Journal Home > Volume 16 , Issue 10

Chemical vapor deposition (CVD) using gaseous hydrocarbon sources has shown great promise for large-scale graphene growth, but high growth temperatures (typically 1000 °C) require sophisticated and expensive equipment, which increases graphene production costs. Here, we demonstrate a new approach to produce graphene at low cost from scrap steel sheets treated by thermal evaporation of copper plating, which is a derivative of traditional CVD technology. Without additional carbon sources, graphene film was successfully prepared on copper-coated scrap steel sheets at 820 °C. The resulting graphene has few defects and uniform morphology, comparable to CVD graphene grown at 1000 °C. Finally, the obtained graphene film is used in combination with an interdigital electrode to detect NO2 successfully, showing excellent performance. This technology expands the application of graphene in the manufacture of gas sensing devices and is compatible with traditional microelectronics technology.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

CVD growth of graphene on copper-plated scrap steel without external carbon source

Show Author's information Tianyi Qi1,§Qingguo Shao1,§Hao Qi1Jianhua Xiao3Yuming Zhang1Yang Wang3Xin Jin2Yanli Chen1Dan Li4Xiaobei Zang1Ning Cao1( )
School of Materials Science and Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
College of Chemistry and Chemical Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
Qingdao Fengdong Heat Treatment Company, Qingdao 266108, China

§ Tianyi Qi and Qingguo Shao contributed equally to this work.

Abstract

Chemical vapor deposition (CVD) using gaseous hydrocarbon sources has shown great promise for large-scale graphene growth, but high growth temperatures (typically 1000 °C) require sophisticated and expensive equipment, which increases graphene production costs. Here, we demonstrate a new approach to produce graphene at low cost from scrap steel sheets treated by thermal evaporation of copper plating, which is a derivative of traditional CVD technology. Without additional carbon sources, graphene film was successfully prepared on copper-coated scrap steel sheets at 820 °C. The resulting graphene has few defects and uniform morphology, comparable to CVD graphene grown at 1000 °C. Finally, the obtained graphene film is used in combination with an interdigital electrode to detect NO2 successfully, showing excellent performance. This technology expands the application of graphene in the manufacture of gas sensing devices and is compatible with traditional microelectronics technology.

Keywords: graphene, gas sensing, reuse of scrap steel, C atoms activation, copper catalysis, H2 etching

References(36)

[1]

Westervelt, R. M. Graphene nanoelectronics. Science 2008, 320, 324–325.

[2]

Castro Neto, A. H.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109–162.

[3]

Du, X.; Skachko, I.; Duerr, F.; Luican, A.; Andrei, E. Y. Fractional quantum Hall effect and insulating phase of Dirac electrons in graphene. Nature 2009, 462, 192–195.

[4]

Sattar, T. Current review on synthesis, composites and multifunctional properties of graphene. Top. Curr. Chem. 2019, 377, 10.

[5]

Yao, W. Q.; Liu, H. T.; Sun, J. Z.; Wu, B.; Liu, Y. Q. Engineering of chemical vapor deposition graphene layers: Growth, characterization, and properties. Adv. Funct. Mater. 2022, 32, 2202584.

[6]

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

[7]

Berger, C.; Song, Z. M.; Li, T. B.; Li, X. B.; Ogbazghi, A. Y.; Feng, R.; Dai, Z. T.; Marchenkov, A. N.; Conrad, E. H.; First, P. N. et al. Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B 2004, 108, 19912–19916.

[8]

Berger, C.; Song, Z. M.; Li, X. B.; Wu, X. S.; Brown, N.; Naud, C.; Mayou, D.; Li, T. B.; Hass, J.; Marchenkov, A. N. et al. Electronic confinement and coherence in patterned epitaxial graphene. Science 2006, 312, 1191–1196.

[9]

Li, X. S.; Cai, W. W.; An, J.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312–1314.

[10]

Dreyer, D. R.; Park, S.; Bielawski, C. W.; Ruoff, R. S. The chemistry of graphene oxide. Chem. Soc. Rev. 2010, 39, 228–240.

[11]

Compton, O. C.; Nguyen, S. T. Graphene oxide, highly reduced graphene oxide, and graphene: Versatile building blocks for carbon-based materials. Small 2010, 6, 711–723.

[12]

Gao, Y. J.; Chen, J. L.; Chen, G. R.; Fan, C. H.; Liu, X. G. Recent progress in the transfer of graphene films and nanostructures. Small Methods 2021, 5, 2100771.

[13]

Oshima, C.; Tanaka, N.; Itoh, A.; Rokuta, E.; Yamashita, K.; Sakurai, T. A heteroepitaxial multi-atomic-layer system of graphene and h-BN. Surf. Rev. Lett. 2000, 7, 521–525.

[14]

Ouerghi, A.; Belkhou, R.; Marangolo, M.; Silly, M. G.; El Moussaoui, S.; Eddrief, M.; Largeau, L.; Portail, M.; Sirotti, F. Structural coherency of epitaxial graphene on 3C-SiC (111) epilayers on Si (111). Appl. Phys. Lett. 2010, 97, 161905.

