Journal Home > Volume 17 , Issue 3

Sodium metal is one of the ideal anodes for high-performance rechargeable batteries because of its high specific capacity (~ 1166 mAh·g−1), low reduction potential (−2.71 V compared to standard hydrogen electrodes), and low cost. However, the unstable solid electrolyte interphase, uncontrolled dendrite growth, and inevitable volume expansion hinder the practical application of sodium metal anodes. At present, many strategies have been developed to achieve stable sodium metal anodes. Here, we systematically summarize the latest strategies adopted in interface engineering, current collector design, and the emerging methods to improve the reaction kinetics of sodium deposition processes. First, the strategies of constructing protective layers are reviewed, including inorganic, organic, and mixed protective layers through electrolyte additives or pretreatments. Then, the classification of metal-based, carbon-based, and composite porous frames is discussed, including their function in reducing local deposition current density and the effect of introducing sodiophilic sites. Third, the recent progress of alloys, nanoparticles, and single atoms in improving Na deposition kinetics is systematically reviewed. Finally, the future research direction and the prospect of high-performance sodium metal batteries are proposed.


menu
Abstract
Full text
Outline
About this article

Achieving high-performance sodium metal anodes: From structural design to reaction kinetic improvement

Show Author's information Jing Xu1( )Jianhao Yang1Yashuang Qiu1Yang Jin1Tianyi Wang2( )Bing Sun3( )Guoxiu Wang3( )
Research Center of Grid Energy Storage and Battery Application, School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, China
College of Chemistry and Chemical Engineering Yangzhou University, Yangzhou 225009, China
Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia

Abstract

Sodium metal is one of the ideal anodes for high-performance rechargeable batteries because of its high specific capacity (~ 1166 mAh·g−1), low reduction potential (−2.71 V compared to standard hydrogen electrodes), and low cost. However, the unstable solid electrolyte interphase, uncontrolled dendrite growth, and inevitable volume expansion hinder the practical application of sodium metal anodes. At present, many strategies have been developed to achieve stable sodium metal anodes. Here, we systematically summarize the latest strategies adopted in interface engineering, current collector design, and the emerging methods to improve the reaction kinetics of sodium deposition processes. First, the strategies of constructing protective layers are reviewed, including inorganic, organic, and mixed protective layers through electrolyte additives or pretreatments. Then, the classification of metal-based, carbon-based, and composite porous frames is discussed, including their function in reducing local deposition current density and the effect of introducing sodiophilic sites. Third, the recent progress of alloys, nanoparticles, and single atoms in improving Na deposition kinetics is systematically reviewed. Finally, the future research direction and the prospect of high-performance sodium metal batteries are proposed.

Keywords: reaction kinetics, interface engineering, sodium metal anodes, current collector design, sodium deposition processes

References(185)

[1]

Chen, Y.; Wang, T. Y.; Tian, H. J.; Su, D. W.; Zhang, Q.; Wang, G. X. Advances in lithium-sulfur batteries: From academic research to commercial viability. Adv. Mater. 2021, 33, 2003666.

[2]

Lu, J.; Chen, Z. W.; Pan, F.; Cui, Y.; Amine, K. High-performance anode materials for rechargeable lithium-ion batteries. Electrochem. Energy Rev. 2018, 1, 35–53.

[3]

He, X.; Bresser, D.; Passerini, S.; Baakes, F.; Krewer, U.; Lopez, J.; Mallia, C. T.; Shao-Horn, Y.; Cekic-Laskovic, I.; Wiemers-Meyer, S. et al. The passivity of lithium electrodes in liquid electrolytes for secondary batteries. Nat. Rev. Mater. 2021, 6, 1036–1052.

[4]

Larcher, D.; Tarascon, J. M. Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 2015, 7, 19–29.

[5]

Blomgren, G. E. The development and future of lithium ion batteries. J. Electrochem. Soc. 2017, 164, A5019–A5025.

[6]

Cano, Z. P.; Banham, D.; Ye, S. Y.; Hintennach, A.; Lu, J.; Fowler, M.; Chen, Z. W. Batteries and fuel cells for emerging electric vehicle markets. Nat. Energy 2018, 3, 279–289.

[7]

Shen, X.; Zhang, X. Q.; Ding, F.; Huang, J. Q.; Xu, R.; Chen, X.; Yan, C.; Su, F. Y.; Chen, C. M.; Liu, X. J. et al. Advanced electrode materials in lithium batteries: Retrospect and prospect. Energy Mater. Adv. 2021, 2021, 1205324.

[8]

Li, X. R.; Su, H. P.; Ma, C.; Hou, K. M.; Wang, J.; Lin, H. Z.; Shang, Y. Z.; Liu, H. L. Optimizations of graphitic carbon/silicon hybrids for scalable preparation with high-performance lithium-ion storage. ACS Sustainable Chem. Eng. 2022, 10, 5590–5598.

[9]

Elia, G. A.; Ulissi, U.; Jeong, S.; Passerini, S.; Hassoun, J. Exceptional long-life performance of lithium-ion batteries using ionic liquid-based electrolytes. Energy Environ. Sci. 2016, 9, 3210–3220.

[10]

Luo, Z.; Qiu, X. J.; Liu, C.; Li, S.; Wang, C. W.; Zou, G. Q.; Hou, H. S.; Ji, X. B. Interfacial challenges towards stable Li metal anode. Nano Energy 2021, 79, 105507.

[11]

Xiang, J. W.; Yang, L. Y.; Yuan, L. X.; Yuan, K.; Zhang, Y.; Huang, Y. Y.; Lin, J.; Pan, F.; Huang, Y. H. Alkali-metal anodes: From lab to market. Joule 2019, 3, 2334–2363.

[12]

Lin, L.; Zhang, C. K.; Huang, Y. Z.; Zhuang, Y. P.; Fan, M. J.; Lin, J.; Wang, L. S.; Xie, Q. S.; Peng, D. L. Challenge and strategies in room temperature sodium-sulfur batteries: A comparison with lithium-sulfur batteries. Small 2022, 18, 2107368.

[13]

Lee, B.; Paek, E.; Mitlin, D.; Lee, S. W. Sodium metal anodes: Emerging solutions to dendrite growth. Chem. Rev. 2019, 119, 5416–5460.

[14]

Hao, H. C.; Hutter, T.; Boyce, B. L.; Watt, J.; Liu, P. C.; Mitlin, D. Review of multifunctional separators: Stabilizing the cathode and the anode for alkali (Li, Na, and K) metal-sulfur and selenium batteries. Chem. Rev. 2022, 122, 8053–8125.

[15]

Hwang, J. Y.; Myung, S. T.; Sun, Y. K. Recent progress in rechargeable potassium batteries. Adv. Funct. Mater. 2018, 28, 1802938.

[16]

Zhao, Y.; Adair, K. R.; Sun, X. L. Recent developments and insights into the understanding of Na metal anodes for Na-metal batteries. Energy Environ. Sci. 2018, 11, 2673–2695.

[17]

Chi, S. S.; Qi, X. G.; Hu, Y. S.; Fan, L. Z. 3D flexible carbon felt host for highly stable sodium metal anodes. Adv. Energy Mater. 2018, 8, 1702764.

[18]

Wang, H.; Matios, E.; Luo, J. M.; Li, W. Y. Combining theories and experiments to understand the sodium nucleation behavior towards safe sodium metal batteries. Chem. Soc. Rev. 2020, 49, 3783–3805.

[19]

Chu, C. X.; Li, R.; Cai, F. P.; Bai, Z. C.; Wang, Y. X.; Xu, X.; Wang, N. N.; Yang, J.; Dou, S. X. Recent advanced skeletons in sodium metal anodes. Energy Environ. Sci. 2021, 14, 4318–4340.

[20]

Luo, W.; Zhang, Y.; Xu, S. M.; Dai, J. Q.; Hitz, E.; Li, Y. J.; Yang, C. P.; Chen, C. J.; Liu, B. Y.; Hu, L. B. Encapsulation of metallic Na in an electrically conductive host with porous channels as a highly stable Na metal anode. Nano Lett. 2017, 17, 3792–3797.

