclopentanone (2-MCPN). This study is beneficial for designing the high-performance Cu-based catalysts for 1,6-HDO to ε-CL, understanding the reaction network of 1,6-HDO dehydrogenation over the Cu-based catalysts, and offering a strong foundation for the large-scale production of ε-CL.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Core–shell Cu@SiO2/SiO2 catalyst for 1,6-hexanediol dehydrogenation to ε-caprolactone: High activity and stability from core–shell nanostructure

Show Author's information Fengyang Jiang1Tian Lan1Jiaqiang Sun2( )Guofeng Zhao1,3,( )Yong Lu1( )
Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
Present address: College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China

Abstract

The gas-phase dehydrogenation of 1,6-hexanediol (1,6-HDO) to ε-caprolactone (ε-CL) over the high-performance Cu-based catalysts is highly desirable, but with grand challenges, because the Cu nanoparticles (NPs) are easy to be sintered with the low Hüttig temperature (< 150 °C vs. > 250 °C of reaction temperature). Herein, we report a highly efficient silica-encapsulated nano-Cu catalyst (Cu@SiO2/SiO2) prepared via a complexation–impregnation method for the dehydrogenation of 1,6-HDO, exhibiting a 1,6-HDO conversion of 95.3% and ε-CL selectivity of 80.0% at 270 °C. The catalyst also has the outstanding thermal stability (without sintering up to 270 °C for 100 h on stream), which can be attributed to the effective encapsulation of the SiO2 shell. In addition, the reaction network of 1,6-HDO dehydrogenation is proved. Finally, the pyridine-diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and in-situ X-ray photoelectron spectroscopy (XPS) reveal that the Cu0 species favor the conversion of 1,6-HDO to ε-CL. The synergistic effect of Cu+ and Cu0 benefits the conversion of ε-CL to 2-methylcyclopentanone (2-MCPN). This study is beneficial for designing the high-performance Cu-based catalysts for 1,6-HDO to ε-CL, understanding the reaction network of 1,6-HDO dehydrogenation over the Cu-based catalysts, and offering a strong foundation for the large-scale production of ε-CL.

Keywords: dehydrogenation, Cu-based catalyst, core–shell nanostructure, 1,6-hexanediol, ε-caprolactone

References(50)

[1]

van Natta, F. J.; Hill, J. W.; Carothers, W. H. Studies of polymerization and ring formation. XXIII.1 ε-Caprolactone and its polymers. J. Am. Chem. Soc. 1934, 56, 455–457.

[2]

Levengood, S. L.; Erickson, A. E.; Chang, F. C.; Zhang, M. Q. Chitosan-poly(caprolactone) nanofibers for skin repair. J. Mater. Chem. B 2017, 5, 1822–1833.

[3]

Woodruff, M. A.; Hutmacher, D. W. The return of a forgotten polymer-polycaprolactone in the 21st century. Prog. Polym. Sci. 2010, 35, 1217–1256.

[4]

Murahashi, S. I.; Oda, Y.; Naota, T. Fe2O3-catalyzed baeyer-villiger oxidation of ketones with molecular oxygen in the presence of aldehydes. Tetrahedron Lett. 1992, 33, 7557–7560.

[5]

Berkessel, A.; Andreae, M. R. M. Efficient catalytic methods for the Baeyer–Villiger oxidation and epoxidation with hydrogen peroxide. Tetrahedron Lett. 2001, 42, 2293–2295.

[6]

Jung, H. M.; Choi, J. H.; Lee, S. O.; Kim, Y. H.; Park, J. H.; Park, J. Facile synthesis of (η5-Ph4C4COH)(CO)2RuCl and catalytic oxidation of alcohols with chloroform. Organometallics 2002, 21, 5674–5677.

[7]

Touchy, A. S.; Shimizu, K. I. Acceptorless dehydrogenative lactonization of diols by Pt-loaded SnO2 catalysts. RSC Adv. 2015, 5, 29072–29075.

[8]

Capece, N.; Sadier, A.; Ferraz, C. P.; Thuriot-Roukos, J.; Pietrowski, M.; Zieliński, M.; Paul, S.; Cavani, F.; Wojcieszak, R. Aerobic oxidation of 1,6-hexanediol to adipic acid over Au-based catalysts: The role of basic supports. Catal. Sci. Technol. 2020, 10, 2644–2651.

[9]

Mikami, Y.; Ebata, K.; Mitsudome, T.; Mizugaki, T.; Jitsukawa, K.; Kaneda, K. Oxidant-free lactonization of diols using a hydrotalcite-supported copper catalyst. Heterocycles 2010, 80, 855–861.

