Journal Home > Volume 16 , Issue 8

Electrochemical nitrate reduction reaction (NtrRR) has been emerging as an appealing route for both water treatment and NH3 synthesis. Herein, we report the structure analysis and electrocatalytic performance of a novel homoleptic alkynyl-protected Ag20Cu12 nanocluster (Ag20Cu12 in short) with atomic precision, which has eight free electrons and displays characteristic absorbance feature. Single crystal X-ray diffraction (SC-XRD) discloses that, it adopts a Ag14 kernel capped by three Ag2Cu4(C≡CArF)8 metalligand binding motifs in the outer shell. Ag20Cu12 exhibited excellent catalytic performance toward NtrRR, as manifested by the superior NH3 Faradaic efficiency (FE, 84.6%) and yield rate (0.138 mmol·h−1·mg−1) than the homoleptic alkynyl-protected Ag32 nanoclusters. Additionally, it demonstrates good catalytic recycling capability. Density functional theory (DFT) calculations revealed that, the de-ligated Ag20Cu12 cluster can expose the available AgCu bimetallic sites as the efficient active sites for NH3 formation. In particular, the participation of Cu sites greatly facilitates the initial capture of NO3 and simultaneously promotes the selectivity of the final product. This study discovers a novel homoleptic alkynyl-protected AgCu superatom, and offers a great example to elucidate the structureperformance relationship of bimetallic catalyst for NtrRR and other multiple protons/electrons coupled electrocatalytic reactions.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Atomically precise alkynyl-protected Ag20Cu12 nanocluster: Structure analysis and electrocatalytic performance toward nitrate reduction for NH3 synthesis

Show Author's information Guanyu Ma1,§Fang Sun2,§Liang Qiao3,§Quanli Shen1Lei Wang1Qing Tang2( )Zhenghua Tang1 ( )
New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China
China Petrochemical Research Institute, PetroChina Company Limited, Beijing 102206, China

§ Guanyu Ma, Fang Sun, and Liang Qiao contributed equally to this work.

Abstract

Electrochemical nitrate reduction reaction (NtrRR) has been emerging as an appealing route for both water treatment and NH3 synthesis. Herein, we report the structure analysis and electrocatalytic performance of a novel homoleptic alkynyl-protected Ag20Cu12 nanocluster (Ag20Cu12 in short) with atomic precision, which has eight free electrons and displays characteristic absorbance feature. Single crystal X-ray diffraction (SC-XRD) discloses that, it adopts a Ag14 kernel capped by three Ag2Cu4(C≡CArF)8 metalligand binding motifs in the outer shell. Ag20Cu12 exhibited excellent catalytic performance toward NtrRR, as manifested by the superior NH3 Faradaic efficiency (FE, 84.6%) and yield rate (0.138 mmol·h−1·mg−1) than the homoleptic alkynyl-protected Ag32 nanoclusters. Additionally, it demonstrates good catalytic recycling capability. Density functional theory (DFT) calculations revealed that, the de-ligated Ag20Cu12 cluster can expose the available AgCu bimetallic sites as the efficient active sites for NH3 formation. In particular, the participation of Cu sites greatly facilitates the initial capture of NO3 and simultaneously promotes the selectivity of the final product. This study discovers a novel homoleptic alkynyl-protected AgCu superatom, and offers a great example to elucidate the structureperformance relationship of bimetallic catalyst for NtrRR and other multiple protons/electrons coupled electrocatalytic reactions.

Keywords: ammonia synthesis, density functional theory (DFT) calculations, alkynyl ligand, Ag20Cu12 nanocluster, nitrate reduction reaction (NtrRR)

References(48)

[1]

Zhang, X.; Davidson, E. A.; Mauzerall, D. L.; Searchinger, T. D.; Dumas, P.; Shen, Y. Managing nitrogen for sustainable development. Nature. 2015, 528, 51–59.

[2]

Rosca, V.; Duca, M.; de Groot, M. T.; Koper, M. T. M. Nitrogen cycle electrocatalysis. Chem. Rev. 2009, 109, 2209–2244.

