AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

An integrated flexible self-healing Zn-ion battery using dendrite-suppressible hydrogel electrolyte and free-standing electrodes for wearable electronics

Jiawei Long1Tianli Han1Xirong Lin2Yajun Zhu1Yingyi Ding1Jinyun Liu1( )Huigang Zhang3( )
Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Micro/Nano-electronics, Shanghai Jiao Tong University, Shanghai 200240, China
State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
Show Author Information

Graphical Abstract

We developed a high-performance flexible self-healing Zn-ion battery with Zn dendrite-suppressible hydrogel electrolyte, free-standing FeVO4/carbon cloth cathode, and Zn nanosheets/carbon cloth anode. The battery presented good flexible and self-healing performances under different conditions, which enable it to be used for wearable electronics.

Abstract

Among many aqueous batteries, flexible zinc-ion (Zn-ion) battery becomes the focus owing to the merits of low cost, non-toxicity, and safety. Here, a Zn dendrite-suppressible hydrogel electrolyte with both flexible and self-healing properties is developed via photoinitiated polymerization. The cross-linked structure of the polyacrylamide-N,N'-methylenebisacrylamide (PAM-MBA)-Zn/Mn hydrogel endows an enlarged chemical stable window, high ionic conductivity, and low polarization potential. After cycling at the current density of 0.5 mA·cm−2 for 250 h, Zn‖Zn symmetrical cell based on PAM-MBA-Zn/Mn electrolyte delivers a low polarization of 40 mV. The suppressed dendrite growth is ascribed to the uniform Zn deposition/stripping on anode. The galvanostatic intermittent titration technique curves display that the Zn-ion battery constructed by the PAM-MBA-Zn/Mn hydrogel electrolyte, free-standing FeVO4/carbon cloth cathode, and Zn nanosheets/carbon cloth anode presents low reaction resistance and fast diffusion coefficient, indicating good endurance of cycling at high current densities. The battery with PAM-MBA-Zn/Mn hydrogel electrolyte presents a good flexible and self-healing performance. After bending 0°, 60°, 90°, and 180° for 30 times, batteries deliver stable capacities. Even cutting into ten pieces, the battery could self-heal and display a potential retention of 93.7% compared to the fresh cell. A good rate-performance is also achieved. After cutting/healing three times during cycling, capacity recovers well compared to the first-time cutting/healing. Moreover, the battery exhibits good flexibility using in an electric watch, indicating a promising potential for wearable electronics.

Electronic Supplementary Material

Video
12274_2023_5882_MOESM2_ESM.mov
12274_2023_5882_MOESM3_ESM.mp4
Download File(s)
12274_2023_5882_MOESM1_ESM.pdf (7.4 MB)

References

[1]

Lei, D.; Hou, Z. D.; Li, N.; Cao, Y. J.; Ren, L. B.; Liu, H. Y.; Zhang, Y.; Wang, J. G. A homologous N/P-codoped carbon strategy to streamline nanostructured MnO/C and carbon toward boosted lithium-ion capacitors. Carbon 2023, 201, 260–268.

[2]

Hao, Z. Q.; Shi, X. Y.; Yang, Z.; Li, L.; Chou, S. L. Developing high-performance metal selenides for sodium-ion batteries. Adv. Funct. Mater. 2022, 32, 2208093.

[3]

Pan, J. J.; Xia, Z. P.; Deng, N. P.; Chen, L.; Zhang, H. B.; Lu, Y.; Liu, Y.; Gao, H. C. Eumelanin-inspired nanomaterials in electrochemical energy storage devices: A review. Chem. Eng. J. 2023, 452, 138607.

[4]

Ju, Z. N.; Zhao, Q.; Chao, D. L.; Hou, Y.; Pan, H. G.; Sun, W. P.; Yuan, Z. Y.; Li, H.; Ma, T. Y.; Su, D. W. et al. Energetic aqueous batteries. Adv. Energy Mater. 2022, 12, 2201074.