[15]

Lee, H. C.; Bong, H.; Yoo, M. S.; Jo, M.; Cho, K. Copper-vapor-assisted growth and defect-healing of graphene on copper surfaces. Small 2018, 14, 1801181.

[16]

Weatherup, R. S.; Baehtz, C.; Dlubak, B.; Bayer, B. C.; Kidambi, P. R.; Blume, R.; Schloegl, R.; Hofmann, S. Introducing carbon diffusion barriers for uniform, high-quality graphene growth from solid sources. Nano Lett. 2013, 13, 4624–4631.

[17]

Zheng, M.; Takei, K.; Hsia, B.; Fang, H.; Zhang, X. B.; Ferralis, N.; Ko, H.; Chueh, Y. L.; Zhang, Y. G.; Maboudian, R. et al. Metal-catalyzed crystallization of amorphous carbon to graphene. Appl. Phys. Lett. 2010, 96, 063110.

[18]

Byun, S. J.; Lim, H.; Shin, G. Y.; Han, T. H.; Oh, S. H.; Ahn, J. H.; Choi, H. C.; Lee, T. W. Graphenes converted from polymers. J. Phys. Chem. Lett. 2011, 2, 493–497.

[19]

Peng, Z. W.; Yan, Z.; Sun, Z. Z.; Tour, J. M. Direct growth of bilayer graphene on SiO2 substrates by carbon diffusion through nickel. ACS Nano 2011, 5, 8241–8247.

[20]

Berman, D.; Erdemir, A. Achieving ultralow friction and wear by tribocatalysis: Enabled by in-operando formation of nanocarbon films. ACS Nano 2021, 15, 18865–18879.

[21]

Wang, S.; Mahurin, S. M.; Dai, S.; Jiang, D. E. Design of graphene/ionic liquid composites for carbon capture. ACS Appl. Mater. Interfaces 2021, 13, 17511–17516.

[22]

Hettich, D.; Aha, B.; Zimmermann, R.; Veldhuis, M.; Filzek, J. Lubricant—Reducing scrap rates in forming high-alloyed steel by stable friction behavior over the temperature. Procedia Manuf. 2020, 47, 561–565.

[23]
Smith, W. F.; Hashemi, J.; Presuel-Moreno, F. Foundations of Materials Science and Engineering; 6th ed. McGraw-Hill: New York, 2019.
[24]
Kittel, C. Introduction to Solid State Physics; 4th ed. John Wiley & Sons: New York, 1976.
[25]
Askeland, D. R.; Phule, P. P.; Wright, W. The Science and Engineering of Materials; Springer: Dordrecht, 1990.
[26]
Callister, W. D. Jr.; Rethwisch, D. G. Materials Science and Engineering: An Introduction; 10th ed. John Wiley & Sons, 2018.
[27]
Haasen, P. Physical Metallurgy; 2nd ed. Cambridge University Press: London, 1986.
[28]
Rhines, F. N. Phase Diagrams in Metallurgy: Their Development and Application; McGraw-Hill: New York, 1956.
[29]

Nelson, J. B.; Riley, D. P. An experimental investigation of extrapolation methods in the derivation of accurate unit-cell dimensions of crystals. Proc. Phys. Soc. 1945, 57, 160–177.

[30]

Gelb, A.; Cardillo, M. Classical trajectory studies of hydrogen dissociation on a Cu (100) surface. Surf. Sci. 1976, 59, 128–140.

[31]

Galea, N. M.; Knapp, D.; Ziegler, T. Density functional theory studies of methane dissociation on anode catalysts in solid-oxide fuel cells: Suggestions for coke reduction. J. Catal. 2007, 247, 20–33.

[32]

Zhang, W. H.; Wu, P.; Li, Z. Y.; Yang, J. L. First-principles thermodynamics of graphene growth on Cu surfaces. J. Phys. Chem. C 2011, 115, 17782–17787.

[33]

Gelb, A.; Cardillo, M. J. Classical trajectory study of the dissociation of hydrogen on copper single crystals: II. Cu (100) and Cu (110). Surf. Sci. 1977, 64, 197–208.

[34]

Vlassiouk, I.; Regmi, M.; Fulvio, P.; Dai, S.; Datskos, P.; Eres, G.; Smirnov, S. Role of hydrogen in chemical vapor deposition growth of large single-crystal graphene. ACS Nano 2011, 5, 6069–6076.

[35]
Hansen, M.; Anderko, K. Constitution of Binary Alloys, 2nd ed.; McGraw-Hill: New York, 1958.
DOI
[36]

Schedin, F.; Geim, A. K.; Morozov, S. V.; Hill, E. W.; Blake, P.; Katsnelson, M. I.; Novoselov, K. S. Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 2007, 6, 652–655.

File
12274_2023_5883_MOESM1_ESM.pdf (575.8 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 12 April 2023
Revised: 19 May 2023
Accepted: 28 May 2023
Published: 06 July 2023
Issue date: October 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 52073305); Natural Science Foundation of Shandong Province (No. ZR2020QE048); State Key Laboratory of Heavy Oil Processing (No. SKLHOP202101006); and National Defense Science and Technology Innovation Special Zone Project (No. 22-05-CXZX-04-04-29).

Return