AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Accelerating solar driven CO2 reduction via sulfur-doping boosted water dissociation and proton transfer

Ke Yan1,§Liang Chen2,§Yangguang Hu3Ting Wang1Cong Chen1Chao Gao3Youju Huang2Benxia Li1( )
School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China

§ Ke Yan and Liang Chen contributed equally to this work.

Show Author Information

Graphical Abstract

The integration of oxygen vacancies (OV), doped S sites and photothermal effect in S-BiOCl greatly promotes CO2 photoreduction through facilitating reactant adsorption, boosting proton provision and accelerating reaction kinetics.

Abstract

Exploring efficient photocatalysts for solar driven CO2 reduction with water (H2O) as a proton donor is highly imperative but remains a great challenge because the synchronous enhancement of CO2 activation, H2O dissociation and proton transfer is hardly achieved on a photocatalyst. Particularly, the sluggish H2O dissociation impedes the photocatalytic CO2 reduction reaction involving multiple proton–electron coupling transfer processes. Herein, a sulfur-doped BiOCl (S-BiOCl) photocatalyst with abundant oxygen vacancies (OV) is developed, which exhibits broadband-light harvesting across solar spectrum and distinct photothermal effect due to photochromism. For photocatalytic CO2 reduction with H2O in a gas–solid system, the high CO yield of 49.76 μmol·gcat−1·h−1 with 100% selectivity is achieved over the S-BiOCl catalyst under a simulated sunlight. The H2O-assisted CO2 reduction reaction on S-BiOCl catalyst is triggered by photocatalysis and the photothermal heating further enhances the reaction rate. The kinetic isotope experiments indicate that the sluggish H2O dissociation affects the whole photocatalytic CO2 reduction process. The presence of oxygen vacancies promotes the adsorption and activation of H2O and CO2, and the doped S sites play a crucial role in boosting H2O dissociation and accelerating the dynamic migration of hydrogen species. As a result, the ingenious integration of OV defects, S sites and photothermal effect in S-BiOCl catalyst conjointly contributes to the significant improvement in photocatalytic CO2 reduction performance.

Electronic Supplementary Material

Download File(s)
12274_2023_5888_MOESM1_ESM.pdf (2.2 MB)

References

[1]

Gao, W. L.; Liang, S. Y.; Wang, R. J.; Jiang, Q.; Zhang, Y.; Zheng, Q. W.; Xie, B. Q.; Toe, C. Y.; Zhu, X. C.; Wang, J. Y. et al. Industrial carbon dioxide capture and utilization: State of the art and future challenges. Chem. Soc. Rev. 2020, 49, 8584–8686.

[2]

Schäppi, R.; Rutz, D.; Dähler, F.; Muroyama, A.; Haueter, P.; Lilliestam, J.; Patt, A.; Furler, P.; Steinfeld, A. Drop-in fuels from sunlight and air. Nature 2022, 601, 63–68.

[3]

Lin, H. W.; Luo, S. Q.; Zhang, H. B.; Ye, J. H. Toward solar-driven carbon recycling. Joule 2022, 6, 294–314.

[4]

Gong, E.; Ali, S.; Hiragond, C. B.; Kim, H. S.; Powar, N. S.; Kim, D.; Kim, H.; In, S. I. Solar fuels: Research and development strategies to accelerate photocatalytic CO2 conversion into hydrocarbon fuels. Energy Environ. Sci. 2022, 15, 880–937.

[5]

Fu, J. W.; Jiang, K. X.; Qiu, X. Q.; Yu, J. G.; Liu, M. Product selectivity of photocatalytic CO2 reduction reactions. Mater. Today 2020, 32, 222–243.

[6]

Zhou, J.; Li, J.; Kan, L.; Zhang, L.; Huang, Q.; Yan, Y.; Chen, Y. F.; Liu, J.; Li, S. L.; Lan, Y. Q. Linking oxidative and reductive clusters to prepare crystalline porous catalysts for photocatalytic CO2 reduction with H2O. Nat. Commun. 2022, 13, 4681.

[7]

Wang, X. Y.; Wang, Y. S.; Gao, M. C.; Shen, J. N.; Pu, X. P.; Zhang, Z. Z.; Lin, H. X.; Wang, X. X. BiVO4/Bi4Ti3O12 heterojunction enabling efficient photocatalytic reduction of CO2 with H2O to CH3OH and CO. Appl. Catal. B: Environ. 2020, 270, 118876.