[21]

Ruiz-Martínez, D.; Kovacs, A.; Gómez, R. Development of novel inorganic electrolytes for room temperature rechargeable sodium metal batteries. Energy Environ. Sci. 2017, 10, 1936–1941.

[22]

Zheng, J. M.; Chen, S. R.; Zhao, W. G.; Song, J. H.; Engelhard, M. H.; Zhang, J. G. Extremely stable sodium metal batteries enabled by localized high-concentration electrolytes. ACS Energy Lett. 2018, 3, 315–321.

[23]

Zeng, Z. Q.; Jiang, X. Y.; Li, R.; Yuan, D. D.; Ai, X. P.; Yang, H. X.; Cao, Y. L. A safer sodium-ion battery based on nonflammable organic phosphate electrolyte. Adv. Sci. 2016, 3, 1600066.

[24]

Xu, R.; Cheng, X. B.; Yan, C.; Zhang, X. Q.; Xiao, Y.; Zhao, C. Z.; Huang, J. Q.; Zhang, Q. Artificial interphases for highly stable lithium metal anode. Matter 2019, 1, 317–344.

[25]

Yan, C.; Cheng, X. B.; Tian, Y.; Chen, X.; Zhang, X. Q.; Li, W. J.; Huang, J. Q.; Zhang, Q. Dual-layered film protected lithium metal anode to enable dendrite-free lithium deposition. Adv. Mater. 2018, 30, 1707629.

[26]

Guo, X. F.; Yang, Z.; Zhu, Y. F.; Liu, X. H.; He, X. X.; Li, L.; Qiao, Y.; Chou, S. L. High-voltage, highly reversible sodium batteries enabled by fluorine-rich electrode/electrolyte interphases. Small Methods 2022, 6, 2200209.

[27]

Zhang, J.; Zhang, G. X.; Chen, Z. S.; Dai, H. L.; Hu, Q. M.; Liao, S. J.; Sun, S. H. Emerging applications of atomic layer deposition for lithium-sulfur and sodium-sulfur batteries. Energy Storage Mater. 2020, 26, 513–533.

[28]

Yu, F.; Du, L.; Zhang, G. X.; Su, F. M.; Wang, W. C.; Sun, S. H. Electrode engineering by atomic layer deposition for sodium-ion batteries: From traditional to advanced batteries. Adv. Funct. Mater. 2020, 30, 1906890.

[29]

Wang, T.; Hua, Y. B.; Xu, Z. W.; Yu, J. S. Recent advanced development of artificial interphase engineering for stable sodium metal anodes. Small 2022, 18, 2102250.

[30]

Zhang, Y.; Wang, C. W.; Pastel, G.; Kuang, Y. D.; Xie, H.; Li, Y. J.; Liu, B. Y.; Luo, W.; Chen, C. J.; Hu, L. B. 3D wettable framework for dendrite-free alkali metal anodes. Adv. Energy Mater. 2018, 8, 1800635.

[31]

Zhao, Y.; Yang, X. F.; Kuo, L. Y.; Kaghazchi, P.; Sun, Q.; Liang, J. N.; Wang, B. Q.; Lushington, A.; Li, R. Y.; Zhang, H. M. et al. High capacity, dendrite-free growth, and minimum volume change Na metal anode. Small 2018, 14, 1703717.

[32]

Xu, Y. L.; Menon, A. S.; Harks, P. P. R. M. L.; Hermes, D. C.; Haverkate, L. A.; Unnikrishnan, S.; Mulder, F. M. Honeycomb-like porous 3D nickel electrodeposition for stable Li and Na metal anodes. Energy Storage Mater. 2018, 12, 69–78.

[33]

Li, Z. P.; Zhu, K. J.; Liu, P.; Jiao, L. F. 3D confinement strategy for dendrite-free sodium metal batteries. Adv. Energy Mater. 2022, 12, 2100359.

[34]

Zheng, X. Y.; Gu, Z. Y.; Fu, J.; Wang, H. T.; Ye, X. L.; Huang, L. Q.; Liu, X. Y.; Wu, X. L.; Luo, W.; Huang, Y. H. Knocking down the kinetic barriers towards fast-charging and low-temperature sodium metal batteries. Energy Environ. Sci. 2021, 14, 4936–4947.

[35]

Ma, L. B.; Cui, J.; Yao, S. S.; Liu, X. M.; Luo, Y. S.; Shen, X. P.; Kim, J. K. Dendrite-free lithium metal and sodium metal batteries. Energy Storage Mater. 2020, 27, 522–554.

[36]

Jäckle, M.; Groß, A. Microscopic properties of lithium, sodium, and magnesium battery anode materials related to possible dendrite growth. J. Chem. Phys. 2014, 141, 174710.

[37]

Xiong, W. S.; Xia, Y.; Jiang, Y.; Qi, Y.; Sun, W. W.; He, D.; Liu, Y. M.; Zhao, X. Z. Highly conductive and robust three-dimensional host with excellent alkali metal infiltration boosts ultrastable lithium and sodium metal anodes. ACS Appl. Mater. Interfaces 2018, 10, 21254–21261.

[38]

Tian, H. Z.; Seh, Z. W.; Yan, K.; Fu, Z. H.; Tang, P.; Lu, Y. Y.; Zhang, R. F.; Legut, D.; Cui, Y.; Zhang, Q. F. Theoretical investigation of 2D layered materials as protective films for lithium and sodium metal anodes. Adv. Energy Mater. 2017, 7, 1602528.

[39]

Wang, J.; Zhang, J.; Cheng, S.; Yang, J.; Xi, Y. L.; Hou, X. G.; Xiao, Q. B.; Lin, H. Z. Long-life dendrite-free lithium metal electrode achieved by constructing a single metal atom anchored in a diffusion modulator layer. Nano Lett. 2021, 21, 3245–3253.

[40]

Wang, J.; Jia, L. J.; Duan, S. R.; Liu, H. T.; Xiao, Q. B.; Li, T.; Fan, H. Y.; Feng, K.; Yang, J.; Wang, Q. et al. Single atomic cobalt catalyst significantly accelerates lithium ion diffusion in high mass loading Li2S cathode. Energy Storage Mater. 2020, 28, 375–382.

[41]

Liu, H.; Cheng, X. B.; Jin, Z. H.; Zhang, R.; Wang, G. X.; Chen, L. Q.; Liu, Q. B.; Huang, J. Q.; Zhang, Q. Recent advances in understanding dendrite growth on alkali metal anodes. EnergyChem 2019, 1, 100003.

[42]

Bao, C. Y.; Wang, B.; Liu, P.; Wu, H.; Zhou, Y.; Wang, D. L.; Liu, H. K.; Dou, S. X. Solid electrolyte interphases on sodium metal anodes. Adv. Funct. Mater. 2020, 30, 2004891.

[43]

Liu, W.; Liu, P. C.; Mitlin, D. Review of emerging concepts in SEI analysis and artificial SEI membranes for lithium, sodium, and potassium metal battery anodes. Adv. Energy Mater. 2020, 10, 2002297.

[44]

Ding, J. F.; Xu, R.; Yan, C.; Li, B. Q.; Yuan, H.; Huang, J. Q. A review on the failure and regulation of solid electrolyte interphase in lithium batteries. J. Energy Chem. 2021, 59, 306–319.

[45]

Wang, Q. D.; Zhao, C. L.; Lv, X. H.; Lu, Y. X.; Lin, K.; Zhang, S. Q.; Kang, F. Y.; Hu, Y. S.; Li, B. H. Stabilizing a sodium-metal battery with the synergy effects of a sodiophilic matrix and fluorine-rich interface. J. Mater. Chem. A 2019, 7, 24857–24867.

[46]

Cui, C. Y.; Yang, C. Y.; Eidson, N.; Chen, J.; Han, F. D.; Chen, L.; Luo, C.; Wang, P. F.; Fan, X. L.; Wang, C. S. A highly reversible, dendrite-free lithium metal anode enabled by a lithium-fluoride-enriched interphase. Adv. Mater. 2020, 32, 1906427.