[10]

Liu, Y.; Zhou, Q.; Zheng, C. Y.; Wang, Y. Z. Vapor-phase dehydrogenation of 1,6-hexanediol to ε-caprolactone over CuO/Cr2O3/Al2O3 catalyst. Mod. Chem. Ind. 2007, 27, 41–42,44.

[11]

Abe, K.; Ohishi, Y.; Okada, T.; Yamada, Y.; Sato, S. Vapor-phase catalytic dehydration of terminal diols. Catal. Today 2011, 164, 419–424.

[12]

Zhang, R. X.; Chen, Y.; Ding, M. H.; Zhao, J. Heterogeneous Cu catalyst in organic transformations. Nano Res. 2022, 15, 2810–2833.

[13]

Ye, R. P.; Lin, L.; Li, Q. H.; Zhou, Z. F.; Wang, T. T.; Russell, C. K.; Adidharma, H.; Xu, Z. H.; Yao, Y. G.; Fan, M. H. ecent progress in improving the stability of copper-based catalysts for hydrogenation of carbon–oxygen bonds. Catal. Sci. Technol. 2018, 8, 3428–3449.

[14]

Xu, C. F.; Chen, G. X.; Zhao, Y.; Liu, P. X.; Duan, X. P.; Gu, L.; Fu, G.; Yuan, Y. Z.; Zheng, N. F. Interfacing with silica boosts the catalysis of copper. Nat. Commun. 2018, 9, 3367.

[15]

Liu, X. H.; Wang, X. H.; Zhen, S. Y.; Sun, G. D.; Pei, C. L.; Zhao, Z. J.; Gong, J. L. Support stabilized PtCu single-atom alloys for propane dehydrogenation. Chem. Sci. 2022, 13, 9537–9543.

[16]

Strekalova, A. A.; Shesterkina, A. A.; Kustov, L. M. Recent progress in hydrogenation of esters on heterogeneous bimetallic catalysts. Catal. Sci. Technol. 2021, 11, 7229–7238.

[17]

Li, Q.; Zhang, Z. W.; Zhao, J.; Li, A. T. Recent advances in the sustainable production of α,ω-C6 bifunctional compounds enabled by chemo-/biocatalysts. Green Chem. 2022, 24, 4270–4303.

[18]

Amokrane, S.; Boualouache, A.; Simon, P.; Capron, M.; Otmanine, G.; Allam, D.; Hocine, S. Effect of adding transition metals to copper on the dehydrogenation reaction of ethanol. Catal. Lett. 2021, 151, 2864–2883.

[19]

Carotenuto, G.; Tesser, R.; Di Serio, M.; Santacesaria, E. Kinetic study of ethanol dehydrogenation to ethyl acetate promoted by a copper/copper-chromite based catalyst. Catal. Today 2013, 203, 202–210.

[20]

Zhou, J.; Zhang, Y.; Liu, H.; Xiong, C.; Hu, P.; Wang, H.; Chen, S. W.; Ji, H. B. Enhanced performance for propane dehydrogenation through Pt clusters alloying with copper in zeolite. Nano Res. 2023, 16, 6537–6543.

[21]
Zhao, X. R.; Liu, Y. Y.; Yuan, H. Y.; Wen, H.; Zhang, H. H.; Ashraf, S.; Guan, S. Y.; Liu, T.; Mehdi, S.; Shen, R. F. et al. Coupling atom ensemble and electron transfer in PdCu for superior catalytic kinetics in hydrogen generation. Nano Res., in press, https://doi.org/10.1007/s12274-023-5667-1.
DOI
[22]

Zhang, B.; Zhu, Y. L.; Ding, G. Q.; Zheng, H. Y.; Li, Y. W. Modification of the supported Cu/SiO2 catalyst by alkaline earth metals in the selective conversion of 1,4-butanediol to γ-butyrolactone. Appl. Catal. A: Gen. 2012, 443–444, 191–201.

[23]

Yang, H. H.; Chen, Y. Y.; Cui, X. J.; Wang, G. F.; Cen, Y. L.; Deng, T. S.; Yan, W. J.; Gao, J.; Zhu, S. H.; Olsbye, U. et al. A highly stable copper-based catalyst for clarifying the catalytic roles of Cu0 and Cu+ species in methanol dehydrogenation. Angew. Chem., Int. Ed. 2018, 57, 1836–1840.