[8]

Wang, Q. L.; Miao, Z. R.; Zhang, Y. F.; Yan, T. J.; Meng, L. P.; Wang, X. X. Photocatalytic reduction of CO2 with H2O mediated by Ce-tailored bismuth oxybromide surface frustrated Lewis pairs. ACS Catal. 2022, 12, 4016–4025.

[9]

Yin, S. K.; Zhao, X. X.; Jiang, E. H.; Yan, Y.; Zhou, P.; Huo, P. W. Boosting water decomposition by sulfur vacancies for efficient CO2 photoreduction. Energy Environ. Sci. 2022, 15, 1556–1562.

[10]

Zhu, J. C.; Shao, W. W.; Li, X. D.; Jiao, X. C.; Zhu, J. F.; Sun, Y. F.; Xie, Y. Asymmetric triple-atom sites confined in ternary oxide enabling selective CO2 photothermal reduction to acetate. J. Am. Chem. Soc. 2021, 143, 18233–18241.

[11]

Ma, M. Z.; Huang, Z. A.; Wang, R.; Zhang, R. Y.; Yang, T.; Rao, Z. Q.; Fa, W. J.; Zhang, F. Y.; Cao, Y. H.; Yu, S. et al. Targeted H2O activation to manipulate the selective photocatalytic reduction of CO2 to CH3OH over carbon nitride-supported cobalt sulfide. Green Chem. 2022, 24, 8791–8799.

[12]

Chen, S. Y.; Li, X. Q.; Kao, C. W.; Luo, T.; Chen, K. J.; Fu, J. W.; Ma, C.; Li, H. M.; Li, M.; Chan, T. S. et al. Unveiling the proton-feeding effect in sulfur-doped Fe-N-C single-atom catalyst for enhanced CO2 electroreduction. Angew. Chem. Int. Ed. 2022, 61, e202206233.

[13]

Zheng, W. Z.; Wang, D. S.; Cui, W. J.; Sang, X. H.; Qin, X. T.; Zhao, Z. L.; Li, Z. J.; Yang, B.; Zhong, M.; Lei, L. C. et al. Accelerating industrial-level CO2 electroreduction kinetics on isolated zinc centers via sulfur-boosted bicarbonate dissociation. Energy Environ. Sci. 2023, 16, 1007–1015.

[14]

Wang, M.; Liu, S.; Chen, B.; Huang, M. J.; Peng, C. Co-regulation of intermediate binding and water activation in sulfur-doped bismuth nanosheets for electrocatalytic CO2 reduction to formate. Chem. Eng. J. 2023, 451, 139056.

[15]

Shi, Y. B.; Li, J.; Mao, C. L.; Liu, S.; Wang, X. B.; Liu, X. F.; Zhao, S. X.; Liu, X.; Huang, Y. Q.; Zhang, L. Z. Van Der Waals gap-rich BiOCl atomic layers realizing efficient, pure-water CO2-to-CO photocatalysis. Nat. Commun. 2021, 12, 5923.

[16]

Shi, X.; Dong, X. A.; He, Y.; Yan, P.; Dong, F. Light-induced halogen defects as dynamic active sites for CO2 photoreduction to CO with 100% selectivity. Sci. Bull. 2022, 67, 1137–1144.

[17]

Di, J.; Chen, C.; Zhu, C.; Long, R.; Chen, H. L.; Cao, X. Z.; Xiong, J.; Weng, Y. X.; Song, L.; Li, S. Z. et al. Surface local polarization induced by bismuth-oxygen vacancy pairs tuning non-covalent interaction for CO2 photoreduction. Adv. Energy Mater. 2021, 11, 2102389.

[18]

Wang, L.; Wang, R. Y.; Qiu, T. Y.; Yang, L. Q.; Han, Q. T.; Shen, Q.; Zhou, X.; Zhou, Y.; Zou, Z. G. Bismuth vacancy-induced efficient CO2 photoreduction in BiOCl directly from natural air: A progressive step toward photosynthesis in nature. Nano Lett. 2021, 21, 10260–10266.