[47]

Hou, L. P.; Yao, N.; Xie, J.; Shi, P.; Sun, S. Y.; Jin, C. B.; Chen, C. M.; Liu, Q. B.; Li, B. Q.; Zhang, X. Q. et al. Modification of nitrate ion enables stable solid electrolyte interphase in lithium metal batteries. Angew. Chem., Int. Ed. 2022, 61, e202201406.

[48]

Gao, Y.; Hou, Z.; Zhou, R.; Wang, D. N.; Guo, X. Y.; Zhu, Y.; Zhang, B. A. Critical roles of mechanical properties of solid electrolyte interphase for potassium metal anodes. Adv. Funct. Mater. 2022, 32, 2112399.

[49]

Xu, M. Y.; Li, Y.; Ihsan-Ul-Haq, M.; Mubarak, N.; Liu, Z. J.; Wu, J. X.; Luo, Z. T.; Kim, J. K. NaF-rich solid electrolyte interphase for dendrite-free sodium metal batteries. Energy Storage Mater. 2022, 44, 477–486.

[50]

Yu, Q. P.; Lu, Q. W.; Qi, X. G.; Zhao, S. Y.; He, Y. B.; Liu, L. L.; Li, J.; Zhou, D.; Hu, Y. S.; Yang, Q. H. et al. Liquid electrolyte immobilized in compact polymer matrix for stable sodium metal anodes. Energy Storage Mater. 2019, 23, 610–616.

[51]

Seh, Z. W.; Sun, J.; Sun, Y. M.; Cui, Y. A highly reversible room-temperature sodium metal anode. ACS Cent. Sci. 2015, 1, 449–455.

[52]

Cao, R. G.; Mishra, K.; Li, X. L.; Qian, J. F.; Engelhard, M. H.; Bowden, M. E.; Han, K. S.; Mueller, K. T.; Henderson, W. A.; Zhang, J. G. Enabling room temperature sodium metal batteries. Nano Energy 2016, 30, 825–830.

[53]

Schafzahl, L.; Hanzu, I.; Wilkening, M.; Freunberger, S. A. An electrolyte for reversible cycling of sodium metal and intercalation compounds. ChemSusChem 2017, 10, 401–408.

[54]

Zheng, X. Y.; Gu, Z. Y.; Liu, X. Y.; Wang, Z. Q.; Wen, J. Y.; Wu, X. L.; Luo, W.; Huang, Y. H. Bridging the immiscibility of an all-fluoride fire extinguishant with highly-fluorinated electrolytes toward safe sodium metal batteries. Energy Environ. Sci. 2020, 13, 1788–1798.

[55]

Zhou, X. Z.; Zhang, Q.; Zhu, Z.; Cai, Y. C.; Li, H. X.; Li, F. J. Anion-reinforced solvation for a gradient inorganic-rich interphase enables high-rate and stable sodium batteries. Angew. Chem., Int. Ed. 2022, 61, e202205045.

[56]

Chen, X.; Shen, X.; Hou, T. Z.; Zhang, R.; Peng, H. J.; Zhang, Q. Ion-solvent chemistry-inspired cation-additive strategy to stabilize electrolytes for sodium-metal batteries. Chem 2020, 6, 2242–2256.

[57]

Zhou, J.; Wang, Y. Y.; Wang, J. W.; Liu, Y.; Li, Y. M.; Cheng, L. W.; Ding, Y.; Dong, S.; Zhu, Q. N.; Tang, M. Y. et al. Low-temperature and high-rate sodium metal batteries enabled by electrolyte chemistry. Energy Storage Mater. 2022, 50, 47–54.

[58]

Wang, H. P.; Zhu, C. L.; Liu, J. D.; Qi, S. H.; Wu, M. G.; Huang, J. D.; Wu, D. X.; Ma, J. M. Formation of NaF-rich solid electrolyte interphase on Na anode through additive-induced anion-enriched structure of Na+ solvation. Angew. Chem., Int. Ed. 2022, 61, e202208506.

[59]

Rakov, D. A.; Chen, F. F.; Ferdousi, S. A.; Li, H.; Pathirana, T.; Simonov, A. N.; Howlett, P. C.; Atkin, R.; Forsyth, M. Engineering high-energy-density sodium battery anodes for improved cycling with superconcentrated ionic-liquid electrolytes. Nat. Mater. 2020, 19, 1096–1101.

[60]

Choudhury, S.; Wei, S. Y.; Ozhabes, Y.; Gunceler, D.; Zachman, M. J.; Tu, Z. Y.; Shin, J. H.; Nath, P.; Agrawal, A.; Kourkoutis, L. F. et al. Designing solid–liquid interphases for sodium batteries. Nat. Commun. 2017, 8, 898.

[61]

Tian, H. J.; Shao, H. Z.; Chen, Y.; Fang, X. Q.; Xiong, P.; Sun, B.; Notten, P. H. L.; Wang, G. X. Ultra-stable sodium metal-iodine batteries enabled by an in-situ solid electrolyte interphase. Nano Energy 2019, 57, 692–702.

[62]

Shi, P. C.; Zhang, S. P.; Lu, G. X.; Wang, L. F.; Jiang, Y.; Liu, F. F.; Yao, Y.; Yang, H.; Ma, M. Z.; Ye, S. F. et al. Red phosphorous-derived protective layers with high ionic conductivity and mechanical strength on dendrite-free sodium and potassium metal anodes. Adv. Energy Mater. 2021, 11, 2003381.

[63]

Luo, Z.; Tao, S. S.; Tian, Y.; Xu, L. Q.; Wang, Y.; Cao, X. Y.; Wang, Y. P.; Deng, W. T.; Zou, G. Q.; Liu, H. et al. Robust artificial interlayer for columnar sodium metal anode. Nano Energy 2022, 97, 107203.

[64]

Kim, J.; Kim, J.; Jeong, J.; Park, J.; Park, C. Y.; Park, S.; Lim, S. G.; Lee, K. T.; Choi, N. S.; Byon, H. R. et al. Designing fluorine-free electrolytes for stable sodium metal anodes and high-power seawater batteries via SEI reconstruction. Energy Environ. Sci. 2022, 15, 4109–4118.

[65]

Luo, W.; Lin, C. F.; Zhao, O.; Noked, M.; Zhang, Y.; Rubloff, G. W.; Hu, L. B. Ultrathin surface coating enables the stable sodium metal anode. Adv. Energy Mater. 2017, 7, 1601526.

[66]

Jiang, F. Y.; Li, T. J.; Ju, P.; Sun, J. C.; Liu, C.; Li, Y. W.; Sun, X. Q.; Chen, C. C. Nano-SiO2 coating enabled uniform Na stripping/plating for dendrite-free and long-life sodium metal batteries. Nanoscale Adv. 2019, 1, 4989–4994.

[67]

Che, H. Y.; Chen, S. L.; Xie, Y. Y.; Wang, H.; Amine, K.; Liao, X. Z.; Ma, Z. F. Electrolyte design strategies and research progress for room-temperature sodium-ion batteries. Energy Environ. Sci. 2017, 10, 1075–1101.

[68]

Tikekar, M. D.; Archer, L. A.; Koch, D. L. Stability analysis of electrodeposition across a structured electrolyte with immobilized anions. J. Electrochem. Soc. 2014, 161, A847–A855.

[69]

Wei, S. Y.; Choudhury, S.; Xu, J.; Nath, P.; Tu, Z. Y.; Archer, L. A. Highly stable sodium batteries enabled by functional ionic polymer membranes. Adv. Mater. 2017, 29, 1605512.

[70]

Wu, Y. X.; Li, Y.; Wang, Y.; Liu, Q.; Chen, Q. G.; Chen, M. H. Advances and prospects of PVDF based polymer electrolytes. J. Energy Chem. 2022, 64, 62–84.