[5]

Jia, B. E.; Thang, A. Q.; Yan, C. S.; Liu, C. T.; Lv, C. T.; Zhu, Q.; Xu, J. W.; Chen, J.; Pan, H. G.; Yan, Q. Y. Rechargeable aqueous aluminum-ion battery: Progress and outlook. Small 2022, 18, 2107773.

[6]

Guo, C.; Yi, S. J.; Si, R.; Xi, B. J.; An, X. G.; Liu, J.; Li, J. F.; Xiong, S. L. Advances on defect engineering of vanadium-based compounds for high-energy aqueous zinc-ion batteries. Adv. Energy Mater. 2022, 12, 2202039.

[7]

Li, C. C.; Wu, Q.; Ma, J.; Pan, H. G.; Liu, Y. X.; Lu, Y. Y. Regulating zinc metal anodes via novel electrolytes in rechargeable zinc-based batteries. J. Mater. Chem. A 2022, 10, 14692–14708.

[8]

Ni, Q.; Kim, B.; Wu, C.; Kang, K. Non-electrode components for rechargeable aqueous zinc batteries: Electrolytes, solid-electrolyte-interphase, current collectors, binders, and separators. Adv. Mater. 2022, 34, 2108206.

[9]

Zhang, Q. H.; Su, Y. W.; Shi, Z. X.; Yang, X. Z.; Sun, J. Y. Artificial interphase layer for stabilized Zn anodes: Progress and prospects. Small 2022, 18, 2203583.

[10]

Wang, X. Y.; Li, X. M.; Fan, H. Q.; Ma, L. T. Solid electrolyte interface in Zn-based battery systems. Nano-Micro Lett. 2022, 14, 205.

[11]

Shao, Z. J.; Yin, T. Y.; Jiang, J. B.; He, Y.; Xiang, T.; Zhou, S. B. Wound microenvironment self-adaptive hydrogel with efficient angiogenesis for promoting diabetic wound healing. Bioact. Mater. 2023, 20, 561–573.

[12]

Liu, J. H.; Ahmed, S.; Wang, T.; Song, S. H. Flexible thermotolerant Zn-ion hybrid supercapacitors enabled by heat-resistant polymer electrolyte. Chem. Eng. J. 2023, 451, 138512.

[13]

Wang, J. W.; Huang, Y.; Liu, B. B.; Li, Z. X.; Zhang, J. Y.; Yang, G. S.; Hiralal, P.; Jin, S. Y.; Zhou, H. Flexible and anti-freezing zinc-ion batteries using a guar-gum/sodium-alginate/ethylene-glycol hydrogel electrolyte. Energy Stor. Mater. 2021, 41, 599–605.

[14]

Quan, Y. H.; Zhou, W. J.; Wu, T.; Chen, M. F.; Han, X.; Tian, Q. H.; Xu, J. L.; Chen, J. Z. Sorbitol-modified cellulose hydrogel electrolyte derived from wheat straws towards high-performance environmentally adaptive flexible zinc-ion batteries. Chem. Eng. J. 2022, 446, 137056.

[15]

Xu, P. J.; Wang, C. Y.; Zhao, B. X.; Zhou, Y.; Cheng, H. F. A high-strength and ultra-stable halloysite nanotubes-crosslinked polyacrylamide hydrogel electrolyte for flexible zinc-ion batteries. J. Power Sources 2021, 506, 230196.

[16]

Huang, S. W.; Hou, L.; Li, T. Y.; Jiao, Y. C.; Wu, P. Y. Antifreezing hydrogel electrolyte with ternary hydrogen bonding for high-performance zinc-ion batteries. Adv. Mater. 2022, 34, 2110140.

[17]

Ji, S. G.; Qin, J. X.; Yang, S. S.; Shen, P.; Hu, Y. Y.; Yang, K.; Luo, H.; Xu, J. A mechanically durable hybrid hydrogel electrolyte developed by controllable accelerated polymerization mechanism towards reliable aqueous zinc-ion battery. Energy Stor. Mater. 2023, 55, 236–243.