[19]

Ma, S. H.; Luo, X.; Ran, G.; Li, Y. P.; Cao, Z. Q.; Liu, X. Y.; Chen, G. Q.; Yan, J. H.; Wang, L. Defect engineering of ultrathin 2D nanosheet BiOI/Bi for enhanced photothermal-catalytic synergistic bacteria-killing. Chem. Eng. J. 2022, 435, 134810.

[20]

Fang, S. Y.; Hu, Y. H. Thermo-photo catalysis: A whole greater than the sum of its parts. Chem. Soc. Rev. 2022, 51, 3609–3647.

[21]

Gong, S. W.; Zhu, G. Q.; Wang, R.; Rao, F.; Shi, X. J.; Gao, J. Z.; Huang, Y.; He, C. Z.; Hojamberdiev, M. Synergistically boosting highly selective CO2-to-CO photoreduction over BiOCl nanosheets via in-situ formation of surface defects and non-precious metal nanoparticles. Appl. Catal. B: Environ. 2021, 297, 120413.

[22]

Mao, D. J.; Yang, S. X.; Hu, Y.; He, H.; Yang, S. G.; Zheng, S. R.; Sun, C.; Jiang, Z. F.; Qu, X. L.; Wong, P. K. Efficient CO2 photoreduction triggered by oxygen vacancies in ultrafine Bi5O7Br nanowires. Appl. Catal. B: Environ. 2023, 321, 122031.

[23]

Shi, X.; Dong, X. A.; He, Y.; Yan, P.; Zhang, S. H.; Dong, F. Photoswitchable chlorine vacancies in ultrathin Bi4O5Cl2 for selective CO2 photoreduction. ACS Catal. 2022, 12, 3965–3973.

[24]

Shi, Y. B.; Zhan, G. M.; Li, H.; Wang, X. B.; Liu, X. F.; Shi, L. J.; Wei, K.; Ling, C. C.; Li, Z. L.; Wang, H. et al. Simultaneous manipulation of bulk excitons and surface defects for ultrastable and highly selective CO2 photoreduction. Adv. Mater. 2021, 33, 2100143.

[25]

Zhang, Y. J.; Xu, Z. F.; Wang, Q.; Hao, W. C.; Zhai, X. P.; Fei, X.; Huang, X. J.; Bi, Y. P. Unveiling the activity origin of ultrathin BiOCl nanosheets for photocatalytic CO2 reduction. Appl. Catal. B: Environ. 2021, 299, 120679.

[26]

Zu, X. L.; Zhao, Y.; Li, X. D.; Chen, R. H.; Shao, W. W.; Wang, Z. Q.; Hu, J.; Zhu, J. F.; Pan, Y.; Sun, Y. F. et al. Ultrastable and efficient visible-light-driven CO2 reduction triggered by regenerative oxygen-vacancies in Bi2O2CO3 nanosheets. Angew. Chem., Int. Ed. 2021, 60, 13840–13846.

[27]

Zhao, X. Z.; Xia, Y. G.; Li, H. P.; Wang, X.; Wei, J.; Jiao, X. L.; Chen, D. R. Oxygen vacancy dependent photocatalytic CO2 reduction activity in liquid-exfoliated atomically thin BiOCl nanosheets. Appl. Catal. B: Environ. 2021, 297, 120426.

[28]

Dai, W. L.; Wang, P.; Long, J. F.; Xu, Y.; Zhang, M.; Yang, L. X.; Zou, J. P.; Luo, X. B.; Luo, S. L. Constructing robust Bi active sites in situ on α-Bi2O3 for efficient and selective photoreduction of CO2 to CH4 via directional transfer of electrons. ACS Catal. 2023, 13, 2513–2522.

[29]

Chen, W. Y.; Liu, X. M.; Han, B.; Liang, S. J.; Deng, H.; Lin, Z. Boosted photoreduction of diluted CO2 through oxygen vacancy engineering in NiO nanoplatelets. Nano Res. 2021, 14, 730–737.

[30]

Chen, Y. D.; Li, Y.; Chen, W.; Xu, W. W.; Han, Z. K.; Waheed, A.; Ye, Z. B.; Li, G.; Baiker, A. Continuous dimethyl carbonate synthesis from CO2 and methanol over BixCe1−xOδ monoliths: Effect of bismuth doping on population of oxygen vacancies, activity, and reaction pathway. Nano Res. 2022, 15, 1366–1374.