[71]

Li, L. G.; Wang, M. C.; Wang, J.; Ye, F. M.; Wang, S. F.; Xu, Y. N.; Liu, J. Y.; Xu, G. G.; Zhang, Y.; Zhang, Y. Y. et al. Asymmetric gel polymer electrolyte with high lithium ion conductivity for dendrite-free lithium metal batteries. J. Mater. Chem. A 2020, 8, 8033–8040.

[72]

Hou, Z.; Wang, W. H.; Yu, Y. K.; Zhao, X. X.; Chen, Q. W.; Zhao, L. F.; Di, Q.; Ju, H. X.; Quan, Z. W. Poly(vinylidene difluoride) coating on Cu current collector for high-performance Na metal anode. Energy Storage Mater. 2020, 24, 588–593.

[73]

Zhu, M.; Wang, G. Y.; Liu, X.; Guo, B. K.; Xu, G.; Huang, Z. Y.; Wu, M. H.; Liu, H. K.; Dou, S. X.; Wu, C. Dendrite-free sodium metal anodes enabled by a sodium benzenedithiolate-rich protection layer. Angew. Chem., Int. Ed. 2020, 59, 6596–6600.

[74]

Zhu, M.; Zhang, Y. J.; Yu, F. F.; Huang, Z. Y.; Zhang, Y.; Li, L. L.; Wang, G. Y.; Wen, L. Y.; Liu, H. K.; Dou, S. X. et al. Stable sodium metal anode enabled by an interface protection layer rich in organic sulfide salt. Nano Lett. 2021, 21, 619–627.

[75]

Lu, Q. Q.; Omar, A.; Ding, L.; Oswald, S.; Hantusch, M.; Giebeler, L.; Nielsch, K.; Mikhailova, D. A facile method to stabilize sodium metal anodes towards high-performance sodium batteries. J. Mater. Chem. A 2021, 9, 9038–9047.

[76]

Liu, K.; Pei, A.; Lee, H. R.; Kong, B.; Liu, N.; Lin, D. C.; Liu, Y. Y.; Liu, C.; Hsu, P. C.; Bao, Z. N. et al. Lithium metal anodes with an adaptive “solid–liquid” interfacial protective layer. J. Am. Chem. Soc. 2017, 139, 4815–4820.

[77]

Luo, J.; Fang, C. C.; Wu, N. L. High polarity poly(vinylidene difluoride) thin coating for dendrite-free and high-performance lithium metal anodes. Adv. Energy Mater. 2018, 8, 1701482.

[78]

Wang, C. X.; Fu, X. W.; Lin, S. N.; Liu, J.; Zhong, W. H. A protein-enabled protective film with functions of self-adapting and anion-anchoring for stabilizing lithium-metal batteries. J. Energy Chem. 2022, 64, 485–495.

[79]

Xu, R.; Zhang, X. Q.; Cheng, X. B.; Peng, H. J.; Zhao, C. Z.; Yan, C.; Huang, J. Q. Artificial soft-rigid protective layer for dendrite-free lithium metal anode. Adv. Funct. Mater. 2018, 28, 1705838.

[80]

Wang, S. Y.; Chen, Y. W.; Jie, Y. L.; Lang, S. Y.; Song, J. H.; Lei, Z. W.; Wang, S.; Ren, X. D.; Wang, D.; Li, X. L. et al. Stable sodium metal batteries via manipulation of electrolyte solvation structure. Small Methods 2020, 4, 1900856.

[81]

Zhao, Y.; Zheng, K.; Sun, X. L. Addressing interfacial issues in liquid-based and solid-state batteries by atomic and molecular layer deposition. Joule 2018, 2, 2583–2604.

[82]

Zhao, Y.; Goncharova, L. V.; Sun, Q.; Li, X.; Lushington, A.; Wang, B. Q.; Li, R. Y.; Dai, F.; Cai, M.; Sun, X. L. Robust metallic lithium anode protection by the molecular-layer-deposition technique. Small Methods 2018, 2, 1700417.

[83]

Zhao, Y.; Goncharova, L. V.; Zhang, Q.; Kaghazchi, P.; Sun, Q.; Lushington, A.; Wang, B. Q.; Li, R. Y.; Sun, X. L. Inorganic-organic coating via molecular layer deposition enables long life sodium metal anode. Nano Lett. 2017, 17, 5653–5659.

[84]

Zhang, S. M.; Zhao, Y.; Zhao, F. P.; Zhang, L.; Wang, C. H.; Li, X. N.; Liang, J. W.; Li, W. H.; Sun, Q.; Yu, C. et al. Gradiently sodiated alucone as an interfacial stabilizing strategy for solid-state Na metal batteries. Adv. Funct. Mater. 2020, 30, 2001118.

[85]

Lin, X. T.; Sun, Y. P.; Sun, Q.; Luo, J.; Zhao, Y.; Zhao, C. T.; Yang, X. F.; Wang, C. H.; Huo, H. Y.; Li, R. Y. et al. Reviving anode protection layer in Na-O2 batteries: Failure mechanism and resolving strategy. Adv. Energy Mater. 2021, 11, 2003789.

[86]

Kang, Q.; Li, Y.; Zhuang, Z. C.; Wang, D. S.; Zhi, C. Y.; Jiang, P. K.; Huang, X. Y. Dielectric polymer based electrolytes for high-performance all-solid-state lithium metal batteries. J. Energy Chem. 2022, 69, 194–204.

[87]

Kim, Y. J.; Lee, H.; Noh, H.; Lee, J.; Kim, S.; Ryou, M. H.; Lee, Y. M.; Kim, H. T. Enhancing the cycling stability of sodium metal electrodes by building an inorganic-organic composite protective layer. ACS Appl. Mater. Interfaces 2017, 9, 6000–6006.

[88]

Chen, Q. W.; Hou, Z.; Sun, Z. Z.; Pu, Y. Y.; Jiang, Y. B.; Zhao, Y.; He, H.; Zhang, T. X.; Huang, L. M. Polymer-inorganic composite protective layer for stable Na metal anodes. ACS Appl. Energy Mater. 2020, 3, 2900–2906.

[89]

Wang, S. Y.; Jie, Y. L.; Sun, Z. H.; Cai, W. B.; Chen, Y. W.; Huang, F. Y.; Liu, Y.; Li, X. P.; Du, R. Q.; Cao, R. G. et al. An implantable artificial protective layer enables stable sodium metal anodes. ACS Appl. Energy Mater. 2020, 3, 8688–8694.

[90]

Zhang, J. L.; Wang, S.; Wang, W. H.; Li, B. H. Stabilizing sodium metal anode through facile construction of organic–metal interface. J. Energy Chem. 2022, 66, 133–139.

[91]

Xia, X. M.; Du, C. F.; Zhong, S. E.; Jiang, Y.; Yu, H.; Sun, W. P.; Pan, H. G.; Rui, X. H.; Yu, Y. Homogeneous Na deposition enabling high-energy Na-metal batteries. Adv. Funct. Mater. 2022, 32, 2110280.

[92]

Xu, J.; Lawson, T.; Fan, H. B.; Su, D. W.; Wang, G. X. Updated metal compounds (MOFs, –S, –OH, –N, –C) used as cathode materials for lithium-sulfur batteries. Adv. Energy Mater. 2018, 8, 1702607.

[93]

Qian, J.; Li, Y.; Zhang, M. L.; Luo, R.; Wang, F. J.; Ye, Y. S.; Xing, Y.; Li, W. L.; Qu, W. J.; Wang, L. L. et al. Protecting lithium/sodium metal anode with metal-organic framework based compact and robust shield. Nano Energy 2019, 60, 866–874.

[94]

Li, H. H.; Zhang, H.; Wu, F. L.; Zarrabeitia, M.; Geiger, D.; Kaiser, U.; Varzi, A.; Passerini, S. Sodiophilic current collectors based on MOF-derived nanocomposites for anode-less Na-metal batteries. Adv. Energy Mater. 2022, 12, 2202293.