[3]

Niu, H.; Zhang, Z. F.; Wang, X. T.; Wan, X. H.; Shao, C.; Guo, Y. Z. Theoretical insights into the mechanism of selective nitrate-to-ammonia electroreduction on single-atom catalysts. Adv. Funct. Mater. 2021, 31, 2008533.

[4]

Pérez-Gallent, E.; Figueiredo, M. C.; Katsounaros, I.; Koper, M. T. M. Electrocatalytic reduction of nitrate on copper single crystals in acidic and alkaline solutions. Electrochim. Acta. 2017, 227, 77–84.

[5]

Wang, Z. C.; Liu, S. S.; Zhao, X. Y.; Wang, M. F.; Zhang, L. F.; Qian, T.; Xiong, J.; Yang, C. T.; Yan, C. L. Interfacial defect engineering triggered by single atom doping for highly efficient electrocatalytic nitrate reduction to ammonia. ACS Mater. Lett. 2023, 5, 1018–1026.

[6]

Chen, J. G.; Crooks, R. M.; Seefeldt, L. C.; Bren, K. L.; Bullock, R. M.; Darensbourg, M. Y.; Holland, P. L.; Hoffman, B.; Janik, M. J.; Jones, A. K. et al. Beyond fossil fuel-driven nitrogen transformations. Science. 2018, 360, eaar6611.

[7]

Chu, K.; Liu, Y. P.; Li, Y. B.; Guo, Y. L.; Tian, Y.; Zhang, H. Multi-functional Mo-doping in MnO2 nanoflowers toward efficient and robust electrocatalytic nitrogen fixation. Appl. Catal. B:Environ. 2020, 264, 118525.

[8]

Liu, S. S.; Qian, T.; Wang, M. F.; Ji, H. Q.; Shen, X. W.; Wang, C.; Yan, C. L. Proton-filtering covalent organic frameworks with superior nitrogen penetration flux promote ambient ammonia synthesis. Nat. Catal. 2021, 4, 322–331.

[9]

He, Y. Z.; Wang, M. F.; Liu, S. S.; Zhang, L. F.; Cheng, Q. Y.; Yan, C. L.; Qian, T. A superaerophilic gas diffusion electrode enabling facilitated nitrogen feeding through hierarchical micro/nano channels for efficient ambient synthesis of ammonia. Chem. Eng. J. 2023, 454, 140106.

[10]

Crawford, J.; Yin, H. Q.; Du, A. J.; O'Mullane, A. P. Nitrate-to-ammonia conversion at an InSn-enriched liquid-metal electrode. Angew. Chem., Int. Ed. 2022, 61, e202201604.

[11]

Jiang, C. S.; Zhang, M. Y.; Dong, G. J.; Wei, T.; Feng, J.; Ren, Y. M.; Luan, T. Z. Photocatalytic nitrate reduction by a non-metal catalyst h-BN: Performance and mechanism. Chem. Eng. J. 2022, 429, 132216.

[12]

Chen, G. F.; Yuan, Y. F.; Jiang, H. F.; Ren, S. Y.; Ding, L. X.; Ma, L.; Wu, T. P.; Lu, J.; Wang, H. H. Electrochemical reduction of nitrate to ammonia via direct eight-electron transfer using a copper-molecular solid catalyst. Nat. Energy. 2020, 5, 605–613.

[13]

Wang, Y. T.; Zhou, W.; Jia, R. R.; Yu, Y. F.; Zhang, B. Unveiling the activity origin of a copper-based electrocatalyst for selective nitrate reduction to ammonia. Angew. Chem., Int. Ed. 2020, 59, 5350–5354.

[14]

Wang, J.; Wang, Y. A.; Cai, C.; Liu, Y. S.; Wu, D. J.; Wang, M. Y.; Li, M. H.; Wei, X. B.; Shao, M. H.; Gu, M. Cu-doped iron oxide for the efficient electrocatalytic nitrate reduction reaction. Nano Lett. 2023, 23, 1897–1903.