[18]

Ma, L. T.; Chen, S. M.; Li, N.; Liu, Z. X.; Tang, Z. J.; Zapien, J. A.; Chen, S. M.; Fan, J.; Zhi, C. Y. Hydrogen-free and dendrite-free all-solid-state Zn-ion batteries. Adv. Mater. 2020, 32, 1908121.

[19]

Zhou, M.; Guo, S.; Li, J. L.; Luo, X. B.; Liu, Z. X.; Zhang, T. S.; Cao, X. X.; Long, M. Q.; Lu, B. A.; Pan, A. Q. et al. Surface-preferred crystal plane for a stable and reversible zinc anode. Adv. Mater. 2021, 33, 2100187.

[20]

Guo, S. S.; Koketsu, T.; Hu, Z. W.; Zhou, J.; Kuo, C. Y.; Lin, H. J.; Chen, C. T.; Strasser, P.; Sui, L. J.; Xie, Y. et al. Mo-incorporated magnetite Fe3O4 featuring cationic vacancies enabling fast lithium intercalation for batteries. Small 2022, 18, 2203835.

[21]

Hase, Y.; Uyama, T.; Nishioka, K.; Seki, J.; Morimoto, K.; Ogihara, N.; Mukouyama, Y.; Nakanishi, S. Positive feedback mechanism to increase the charging voltage of Li-O2 batteries. J. Am. Chem. Soc. 2022, 144, 1296–1305.

[22]

Tong, B.; Guo, G. J.; Meng, X. Y. X.; Bai, P.; Lyu, J.; Guo, X. H. Highly efficient lithium adsorption and stable isotope separation by metal-organic frameworks. Chem. Commun. 2022, 58, 8866–8869.

[23]

Qi, Y. F.; Fan, C. X.; Quan, X.; Xi, F.; Liu, Z. J.; Cao, Q.; Wu, Z. R.; Yue, Q. Y.; Gao, B. Y.; Xu, X. et al. In-situ recycling strategy for co-treatment of antimony-rich sludge char and leachate: Pilot-scale application in an engineering case. Chem. Eng. J. 2022, 446, 137315.

[24]

Liu, B.; Yan, Z.; Xu, T.; Li, C. P.; Gao, R.; Hao, H. G.; Bai, J. Co-construction of oxygen vacancies and heterojunctions on CeO2 via one-step Fe doping for enhanced photocatalytic activity in Suzuki reaction. Chem. Eng. J. 2022, 442, 136226.

[25]

Holz, L. I. V.; Graça, V. C. D.; Loureiro, F. J. A.; Mikhalev, S. M.; Mendes, D.; Mendes, A.; Fagg, D. P. Tailoring the anion stoichiometry and oxidation kinetics of vanadium (oxy)nitride by the control of ammonolysis conditions. J. Mater. Chem. C 2022, 10, 5608–5620.

[26]

Jiang, H. J.; Zheng, L.; Wang, J.; Xu, M. Z.; Gan, X. T.; Wang, X. W.; Huang, W. Inversion symmetry broken in 2H phase vanadium-doped molybdenum disulfide. Nanoscale 2021, 13, 18103–18111.

[27]

Yu, Y.; Li, X. Y.; Zhao, R. H.; Liu, H.; Chen, J. Gaseous selenium removal by metal oxide sorbent: Experimental and density functional theory study. Fuel 2022, 325, 124904.

[28]

Li, W. D.; Chen, Q. Y.; Zhang, D. Y.; Fang, C.; Nian, S.; Wang, W. X.; Xu, C.; Chang, C. K. High stability of Mo-F dual-doped O3-type NaNi1/3Fe1/3Mn1/3O2 cathode material for sodium-ion battery. Mater. Today Commun. 2022, 32, 103839.

[29]

Liao, X. X.; Wang, B.; Wang, L.; Zhu, J. T.; Chu, P.; Zhu, Z. B.; Zheng, S. W. Experimental study on the wettability of coal with different metamorphism treated by surfactants for coal dust control. ACS Omega 2021, 6, 21925–21938.