[95]

Liu, D. Z.; Li, Z.; Li, X.; Chen, X.; Li, Z.; Yuan, L. X.; Huang, Y. H. Stable room-temperature sodium-sulfur batteries in ether-based electrolytes enabled by the fluoroethylene carbonate additive. ACS Appl. Mater. Interfaces 2022, 14, 6658–6666.

[96]

Aurbach, D.; Markevich, E.; Salitra, G. High energy density rechargeable batteries based on Li metal anodes. The role of unique surface chemistry developed in solutions containing fluorinated organic co-solvents. J. Am. Chem. Soc. 2021, 143, 21161–21176.

[97]

Lee, Y.; Lee, J.; Lee, J.; Kim, K.; Cha, A. M.; Kang, S. J.; Wi, T.; Kang, S. J.; Lee, H. W.; Choi, N. S. Fluoroethylene carbonate-based electrolyte with 1 M sodium bis(fluorosulfonyl)imide enables high-performance sodium metal electrodes. ACS Appl. Mater. Interfaces 2018, 10, 15270–15280.

[98]

Li, Y. Q.; Yang, Y.; Lu, Y. X.; Zhou, Q.; Qi, X. G.; Meng, Q. S.; Rong, X. H.; Chen, L. Q.; Hu, Y. S. Ultralow-concentration electrolyte for Na-ion batteries. ACS Energy Lett. 2020, 5, 1156–1158.

[99]

Jiang, R.; Hong, L.; Liu, Y. C.; Wang, Y. D.; Patel, S.; Feng, X. Y.; Xiang, H. F. An acetamide additive stabilizing ultra-low concentration electrolyte for long-cycling and high-rate sodium metal battery. Energy Storage Mater. 2021, 42, 370–379.

[100]

Zhu, M.; Li, L. L.; Zhang, Y. J.; Wu, K.; Yu, F. F.; Huang, Z. Y.; Wang, G. Y.; Li, J. Y.; Wen, L. Y.; Liu, H. K. et al. An in-situ formed stable interface layer for high-performance sodium metal anode in a non-flammable electrolyte. Energy Storage Mater. 2021, 42, 145–153.

[101]

Wei, S. Y.; Xu, S. M.; Agrawral, A.; Choudhury, S.; Lu, Y. Y.; Tu, Z. Y.; Ma, L.; Archer, L. A. A stable room-temperature sodium-sulfur battery. Nat. Commun. 2016, 7, 11722.

[102]

Li, R. T.; Du, Y. X.; Li, Y. H.; He, Z. X.; Dai, L.; Wang, L.; Wu, X. W.; Zhang, J. J.; Yi, J. Alloying strategy for high-performance zinc metal anodes. ACS Energy Lett. 2023, 8, 457–476.

[103]

Ding, F.; Xu, W.; Graff, G. L.; Zhang, J.; Sushko, M. L.; Chen, X. L.; Shao, Y. Y.; Engelhard, M. H.; Nie, Z. M.; Xiao, J. et al. Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J. Am. Chem. Soc. 2013, 135, 4450–4456.

[104]

Chen, J. W.; Peng, Y.; Yin, Y.; Liu, M. Z.; Fang, Z.; Xie, Y. H.; Chen, B. W.; Cao, Y. J.; Xing, L. D.; Huang, J. H. et al. High energy density Na-metal batteries enabled by a tailored carbonate-based electrolyte. Energy Environ. Sci. 2022, 15, 3360–3368.

[105]

Zhou, B. X.; Bonakdarpour, A.; Stoševski, I.; Fang, B. Z.; Wilkinson, D. P. Modification of Cu current collectors for lithium metal batteries—A review. Prog. Mater. Sci. 2022, 130, 100996.

[106]

Zhang, C.; Lv, W.; Zhou, G. M.; Huang, Z. J.; Zhang, Y. B.; Lyu, R. Y.; Wu, H. L.; Yun, Q. B.; Kang, F. Y.; Yang, Q. H. Vertically aligned lithiophilic CuO nanosheets on a Cu collector to stabilize lithium deposition for lithium metal batteries. Adv. Energy Mater. 2018, 8, 1703404.

[107]

Wang, C. L.; Wang, H.; Matios, E.; Hu, X. F.; Li, W. Y. A chemically engineered porous copper matrix with cylindrical core–shell skeleton as a stable host for metallic sodium anodes. Adv. Funct. Mater. 2018, 28, 1802282.

[108]

Liu, S.; Tang, S.; Zhang, X. Y.; Wang, A. X.; Yang, Q. H.; Luo, J. Y. Porous Al current collector for dendrite-free Na metal anodes. Nano Lett. 2017, 17, 5862–5868.

[109]

Li, S. Y.; Liu, Q. L.; Zhou, J. J.; Pan, T.; Gao, L. N.; Zhang, W. D.; Fan, L.; Lu, Y. Y. Hierarchical Co3O4 nanofiber-carbon sheet skeleton with superior Na/Li-philic property enabling highly stable alkali metal batteries. Adv. Funct. Mater. 2019, 29, 1808847.

[110]

Wang, Z. H.; Zhang, X. L.; Zhou, S. Y.; Edstrom, K.; Strømme, M.; Nyholm, L. Lightweight, thin, and flexible silver nanopaper electrodes for high-capacity dendrite-free sodium metal anodes. Adv. Funct. Mater. 2018, 28, 1804038.

[111]

Yang, W.; Yang, W.; Dong, L. B.; Shao, G. J.; Wang, G. X.; Peng, X. W. Hierarchical ZnO nanorod arrays grown on copper foam as an advanced three-dimensional skeleton for dendrite-free sodium metal anodes. Nano Energy 2021, 80, 105563.

[112]

Liu, F. F.; Wang, L. F.; Ling, F. X.; Zhou, X. F.; Jiang, Y.; Yao, Y.; Yang, H.; Shao, Y.; Wu, X. J.; Rui, X. H. et al. Homogeneous metallic deposition regulated by porous framework and selenization interphase toward stable sodium/potassium anodes. Adv. Funct. Mater. 2022, 32, 2210166.

[113]

Chen, Q. L.; Liu, B.; Zhang, L.; Xie, Q. S.; Zhang, Y. G.; Lin, J.; Qu, B. H.; Wang, L. S.; Sa, B. S.; Peng, D. L. Sodiophilic Zn/SnO2 porous scaffold to stabilize sodium deposition for sodium metal batteries. Chem. Eng. J. 2021, 404, 126469.

[114]

Lu, X.; Luo, J. M.; Matios, E.; Zhang, Y. W.; Wang, H.; Hu, X. F.; Wang, C. L.; Wang, H. K.; Wang, J. Y.; Li, W. Y. Enabling high-performance sodium metal anodes via a sodiophilic structure constructed by hierarchical Sb2MoO6 microspheres. Nano Energy 2020, 69, 104446.

[115]

Zheng, X. Y.; Yang, W. J.; Wang, Z. Q.; Huang, L. Q.; Geng, S.; Wen, J. Y.; Luo, W.; Huang, Y. H. Embedding a percolated dual-conductive skeleton with high sodiophilicity toward stable sodium metal anodes. Nano Energy 2020, 69, 104387.

[116]

Wang, Y. X.; Dong, H.; Katyal, N.; Hao, H. C.; Liu, P. C.; Celio, H.; Henkelman, G.; Watt, J.; Mitlin, D. A sodium-antimony-telluride intermetallic allows sodium-metal cycling at 100% depth of discharge and as an anode-free metal battery. Adv. Mater. 2022, 34, 2106005.

[117]

Jin, Q. Z.; Lu, H. F.; Zhang, Z. L.; Xu, J.; Sun, B.; Jin, Y.; Jiang, K. Synergistic manipulation of Na+ flux and surface-preferred effect enabling high-areal-capacity and dendrite-free sodium metal battery. Adv. Sci. (Weinh.) 2022, 9, 2103845.

[118]

Deng, W.; Zhou, X. F.; Fang, Q. L.; Liu, Z. P. Microscale lithium metal stored inside cellular graphene scaffold toward advanced metallic lithium anodes. Adv. Energy Mater. 2018, 8, 1703152.