[31]

Zhang, X.; Zhang, Y.; Feng, Z. Y.; Zhao, J. M.; Yang, Z. M.; Wang, X.; Wang, W. S. Self-accelerating photocharge separation in BiOBr ultrathin nanosheets for boosting photoreversible color switching. Chem. Eng. J. 2022, 428, 131235.

[32]

He, J. R.; Hu, L. J.; Shao, C. T.; Jiang, S. J.; Sun, C. Z.; Song, S. Q. Photocatalytic H2O overall splitting into H2 bubbles by single atomic sulfur vacancy CdS with spin polarization electric field. ACS Nano 2021, 15, 18006–18013.

[33]

Wang, T.; Chen, L.; Chen, C.; Huang, M. T.; Huang, Y. J.; Liu, S. J.; Li, B. X. Engineering catalytic interfaces in Cuδ+/CeO2-TiO2 photocatalysts for synergistically boosting CO2 reduction to ethylene. ACS Nano 2022, 16, 2306–2318.

[34]

Lee, B. H.; Park, S.; Kim, M.; Sinha, A. K.; Lee, S. C.; Jung, E.; Chang, W. J.; Lee, K. S.; Kim, J. H.; Cho, S. P. et al. Reversible and cooperative photoactivation of single-atom Cu/TiO2 photocatalysts. Nat. Mater. 2019, 18, 620–626.

[35]

Kreft, S.; Schoch, R.; Schneidewind, J.; Rabeah, J.; Kondratenko, E. V.; Kondratenko, V. A.; Junge, H.; Bauer, M.; Wohlrab, S.; Beller, M. Improving selectivity and activity of CO2 reduction photocatalysts with oxygen. Chem 2019, 5, 1818–1833.

[36]

Wang, T.; Sun, F. L.; Liu, S. J.; Zhuang, G. L.; Li, B. X. Dioxygen-enhanced CO2 photoreduction on TiO2 supported Cu single-atom sites. Appl. Catal. B: Environ. 2023, 325, 122339.

[37]

Chen, S. H.; Zhang, Z. D.; Jiang, W. J.; Zhang, S. S.; Zhu, J. X.; Wang, L. Q.; Ou, H. H.; Zaman, S.; Tan, L.; Zhu, P. et al. Engineering water molecules activation center on multisite electrocatalysts for enhanced CO2 methanation. J. Am. Chem. Soc. 2022, 144, 12807–12815.

[38]

Liu, P. G.; Huang, Z. X.; Gao, X. P.; Hong, X.; Zhu, J. F.; Wang, G. M.; Wu, Y. E.; Zeng, J.; Zheng, X. S. Synergy between palladium single atoms and nanoparticles via hydrogen spillover for enhancing CO2 photoreduction to CH4. Adv. Mater. 2022, 34, 2200057.

[39]

Zhang, M. M.; Wang, C. H.; Wang, Y. Y.; Li, S. M.; Zhang, X. T.; Liu, Y. C. Tunable bismuth doping/loading endows NaTaO3 nanosheet highly selective photothermal reduction of CO2. Nano Res. 2023, 16, 2142–2151.

[40]

Wang, M. M.; Sun, K. A.; Mi, W. L.; Feng, C.; Guan, Z. K.; Liu, Y. Q.; Pan, Y. Interfacial water activation by single-atom Co-N3 sites coupled with encapsulated Co nanocrystals for accelerating electrocatalytic hydrogen evolution. ACS Catal. 2022, 12, 10771–10780.

[41]

Wang, H. Q.; Hou, Y. L.; Sun, W. J.; Hu, Q. K.; Xiong, H.; Wang, T. F.; Yan, B. H.; Qian, W. Z. Insight into the effects of water on the ethene to aromatics reaction with HZSM-5. ACS Catal. 2020, 10, 5288–5298.

[42]

Yan, K.; Wu, D. H.; Wang, T.; Chen, C.; Liu, S. J.; Hu, Y. G.; Gao, C.; Chen, H. Y.; Li, B. X. Highly selective ethylene production from solar-driven CO2 reduction on the Bi2S3@In2S3 catalyst with In-SV-Bi active sites. ACS Catal. 2023, 13, 2302–2312.