[24]

Chai, R. J.; Zhao, G. F.; Zhang, Z. Q.; Chen, P. J.; Liu, Y.; Lu, Y. High sintering-/coke-resistance Ni@SiO2/Al2O3/FeCrAl-fiber catalyst for dry reforming of methane: One-step, macro-to-nano organization via cross-linking molecules. Catal. Sci. Technol. 2017, 7, 5500–5504.

[25]

Pang, J. F.; Yin, M.; Wu, P. F.; Song, L.; Li, X. Q.; Zhang, T.; Zheng, M. Y. Redispersion and stabilization of Cu/MFI Catalysts by the encapsulation method for ethanol dehydrogenation. ACS Sustainable Chem. Eng. 2023, 11, 3297–3305.

[26]

Song, T. Y.; Qi, Y. Y.; Zhao, C.; Wu, P.; Li, X. H. Sorbitol-derived carbon overlayers encapsulated Cu nanoparticles on SiO2: Stable and efficient for the continuous hydrogenation of ethylene carbonate. iScience 2022, 25, 105239.

[27]

Shinzaburo, O. Studies on lactone formation in vapor phase. III. Mechanism of lactone formation from diols. Bull. Chem. Soc. Japan 1962, 35, 986–989.

[28]

Lee, I.; Zhang, Q.; Ge, J. P.; Yin, Y. D.; Zaera, F. Encapsulation of supported Pt nanoparticles with mesoporous silica for increased catalyst stability. Nano Res. 2010, 4, 115–123.

[29]

Li, M. H.; Yang, Y. N.; Yu, D. L.; Li, W. W.; Ning, X.; Wan, R.; Zhu, H. J.; Mao, J. J. Recent advances on the construction of encapsulated catalyst for catalytic applications. Nano Res. 2022, 16, 3451–3474.

[30]

Shinzaburo, O. Studies on lactone formation in vapor phase. II. Synthesis of ε-caprolactone. Bull. Chem. Soc. Japan 1962, 35, 562–566.

[31]

Zhang, H. W.; Tan, H. R.; Jaenicke, S.; Chuah, G. K. Highly efficient and robust Cu catalyst for non-oxidative dehydrogenation of ethanol to acetaldehyde and hydrogen. J. Catal. 2020, 389, 19–28.

[32]

Lai, N. C.; Tsai, M. C.; Liu, C. H.; Chen, C. S.; Yang, C. M. Efficient selective oxidation of propylene by dioxygen on mesoporous-silica-nanoparticle-supported nanosized copper. J. Catal. 2018, 365, 411–419.

[33]

Gong, J. L.; Yue, H. R.; Zhao, Y. J.; Zhao, S.; Zhao, L.; Lv, J. Wang, S. P.; Ma, X. B. Synthesis of ethanol via syngas on Cu/SiO2 catalysts with balanced Cu0-Cu+ sites. J. Am. Chem. Soc. 2012, 134, 13922–13925.

[34]

Liu, H. L.; Huang, Z. W.; Han, Z. B.; Ding, K. L.; Liu, H. C.; Xia, C. G.; Chen, J. Efficient production of methanol and diols via the hydrogenation of cyclic carbonates using copper-silica nanocomposite catalysts. Green Chem. 2015, 17, 4281–4290.

[35]

Tang, D. Y.; Shen, Z. W.; Lechler, S.; Lu, G. L.; Yao, L.; Hu, Y. Z.; Huang, X. B.; Muhler, M.; Zhao, G. X.; Peng, B. X. Aerobic oxidative lactonization of diols at room temperature over defective titanium-based oxides in water. J. Catal. 2023, 418, 237–246.

[36]

Huang, Y.; Ariga, H.; Zheng, X. L.; Duan, X. P.; Takakusagi, S.; Asakura, K.; Yuan, Y. Z. Silver-modulated SiO2-supported copper catalysts for selective hydrogenation of dimethyl oxalate to ethylene glycol. J. Catal. 2013, 307, 74–83.

[37]

Boccuzzi, F.; Chiorino, A.; Martra, G.; Gargano, M.; Ravasio, N.; Carrozzini, B. Preparation, characterization, and activity of Cu/TiO2 catalysts. I. Influence of the preparation method on the dispersion of copper in Cu/TiO2. J. Catal. 1997, 165, 129–139.

[38]

Dong, F.; Ding, G. Q.; Zheng, H. Y.; Xiang, X. M.; Chen, L. F.; Zhu, Y. L.; Li, Y. W. Highly dispersed Cu nanoparticles as an efficient catalyst for the synthesis of the biofuel 2-methylfuran. Catal. Sci. Technol. 2016, 6, 767–779.