[119]

Wang, A. X.; Hu, X. F.; Tang, H. Q.; Zhang, C. Y.; Liu, S.; Yang, Y. W.; Yang, Q. H.; Luo, J. Y. Processable and moldable sodium-metal anodes. Angew. Chem., Int. Ed. 2017, 56, 11921–11926.

[120]

Sun, B.; Li, P.; Zhang, J. Q.; Wang, D.; Munroe, P.; Wang, C. Y.; Notten, P. H. L.; Wang, G. X. Dendrite-free sodium-metal anodes for high-energy sodium-metal batteries. Adv. Mater. 2018, 30, 1801334.

[121]

Liu, L.; Yin, Y. X.; Li, J. Y.; Li, N. W.; Zeng, X. X.; Ye, H.; Guo, Y. G.; Wan, L. J. Free-standing hollow carbon fibers as high-capacity containers for stable lithium metal anodes. Joule 2017, 1, 563–575.

[122]

Cao, Q. H.; Gao, H.; Gao, Y.; Yang, J.; Li, C.; Pu, J.; Du, J. J.; Yang, J. Y.; Cai, D. M.; Pan, Z. H. et al. Regulating dendrite-free zinc deposition by 3D zincopilic nitrogen-doped vertical graphene for high-performance flexible Zn-ion batteries. Adv. Funct. Mater. 2021, 31, 2103922.

[123]

Xu, Z.; Guo, Z. Y.; Madhu, R.; Xie, F.; Chen, R. X.; Wang, J.; Tebyetekerwa, M.; Hu, Y. S.; Titirici, M. M. Homogenous metallic deposition regulated by defect-rich skeletons for sodium metal batteries. Energy Environ. Sci. 2021, 14, 6381–6393.

[124]

Yang, S. J.; Xu, S. S.; Tong, J. Y.; Ding, D. H.; Wang, G.; Chen, R. Z.; Jin, P. K.; Wang, X. C. Overlooked role of nitrogen dopant in carbon catalysts for peroxymonosulfate activation: Intrinsic defects or extrinsic defects. Appl. Catal. B: Environ. 2021, 295, 120291.

[125]

Mubarak, N.; Rehman, F.; Ihsan-Ul-Haq, M.; Xu, M. Y.; Li, Y.; Zhao, Y. H.; Luo, Z. T.; Huang, B. L.; Kim, J. K. Highly sodiophilic, defect-rich, lignin-derived skeletal carbon nanofiber host for sodium metal batteries. Adv. Energy Mater. 2022, 12, 2103904.

[126]

Tao, L.; Hu, A. Y.; Mu, L. Q.; Kautz, D. J.; Xu, Z. R.; Feng, Y. M.; Huang, H. B.; Lin, F. A self-sodiophilic carbon host promotes the cyclability of sodium anode. Adv. Funct. Mater. 2021, 31, 2007556.

[127]

Li, T. J.; Sun, J. C.; Gao, S. Z.; Xiao, B.; Cheng, J. B.; Zhou, Y. L.; Sun, X. Q.; Jiang, F. Y.; Yan, Z. H.; Xiong, S. L. Superior sodium metal anodes enabled by sodiophilic carbonized coconut framework with 3D tubular structure. Adv. Energy Mater. 2021, 11, 2003699.

[128]

Liu, B.; Lei, D. N.; Wang, J.; Zhang, Q. F.; Zhang, Y. G.; He, W.; Zheng, H. F.; Sa, B. S.; Xie, Q. S.; Peng, D. L. et al. 3D uniform nitrogen-doped carbon skeleton for ultra-stable sodium metal anode. Nano Res. 2020, 13, 2136–2142.

[129]

Geng, M. N.; Han, D. M.; Huang, Z. H.; Wang, S. J.; Xiao, M.; Zhang, S. C.; Sun, L. Y.; Huang, S.; Meng, Y. Z. A stable anode-free Na-S full cell at room temperature. Energy Storage Mater. 2022, 52, 230–237.

[130]

Liu, P.; Yi, H. T.; Zheng, S. Y.; Li, Z. P.; Zhu, K. J.; Sun, Z. Q.; Jin, T.; Jiao, L. F. Regulating deposition behavior of sodium ions for dendrite-free sodium-metal anode. Adv. Energy Mater. 2021, 11, 2101976.

[131]

Cui, X. Y.; Wang, Y. J.; Wu, H. D.; Lin, X. D.; Tang, S.; Xu, P.; Liao, H. G.; Zheng, M. S.; Dong, Q. F. A carbon foam with sodiophilic surface for highly reversible, ultra-long cycle sodium metal anode. Adv. Sci. 2021, 8, 2003178.

[132]

Zheng, X. Y.; Li, P.; Cao, Z.; Luo, W.; Sun, F. Z.; Wang, Z. Q.; Ding, B.; Wang, G. X.; Huang, Y. H. Boosting the reversibility of sodium metal anode via heteroatom-doped hollow carbon fibers. Small 2019, 15, 1902688.

[133]

Xiao, J.; Xiao, N.; Li, K.; Zhang, L. P.; Ma, X. Q.; Li, Y.; Leng, C. Y.; Qiu, J. S. Sodium metal anodes with self-correction function based on fluorine-superdoped CNTs/cellulose nanofibrils composite paper. Adv. Funct. Mater. 2022, 32, 2111133.

[134]

Wang, H.; Matios, E.; Wang, C. L.; Luo, J. M.; Lu, X.; Hu, X. F.; Zhang, Y. W.; Li, W. Y. Tin nanoparticles embedded in a carbon buffer layer as preferential nucleation sites for stable sodium metal anodes. J. Mater. Chem. A 2019, 7, 23747–23755.

[135]

Yue, L.; Qi, Y. R.; Niu, Y. B.; Bao, S. J.; Xu, M. W. Low-barrier, dendrite-free, and stable Na plating/stripping enabled by gradient sodiophilic carbon skeleton. Adv. Energy Mater. 2021, 11, 2102497.

[136]

Wu, J. X.; Zou, P. C.; Ihsan-Ul-Haq, M.; Mubarak, N.; Susca, A.; Li, B. H.; Ciucci, F.; Kim, J. K. Sodiophilically graded gold coating on carbon skeletons for highly stable sodium metal anodes. Small 2020, 16, 2003815.

[137]

Sun, Z. W.; Jin, H. C.; Ye, Y. D.; Xie, H. Y.; Jia, W. S.; Jin, S.; Ji, H. X. Guiding sodium deposition through a sodiophobic–sodiophilic gradient interfacial layer for highly stable sodium metal anodes. ACS Appl. Energy Mater. 2021, 4, 2724–2731.

[138]

Xu, Y.; Wang, C. L.; Matios, E.; Luo, J. M.; Hu, X. F.; Yue, Q.; Kang, Y. J.; Li, W. Y. Sodium deposition with a controlled location and orientation for dendrite-free sodium metal batteries. Adv. Energy Mater. 2020, 10, 2002308.

[139]

Zhang, Z. G.; Li, L.; Zhu, Z. C.; Fan, Y. T.; Lin, X. P.; Gu, Y. F.; He, S.; Li, Q. H. Homogenous sdiophilic MoS2/nitrogen-doped carbon nanofibers to stabilize sodium deposition for sodium metal batteries. Energy Storage Mater. 2022, 53, 363–370.

[140]

Li, Z.; Wang, C. L.; Ling, F. X.; Wang, L. F.; Bai, R. L.; Shao, Y.; Chen, Q. W.; Yuan, H.; Yu, Y.; Tan, Y. Q. Room-temperature sodium-sulfur batteries: Rules for catalyst selection and electrode design. Adv. Mater. 2022, 34, 2204214.

[141]

Lai, X. J.; Xu, Z. M.; Yang, X. F.; Ke, Q. J.; Xu, Q. S.; Wang, Z. S.; Lu, Y. Y.; Qiu, Y. C. Long cycle Life and high-rate sodium metal batteries enabled by regulating 3D frameworks with artificial solid-state interphases. Adv. Energy Mater. 2022, 12, 2103540.