[15]

Wang, Y. T.; Wang, C. H.; Li, M. Y.; Yu, Y. F.; Zhang, B. Nitrate electroreduction: Mechanism insight, in situ characterization, performance evaluation, and challenges. Chem. Soc. Rev. 2021, 50, 6720–6733.

[16]

Wang, Y. T.; Li, H. J.; Zhou, W.; Zhang, X.; Zhang, B.; Yu, Y. F. Structurally disordered RuO2 nanosheets with rich oxygen vacancies for enhanced nitrate electroreduction to ammonia. Angew. Chem., Int. Ed. 2022, 61, e202202604.

[17]

Huang, B.; Kobayashi, H.; Yamamoto, T.; Matsumura, S.; Nishida, Y.; Sato, K.; Nagaoka, K.; Kawaguchi, S.; Kubota, Y.; Kitagawa, H. Solid-solution alloying of immiscible Ru and Cu with enhanced CO oxidation activity. J. Am. Chem. Soc. 2017, 139, 4643–4646.

[18]

Butcher, D. P.; Gewirth, A. A. Nitrate reduction pathways on Cu single crystal surfaces: Effect of oxide and Cl. Nano Energy. 2016, 29, 457–465.

[19]

Hu, Q.; Qin, Y. J.; Wang, X. D.; Wang, Z. Y.; Huang, X. W.; Zheng, H. J.; Gao, K. R.; Yang, H. P.; Zhang, P. X.; Shao, M. H. et al. Reaction intermediate-mediated electrocatalyst synthesis favors specified facet and defect exposure for efficient nitrate-ammonia conversion. Energy Environ. Sci. 2021, 14, 4989–4997.

[20]

Gao, W. S.; Xie, K. F.; Xie, J.; Wang, X. M.; Zhang, H.; Chen, S. Q.; Wang, H.; Li, Z. L.; Li, C. Alloying of Cu with Ru enabling the relay catalysis for reduction of nitrate to ammonia. Adv. Mater. 2023, 35, e2202952.

[21]

Ren, T. L.; Sheng, Y. W.; Wang, M. Z.; Ren, K. L.; Wang, L. L.; Xu, Y. Recent advances of Cu-based materials for electrochemical nitrate reduction to ammonia. Chin. J. Struct. Chem. 2022, 41, 2212089–2212106.

[22]

Wang, Y. M.; Peng, Z. W.; Liao, J. M.; Li, A.; Liu, Y. Y.; Zhang, J. J.; Zhou, N. A.; Li, X. D.; Li, S.; Meng, W. A new heterometallic 3d-3d transition metal Oxo-cluster {CuII6MnIII}: Synthesis, crystal structure and magnetic property. Chin. J. Struct. Chem. 2021, 40, 1661–1667.

[23]

Fu, X. B.; Zhao, X. G.; Hu, X. B.; He, K.; Yu, Y. A.; Li, T.; Tu, Q.; Qian, X.; Yue, Q.; Wasielewski, M. R. et al. Alternative route for electrochemical ammonia synthesis by reduction of nitrate on copper nanosheets. Appl. Mater. Today. 2020, 19, 100620.

[24]

Xue, Y. H.; Yu, Q. H.; Ma, Q.; Chen, Y. Y.; Zhang, C. N.; Teng, W.; Fan, J. W.; Zhang, W. X. Electrocatalytic hydrogenation boosts reduction of nitrate to ammonia over single-atom Cu with Cu(I)-N3C1 sites. Environ. Sci. Technol. 2022, 56, 14797–14807.

[25]

Lijinsky, W.; Greenblatt, M. Carcinogen dimethylnitrosamine produced in vivo from nitrite and aminopyrine. Nat. New Biol. 1972, 236, 177–178.

[26]

Simpson, B. K.; Johnson, D. C. Electrocatalysis of nitrate reduction at copper-nickel alloy electrodes in acidic media. Electroanal. 2004, 16, 532–538.