[39]

Zhang, Q. F.; Zhao, G. F.; Zhang, Z. Q.; Han, L. P.; Fan, S. Y.; Chai, R. J.; Li, Y. K.; Liu, Y.; Huang, J.; Lu, Y. From nano- to macro-engineering of oxide-encapsulated-nanoparticles for harsh reactions: One-step organization via cross-linking molecules. Chem. Commun. 2016, 52, 11927–11930.

[40]

Chen, L. F.; Guo, P. J.; Qiao, M. H.; Yan, S. R.; Li, H. X.; Shen, W.; Xu, H. L.; Fan, K. N. Cu/SiO2 catalysts prepared by the ammonia-evaporation method: Texture, structure, and catalytic performance in hydrogenation of dimethyl oxalate to ethylene glycol. J. Catal. 2008, 257, 172–180.

[41]

Yin, A. Y.; Guo, X. Y.; Dai, W. L.; Fan, K. N. The nature of active copper species in Cu-HMS catalyst for hydrogenation of dimethyl oxalate to ethylene glycol: New insights on the synergetic effect between Cu0 and Cu+. J. Phys. Chem. C 2009, 113, 11003–11013.

[42]

Yuan, E. X.; Ni, P.; Zhuang, W. L.; Jian, R. Q.; Jian, P. M. Synergic catalysis by a CuO-like phase and Cu0 for anaerobic dehydrogenation of 2,3-butanediol. J. Catal. 2020, 382, 256–268.

[43]

Larkin, D. R. The vapor phase catalytic dehydrogenation of 1,6-hexanediol. J. Org. Chem. 1965, 30, 335–339.

[44]

Akashi, T.; Sato, S.; Takahashi, R.; Sodesawa, T.; Inui, K. Catalytic vapor-phase cyclization of 1,6-hexanediol into cyclopentanone. Catal. Commun. 2003, 4, 411–416.

[45]

Zhao, S.; Yue, H. R.; Zhao, Y. J.; Wang, B.; Geng, Y. C.; Lv, J.; Wang, S. P.; Gong, J. L.; Ma, X. B. Chemoselective synthesis of ethanol via hydrogenation of dimethyl oxalate on Cu/SiO2: Enhanced stability with boron dopant. J. Catal. 2013, 297, 142–150.

[46]

Simón, E.; Rosas, J. M.; Santos, A.; Romero, A. Coke formation in copper catalyst during cyclohexanol dehydrogenation: Kinetic deactivation model and catalyst characterization. Chem. Eng. J. 2013, 214, 119–128.

[47]

Pradhan, A. R.; Wu, J. F.; Jong, S. J.; Tsai, T. C.; Liu, S. B. An ex situ methodology for characterization of coke by TGA and 13C CP-MAS NMR spectroscopy. Appl. Catal. A:Gen. 1997, 165, 489–497.

[48]

Brands, D. S.; Poels, E. K.; Bliek, A. Ester hydrogenolysis over promoted Cu/SiO2 catalysts. Appl. Catal. A:Gen. 1999, 184, 279–289.

[49]

Liu, K.; Sun, Y. B.; Feng, J.; Liu, Y.; Zhu, J.; Han, C. J.; Chen, C. Z.; Bao, T. Y.; Cao, X. Q.; Zhao, X. M. et al. Intensified gas-phase hydrogenation of acetone to isopropanol catalyzed at metal–oxide interfacial sites. Chem. Eng. J. 2023, 454, 140059.

[50]

Wang, H.; Zhao, W. R.; Rehman, M. U.; Liu, W.; Xu, Y. X.; Huang, H. J.; Wang, S. P.; Zhao, Y. J.; Mei, D. H.; Ma, X. B. Copper phyllosilicate nanotube catalysts for the chemosynthesis of cyclohexane via hydrodeoxygenation of phenol. ACS Catal. 2022, 12, 4724–4736.

File
12274_2023_5891_MOESM1_ESM.pdf (1.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 30 April 2023
Revised: 01 June 2023
Accepted: 02 June 2023
Published: 31 July 2023
Issue date: October 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 22179038, 22272053, 22072043, 21773069, and 21703069), the Special Project for Peak Carbon Dioxide Emissions-Carbon Neutrality (No. 21DZ1206700) from the Shanghai Municipal Science and Technology Commission, and the Key Basic Research Project (No. 18JC1412100) from the Shanghai Municipal Science and Technology Commission.

Return