[142]

Zhuang, Y. P.; Deng, D. Y.; Lin, L.; Liu, B.; Qu, S. S.; Li, S. C.; Zhang, Y. G.; Sa, B. S.; Wang, L. S.; Wei, Q. L. et al. Ion-conductive gradient sodiophilic 3D scaffold induced homogeneous sodium deposition for highly stable sodium metal batteries. Nano Energy 2022, 97, 107202.

[143]

Ma, L. B.; Luo, D.; Li, Y. T.; Chen, X.; Wu, K. L.; Xu, J.; Cao, Y. J.; Luo, M. C.; Manke, I.; Lai, F. L. et al. Architecture design of MXene-based materials for sodium-chemistry based batteries. Nano Energy 2022, 101, 107590.

[144]

He, X.; Jin, S.; Miao, L. C.; Cai, Y. C.; Hou, Y. P.; Li, H. X.; Zhang, K.; Yan, Z. H.; Chen, J. A 3D hydroxylated MXene/carbon nanotubes composite as a scaffold for dendrite-free sodium-metal electrodes. Angew. Chem., Int. Ed. 2020, 59, 16705–16711.

[145]

Luo, J. M.; Wang, C. L.; Wang, H.; Hu, X. F.; Matios, E.; Lu, X.; Zhang, W. K.; Tao, X. Y.; Li, W. Y. Pillared MXene with ultralarge interlayer spacing as a stable matrix for high performance sodium metal anodes. Adv. Funct. Mater. 2019, 29, 1805946.

[146]

Bao, C. Y.; Wang, J. H.; Wang, B.; Sun, J. G.; He, L. C.; Pan, Z. H.; Jiang, Y. P.; Wang, D. L.; Liu, X. M.; Dou, S. X. et al. 3D sodiophilic Ti3C2 MXene@g-C3N4 hetero-interphase raises the stability of sodium metal anodes. ACS Nano 2022, 16, 17197–17209.

[147]

Ma, P.; Fang, D. L.; Liu, Y. L.; Shang, Y.; Shi, Y. M.; Yang, H. Y. MXene-based materials for electrochemical sodium-ion storage. Adv. Sci. 2021, 8, 2003185.

[148]

Fang, Y. Z.; Lian, R. Q.; Li, H. P.; Zhang, Y.; Gong, Z.; Zhu, K.; Ye, K.; Yan, J.; Wang, G. L.; Gao, Y. et al. Induction of planar sodium growth on MXene (Ti3C2Tx)-modified carbon cloth hosts for flexible sodium metal anodes. ACS Nano 2020, 14, 8744–8753.

[149]

Luo, J. M.; Lu, X.; Matios, E.; Wang, C. L.; Wang, H.; Zhang, Y. W.; Hu, X. F.; Li, W. Y. Tunable MXene-derived 1D/2D hybrid nanoarchitectures as a stable matrix for dendrite-free and ultrahigh capacity sodium metal anode. Nano Lett. 2020, 20, 7700–7708.

[150]

Wang, S. Y.; Liu, Y.; Lu, K.; Cai, W. B.; Jie, Y. L.; Huang, F. Y.; Li, X. P.; Cao, R. G.; Jiao, S. H. Engineering rGO/MXene hybrid film as an anode host for stable sodium-metal batteries. Energy Fuels 2021, 35, 4587–4595.

[151]

He, X.; Ni, Y. X.; Li, Y. X.; Sun, H. X.; Lu, Y.; Li, H. X.; Yan, Z. H.; Zhang, K.; Chen, J. An MXene-based metal anode with stepped sodiophilic gradient structure enables a large current density for rechargeable Na-O2 batteries. Adv. Mater. 2022, 34, 2106565.

[152]

Wang, Z. X.; Huang, Z. X.; Wang, H.; Li, W. D.; Wang, B. Y.; Xu, J. M.; Xu, T. T.; Zang, J. H.; Kong, D. Z.; Li, X. J. et al. 3D-printed sodiophilic V2CTx/rGO-CNT MXene microgrid aerogel for stable Na metal anode with high areal capacity. ACS Nano 2022, 16, 9105–9116.

[153]

Bai, M.; Tang, X. Y.; Liu, S. Y.; Wang, H. L.; Liu, Y. J.; Shao, A. H.; Zhang, M.; Wang, Z. Q.; Ma, Y. An anodeless, mechanically flexible and energy/power dense sodium battery prototype. Energy Environ. Sci. 2022, 15, 4686–4699.

[154]

Zhao, Q.; Stalin, S.; Archer, L. A. Stabilizing metal battery anodes through the design of solid electrolyte interphases. Joule 2021, 5, 1119–1142.

[155]

Liu, H.; Cheng, X. B.; Huang, J. Q.; Kaskel, S.; Chou, S. L.; Park, H. S.; Zhang, Q. Alloy anodes for rechargeable alkali-metal batteries: Progress and challenge. ACS Mater. Lett. 2019, 1, 217–229.

[156]

Jhang, L. J.; Wang, D. W.; Silver, A.; Li, X. L.; Reed, D.; Wang, D. H. Stable all-solid-state sodium-sulfur batteries for low-temperature operation enabled by sodium alloy anode and confined sulfur cathode. Nano Energy 2023, 105, 107995.

[157]

Choudhury, S.; Tu, Z. Y.; Stalin, S.; Vu, D.; Fawole, K.; Gunceler, D.; Sundararaman, R.; Archer, L. A. Electroless formation of hybrid lithium anodes for fast interfacial ion transport. Angew. Chem., Int. Ed. 2017, 56, 13070–13077.

[158]

Tang, S.; Qiu, Z.; Wang, X. Y.; Gu, Y.; Zhang, X. G.; Wang, W. W.; Yan, J. W.; Zheng, M. S.; Dong, Q. F.; Mao, B. W. A room-temperature sodium metal anode enabled by a sodiophilic layer. Nano Energy 2018, 48, 101–106.

[159]

Tu, Z. Y.; Choudhury, S.; Zachman, M. J.; Wei, S. Y.; Zhang, K. H.; Kourkoutis, L. F.; Archer, L. A. Fast ion transport at solid–solid interfaces in hybrid battery anodes. Nat. Energy 2018, 3, 310–316.

[160]

Xu, Z. X.; Yang, J.; Zhang, T.; Sun, L. M.; Nuli, Y.; Wang, J. L.; Hirano, S. I. Stable Na metal anode enabled by a reinforced multistructural SEI layer. Adv. Funct. Mater. 2019, 29, 1901924.

[161]

Kumar, V.; Eng, A. Y. S.; Wang, Y.; Nguyen, D. T.; Ng, M. F.; Seh, Z. W. An artificial metal-alloy interphase for high-rate and long-life sodium-sulfur batteries. Energy Storage Mater. 2020, 29, 1–8.

[162]

Wang, L.; Shang, J.; Huang, Q. Y.; Hu, H.; Zhang, Y. Q.; Xie, C.; Luo, Y. F.; Gao, Y.; Wang, H. X.; Zheng, Z. J. Smoothing the sodium-metal anode with a self-regulating alloy interface for high-energy and sustainable sodium-metal batteries. Adv. Mater. 2021, 33, 2102802.

[163]

Deng, Y.; Zheng, J. X.; Zhao, Q.; Yin, J. D.; Biswal, P.; Hibi, Y.; Jin, S.; Archer, L. A. Highly reversible sodium metal battery anodes via alloying heterointerfaces. Small 2022, 18, 2203409.

[164]

Wang, H. W.; Gu, X. K.; Zheng, X. S.; Pan, H. B.; Zhu, J. F.; Chen, S.; Cao, L. N.; Li, W. X.; Lu, J. L. Disentangling the size-dependent geometric and electronic effects of palladium nanocatalysts beyond selectivity. Sci. Adv. 2019, 5, eaat6413.