[27]
Gao, Q.; Yao, B. Q.; Pillai, H. S.; Zang, W. J.; Han, X.; Liu, Y. Q.; Yu, S. W.; Yan, Z. H.; Min, B.; Zhang, S. et al. Synthesis of core/shell nanocrystals with ordered intermetallic single-atom alloy layers for nitrate electroreduction to ammonia. Nat. Synth. , in press, https://doi.org/10.1038/s44160-023-00258-x.
[28]
Wu, D. S.; Cao, M. N. Homogeneous and complex catalysts. Nat. Synth. , in press, https://doi.org/10.1038/s44160-023-00299-2.
[29]

Gao, Q.; Pillai, H. S.; Huang, Y.; Liu, S. K.; Mu, Q. M.; Han, X.; Yan, Z. H.; Zhou, H.; He, Q.; Xin, H. L. et al. Breaking adsorption-energy scaling limitations of electrocatalytic nitrate reduction on intermetallic CuPd nanocubes by machine-learned insights. Nat. Commun. 2022, 13, 2338.

[30]

Cerrón-Calle, G. A.; Fajardo, A. S.; Sánchez-Sánchez, C. M.; Garcia-Segura, S. Highly reactive Cu-Pt bimetallic 3D-electrocatalyst for selective nitrate reduction to ammonia. Appl. Catal. B:Environ. 2022, 302, 120844.

[31]

Qin, L. B.; Sun, F.; Ma, X. S.; Ma, G. Y.; Tang, Y.; Wang, L. K.; Tang, Q.; Jin, R. C.; Tang, Z. H. Homoleptic alkynyl-protected Ag15 nanocluster with atomic precision: Structural analysis and electrocatalytic performance toward CO2 reduction. Angew. Chem. Int. Ed. 2021, 60, 26136–26141.

[32]

Ma, X. S.; Xiong, L.; Qin, L. B.; Tang, Y.; Ma, G. Y.; Pei, Y.; Tang, Z. H. A homoleptic alkynyl-protected [Ag9Cu6(tBuC≡C)12]+ superatom with free electrons: Synthesis, structure analysis, and different properties compared with the Au7Ag8 cluster in the M15+ series. Chem. Sci. 2021, 12, 12819–12826.

[33]

Yuan, S. F.; Guan, Z. J.; Liu, W. D.; Wang, Q. M. Solvent-triggered reversible interconversion of all-nitrogen-donor-protected silver nanoclusters and their responsive optical properties. Nat. Commun. 2019, 10, 4032.

[34]

Wang, Y. M.; Cai, J. M.; Wang, Q. Y.; Li, Y.; Han, Z.; Li, S.; Gong, C. H.; Wang, S.; Zang, S. Q.; Mak, T. C. W. Electropolymerization of metal clusters establishing a versatile platform for enhanced catalysis performance. Angew. Chem., Int. Ed. 2022, 61, e202114538.

[35]

Du, Y. X.; Sheng, H. T.; Astruc, D.; Zhu, M. Z. Atomically precise noble metal nanoclusters as efficient catalysts: A bridge between structure and properties. Chem. Rev. 2020, 120, 526–622.

[36]

Han, M.; Guo, M. H.; Yun, Y. P.; Xu, Y. J.; Sheng, H. T.; Chen, Y. X.; Du, Y. X.; Ni, K.; Zhu, Y. W.; Zhu, M. Z. Effect of heteroatom and charge reconstruction in atomically precise metal nanoclusters on electrochemical synthesis of ammonia. Adv. Funct. Mater. 2022, 32, 2202820.

[37]

Liu, L. J.; Zhang, J. W.; Asad, M.; Wang, Z. Y.; Zang, S. Q.; Mak, T. C. W. A high-nuclearity CuI/CuII nanocluster catalyst for phenol degradation. Chem. Commun. 2021, 57, 5586–5589.

[38]

Wang, Y.; Wan, X. K.; Ren, L. T.; Su, H. F.; Li, G.; Malola, S.; Lin, S. C.; Tang, Z. C.; Häkkinen, H.; Teo, B. K. et al. Atomically precise alkynyl-protected metal nanoclusters as a model catalyst: Observation of promoting effect of surface ligands on catalysis by metal nanoparticles. J. Am. Chem. Soc. 2016, 138, 3278–3281.