[43]

Liu, P. G.; Huang, Z. X.; Yang, S. K.; Du, J. Y.; Zhang, Y. D.; Cao, R.; Chen, C.; Li, L.; Chen, T.; Wang, G. M. et al. Support amorphization engineering regulates single-atom Ru as an electron pump for nitrogen photofixation. ACS Catal. 2022, 12, 8139–8146.

[44]

Cheng, Y. Y.; Liu, Y. X.; Liu, Y. L.; Li, Y. X.; Wu, R. Q.; Du, Y. C.; Askari, N.; Liu, N. Y.; Qiao, F.; Sun, C. H. et al. A core–satellite structured type II heterojunction photocatalyst with enhanced CO2 reduction under visible light. Nano Res. 2022, 15, 8880–8889.

[45]

Tian, F. Y.; Zhang, H. L.; Liu, S.; Wu, T.; Yu, J. H.; Wang, D. H.; Jin, X. B.; Peng, C. Visible-light-driven CO2 reduction to ethylene on CdS: Enabled by structural relaxation-induced intermediate dimerization and enhanced by ZIF-8 coating. Appl. Catal. B:Environ. 2021, 285, 119834.

[46]

Shi, H. N.; Wang, H. Z.; Zhou, Y. C.; Li, J. H.; Zhai, P. L.; Li, X. Y.; Gurzadyan, G. G.; Hou, J. G.; Yang, H.; Guo, X. W. Atomically dispersed indium-copper dual-metal active sites promoting C–C coupling for CO2 photoreduction to ethanol. Angew. Chem. Int. Ed. 2022, 61, e202208904.

[47]

Xie, W. K.; Li, K. J.; Liu, X. H.; Zhang, X.; Huang, H. W. P-mediated Cu-N4 sites in carbon nitride realizing CO2 photoreduction to C2H4 with selectivity modulation. Adv. Mater. 2023, 35, 2208132.

[48]

Sun, H.; Lin, L.; Hua, W.; Xie, X. L.; Mu, Q. Q.; Feng, K.; Zhong, J.; Lyu, F. L.; Deng, Z.; Peng, Y. Atomically dispersed Co-Cu alloy reconstructed from metal-organic framework to promote electrochemical CO2 methanation. Nano Res. 2023, 16, 3680–3686.

[49]

Chen, Y.; Zhang, Y. M.; Fan, G. Z.; Song, L. Z.; Jia, G.; Huang, H. T.; Ouyang, S. X.; Ye, J. H.; Li, Z. S.; Zou, Z. G. Cooperative catalysis coupling photo-/photothermal effect to drive Sabatier reaction with unprecedented conversion and selectivity. Joule 2021, 5, 3235–3251.

[50]

Jia, G. R.; Sun, M. Z.; Wang, Y.; Shi, Y. B.; Zhang, L. Z.; Cui, X. Q.; Huang, B. L.; Yu, J. C. Asymmetric coupled dual-atom sites for selective photoreduction of carbon dioxide to acetic acid. Adv. Funct. Mater. 2022, 32, 2206817.

[51]

Zhao, K.; Pang, W. Y.; Jiang, S. Y.; Hu, C. Y.; Liu, P. R.; Cui, D. D.; An, X. F.; Tian, B. J.; Gao, C.; Zhang, P. et al. Operando reconstruction-induced CO2 reduction activity and selectivity for cobalt-based photocatalysis. Nano Res. 2023, 16, 4812–4820.

[52]

Chen, C.; Wang, T.; Yan, K.; Liu, S. J.; Zhao, Y.; Li, B. X. Photocatalytic CO2 reduction on Cu single atoms incorporated in ordered macroporous TiO2 toward tunable products. Inorg. Chem. Front. 2022, 9, 4753–4767.

Nano Research
Pages 1056-1065
Cite this article:
Yan K, Chen L, Hu Y, et al. Accelerating solar driven CO2 reduction via sulfur-doping boosted water dissociation and proton transfer. Nano Research, 2024, 17(3): 1056-1065. https://doi.org/10.1007/s12274-023-5888-3
Topics:

672

Views

7

Crossref

11

Web of Science

8

Scopus

0

CSCD

Altmetrics

Received: 25 April 2023
Revised: 31 May 2023
Accepted: 01 June 2023
Published: 26 July 2023
© Tsinghua University Press 2023
Return