[165]

Hu, X. F.; Matios, E.; Zhang, Y. W.; Wang, C. L.; Luo, J. M.; Li, W. Y. Enabling stable sodium metal cycling by sodiophilic interphase in a polymer electrolyte system. J. Energy Chem. 2021, 63, 305–311.

[166]

Tang, S.; Zhang, Y. Y.; Zhang, X. G.; Li, J. T.; Wang, X. Y.; Yan, J. W.; Wu, D. Y.; Zheng, M. S.; Dong, Q. F.; Mao, B. W. Stable Na plating and stripping electrochemistry promoted by in situ construction of an alloy-based sodiophilic interphase. Adv. Mater. 2019, 31, 1807495.

[167]

Jiang, Y.; Yang, Y.; Ling, F. X.; Lu, G. X.; Huang, F. Y.; Tao, X. Y.; Wu, S. F.; Cheng, X. L.; Liu, F. F.; Li, D. J. et al. Artificial heterogeneous interphase layer with boosted ion affinity and diffusion for Na/K-metal batteries. Adv. Mater. 2022, 34, 2109439.

[168]

Xia, X. M.; Xu, S. T.; Tang, F.; Yao, Y.; Wang, L. F.; Liu, L.; He, S. N.; Yang, Y. X.; Sun, W. P.; Xu, C. et al. A multifunctional interphase layer enabling superior sodium-metal batteries under ambient temperature and −40 °C. Adv. Mater. 2023, 35, 2209511.

[169]

Jin, X.; Zhao, Y.; Shen, Z. H.; Pu, J.; Xu, X. X.; Zhong, C. L.; Zhang, S.; Li, J. C.; Zhang, H. G. Interfacial design principle of sodiophilicity-regulated interlayer deposition in a sandwiched sodium metal anode. Energy Storage Mater. 2020, 31, 221–229.

[170]

Wang, G. Y.; Zhang, Y.; Guo, B. K.; Tang, L.; Xu, G.; Zhang, Y. J.; Wu, M. H.; Liu, H. K.; Dou, S. X.; Wu, C. Core–shell C@Sb nanoparticles as a nucleation layer for high-performance sodium metal anodes. Nano Lett. 2020, 20, 4464–4471.

[171]

Xie, Y. Y.; Hu, J. X.; Han, Z. X.; Wang, T. S.; Zheng, J. Q.; Gan, L.; Lai, Y. Q.; Zhang, Z. A. Encapsulating sodium deposition into carbon rhombic dodecahedron guided by sodiophilic sites for dendrite-free Na metal batteries. Energy Storage Mater. 2020, 30, 1–8.

[172]

Lee, K.; Lee, Y. J.; Lee, M. J.; Han, J.; Lim, J.; Ryu, K.; Yoon, H.; Kim, B. H.; Kim, B. J.; Lee, S. W. A 3D hierarchical host with enhanced sodiophilicity enabling anode-free sodium-metal batteries. Adv. Mater. 2022, 34, 2109767.

[173]

Wang, G. Y.; Yu, F. F.; Zhang, Y.; Zhang, Y. J.; Zhu, M.; Xu, G.; Wu, M. H.; Liu, H. K.; Dou, S. X.; Wu, C. 2D Sn/C freestanding frameworks as a robust nucleation layer for highly stable sodium metal anodes with a high utilization. Nano Energy 2021, 79, 105457.

[174]

Xu, Y.; Matios, E.; Luo, J. M.; Li, T.; Lu, X.; Jiang, S. H.; Yue, Q.; Li, W. Y.; Kang, Y. J. SnO2 quantum dots enabled site-directed sodium deposition for stable sodium metal batteries. Nano Lett. 2021, 21, 816–822.

[175]

Zhao, L. F.; Hu, Z.; Huang, Z. Y.; Tao, Y.; Lai, W. H.; Zhao, A. L.; Liu, Q. N.; Peng, J.; Lei, Y. J.; Wang, Y. X. et al. In situ plating of Mg sodiophilic seeds and evolving sodium fluoride protective layers for superior sodium metal anodes. Adv. Energy Mater. 2022, 12, 2200990.

[176]

Bai, M.; Zhang, K. R.; Du, D.; Tang, X. Y.; Liu, Y. J.; Wang, H. L.; Zhang, M.; Liu, S. Y.; Ma, Y. SnSb binary alloy induced heterogeneous nucleation within the confined nanospace: Toward dendrite-free, flexible and energy/power dense sodium metal batteries. Energy Storage Mater. 2021, 42, 219–230.

[177]

Zhai, P. B.; Wang, T. S.; Yang, W. W.; Cui, S. Q.; Zhang, P.; Nie, A. M.; Zhang, Q. F.; Gong, Y. J. Uniform lithium deposition assisted by single-atom doping toward high-performance lithium metal anodes. Adv. Energy Mater. 2019, 9, 1804019.

[178]

Wang, A. Q.; Li, J.; Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2018, 2, 65–81.

[179]

Zhang, J.; You, C. Y.; Lin, H. Z.; Wang, J. Electrochemical kinetic modulators in lithium-sulfur batteries: From defect-rich catalysts to single atomic catalysts. Energy Environ. Mater. 2022, 5, 731–750.

[180]

Wang, J.; Jia, L. J.; Zhong, J.; Xiao, Q. B.; Wang, C.; Zang, K. T.; Liu, H. T.; Zheng, H. C.; Luo, J.; Yang, J. et al. Single-atom catalyst boosts electrochemical conversion reactions in batteries. Energy Storage Mater. 2019, 18, 246–252.

[181]

Yang, T. Z.; Qian, T.; Sun, Y. W.; Zhong, J.; Rosei, F.; Yan, C. L. Mega high utilization of sodium metal anodes enabled by single zinc atom sites. Nano Lett. 2019, 19, 7827–7835.

[182]

Hu, X. F.; Joo, P. H.; Wang, H.; Matios, E.; Wang, C. L.; Luo, J. M.; Lu, X.; Yang, K. S.; Li, W. Y. Nip the sodium dendrites in the bud on planar doped graphene in liquid/gel electrolytes. Adv. Funct. Mater. 2019, 29, 1807974.

[183]

Li, Y. J.; Xu, P.; Mou, J. R.; Xue, S. F.; Huang, S. M.; Hu, J. H.; Dong, Q. F.; Yang, C. H.; Liu, M. L. Single cobalt atoms decorated N-doped carbon polyhedron enabled dendrite-free sodium metal anode. Small Methods 2021, 5, 2100833.

[184]

Zhang, E. H.; Hu, X.; Meng, L. Z.; Qiu, M.; Chen, J. X.; Liu, Y. J.; Liu, G. Y.; Zhuang, Z. C.; Zheng, X. B.; Zheng, L. R. et al. Single-atom yttrium engineering Janus electrode for rechargeable Na-S batteries. J. Am. Chem. Soc. 2022, 144, 18995–19007.

[185]

Li, X.; Ye, W. B.; Xu, P.; Huang, H. H.; Fan, J. M.; Yuan, R. M.; Zheng, M. S.; Wang, M. S.; Dong, Q. F. An encapsulation-based sodium storage via Zn-single-atom implanted carbon nanotubes. Adv. Mater. 2022, 34, 2202898.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 27 April 2023
Revised: 30 May 2023
Accepted: 02 June 2023
Published: 06 July 2023
Issue date: March 2024

Copyright

© The Author(s) 2023

Acknowledgements

Acknowledgements

J. X. acknowledges financial supports from the National Natural Science Foundation of China (No. 52002358), high-level talent internationalization training project of Henan province, and scientific and technological activities of Henan Province for scholars with overseas study experience (No. 002004025). G. X. W. and B. S. would like to thank the support of the Australian Research Council (ARC) through the ARC Discovery Project (No. DP210101389) and ARC Future Fellowship (No. FT220100561).

Rights and permissions

Copyright: © 2023 by the author(s). This article is an open access article distributed under Creative Commons Attribution License (CC BY 4.0), visit https://creativecommons.org/licenses/by/4.0/.

Return