[39]

Lei, Z.; Wan, X. K.; Yuan, S. F.; Guan, Z. J.; Wang, Q. M. Alkynyl approach toward the protection of metal nanoclusters. Acc. Chem. Res. 2018, 51, 2465–2474.

[40]

Wang, Q. M.; Lin, Y. M.; Liu, K. G. Role of anions associated with the formation and properties of silver clusters. Acc. Chem. Res. 2015, 48, 1570–1579.

[41]

Ma, X. S.; Ma, G. Y.; Qin, L. B.; Chen, G. X.; Chen, S. W.; Tang, Z. H. A synchronous nucleation and passivation strategy for controllable synthesis of Au36(PA)24: Unveiling the formation process and the role of Au22(PA)18 intermediate. Sci. China Chem. 2020, 63, 1777–1784.

[42]

Chen, L. Y.; Sun, F.; Shen, Q. L.; Qin, L. B.; Liu, Y. G.; Qiao, L.; Tang, Q.; Wang, L. K.; Tang, Z. H. Homoleptic alkynyl-protected Ag32 nanocluster with atomic precision: Probing the ligand effect toward CO2 electroreduction and 4-nitrophenol reduction. Nano Res. 2022, 15, 8908–8913.

[43]

Gao, X. H.; He, S. J.; Zhang, C. M.; Du, C.; Chen, X.; Xing, W.; Chen, S. L.; Clayborne, A.; Chen, W. Single crystal sub-nanometer sized Cu6(SR)6 clusters: Structure, photophysical properties, and electrochemical sensing. Adv. Sci. 2016, 3, 1600126.

[44]

Wu, X. H.; Guo, Y. N.; Sun, Z. S.; Xie, F. H.; Guan, D. Q.; Dai, J.; Yu, F. J.; Hu, Z. W.; Huang, Y. C.; Pao, C. W. et al. Fast operando spectroscopy tracking in situ generation of rich defects in silver nanocrystals for highly selective electrochemical CO2 reduction. Nat. Commun. 2021, 12, 660.

[45]

Kumari, G.; Zhang, X. Q.; Devasia, D.; Heo, J.; Jain, P. K. Watching visible light-driven CO2 reduction on a plasmonic nanoparticle catalyst. ACS Nano. 2018, 12, 8330–8340.

[46]

Li, J. L.; Li, H.; Yu, H. Z.; Chai, J. S.; Li, Q. Z.; Song, Y. B.; Zhang, Z. J.; Zhu, M. Z. A novel geometric structure of a nanocluster with an irregular kernel: Ag30Cu14(TPP)4(SR)28. Dalton Trans. 2020, 49, 7684–7687.

[47]

Kang, X.; Li, Y. W.; Zhu, M. Z.; Jin, R. C. Atomically precise alloy nanoclusters: Syntheses, structures, and properties. Chem. Soc. Rev. 2020, 49, 6443–6514.

[48]

Sun, W. J.; Ji, H. Q.; Li, L. X.; Zhang, H. Y.; Wang, Z. K.; He, J. H.; Lu, J. M. Built-in electric field triggered interfacial accumulation effect for efficient nitrate removal at ultra-low concentration and electroreduction to ammonia. Angew. Chem., Int. Ed. 2021, 60, 22933–22939.

File
12274_2023_5885_MOESM1_ESM.cif (13.8 MB)
12274_2023_5885_MOESM2_ESM.pdf (2.5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 28 April 2023
Revised: 29 May 2023
Accepted: 30 May 2023
Published: 17 July 2023
Issue date: August 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

Z. H. T. acknowledges the financial support from the Guangdong Natural Science Funds (No. 2022A1515011840). Q. T. thanks the grants from the National Natural Science Foundation of China (No. 21903008) and the Chongqing Science and Technology Commission (No. cstc2020jcyj-msxmX0382).

Return