[30]

Hua, B. L.; Zheng, L.; Adeboye, A.; Li, F. T. Defect- and nitrogen-rich porous carbon embedded with Co NPs derived from self-assembled Co-ZIF-8@anionic polyacrylamide network as PMS activator for highly efficient removal of tetracycline hydrochloride from water. Chem. Eng. J. 2022, 443, 136439.

[31]

Zhang, K. F.; Pang, Y. J.; Chen, C. Z.; Wu, M.; Liu, Y. X.; Yu, S. T.; Li, L.; Ji, Z.; Pang, J. H. Stretchable and conductive cellulose hydrogel electrolytes for flexible and foldable solid-state supercapacitors. Carbohydr. Polym. 2022, 293, 119673.

[32]

Zhou, Y. T.; Zhang, S.; Buckingham, M. A.; Aldous, L.; Beirne, S.; Wu, C.; Liu, Y. Q.; Wallace, G.; Chen, J. Novel porous thermosensitive gel electrolytes for wearable thermo-electrochemical cells. Chem. Eng. J. 2022, 449, 137775.

[33]

Zhang, S. Y.; Kieffer, S. J.; Zhang, C. J.; Alleyne, A. G.; Braun, P. V. Directed molecular collection by E-jet printed microscale chemical potential wells in hydrogel films. Adv. Mater. 2018, 30, 1803140.

[34]

Cañamares, M. V.; Mieites-Alonso, M. G.; Leona, M. Raman, SERS and DFT analysis of the natural red dyes of Japanese origin alkannin and shikonin. Spectrochim. Acta A: Mol. Biomol. Spectrosc. 2022, 265, 120382.

[35]

Lowum, S.; Floyd, R.; Bermejo, R.; Maria, J. P. Mechanical strength of cold-sintered zinc oxide under biaxial bending. J. Mater. Sci. 2019, 54, 4518–4522.

[36]

de Castro Mendes, I.; dos Santos Oliveira, J. A.; Dantas, M. S. S. Characterization of 20th century art materials from the Lasar Segall Museum. J. Raman Spectrosc. 2019, 50, 281–288.

[37]

Liu, S. L.; Ji, J.; Yu, Y.; Huang, H. B. Facile synthesis of amorphous mesoporous manganese oxides for efficient catalytic decomposition of ozone. Catal. Sci. Technol. 2018, 8, 4264–4273.

[38]

Ko, S.; Chhetry, A.; Kim, D.; Yoon, H.; Park, J. Y. Hysteresis-free double-network hydrogel-based strain sensor for wearable smart bioelectronics. ACS Appl. Mater. Interfaces 2022, 14, 31363–31372.

[39]

Zhao, H. N.; Hao, S. W.; Fu, Q. J.; Zhang, X. R.; Meng, L.; Xu, F.; Yang, J. Ultrafast fabrication of lignin-encapsulated silica nanoparticles reinforced conductive hydrogels with high elasticity and self-adhesion for strain sensors. Chem. Mater. 2022, 34, 5258–5272.

[40]

Wang, D.; Zhang, J.; Fan, C. H.; Xing, J.; Wei, A. F.; Xu, W. Z.; Feng, Q.; Wei, Q. F. A strong, ultrastretchable, antifreezing and high sensitive strain sensor based on ionic conductive fiber reinforced organohydrogel. Compos. Part B: Eng. 2022, 243, 110116.

[41]

Dean, J. L. S.; Fournier, J. A. Vibrational dynamics of the intramolecular H-bond in acetylacetone investigated with transient and 2D IR spectroscopy. J. Phys. Chem. B 2022, 126, 3551–3562.

[42]

Liu, Y. Q.; He, H. N.; Gao, A. M.; Ling, J. Z.; Yi, F. Y.; Hao, J. N.; Li, Q. Z.; Shu, D. Fundamental study on Zn corrosion and dendrite growth in gel electrolyte towards advanced wearable Zn-ion battery. Chem. Eng. J. 2022, 446, 137021.

[43]

Chen, W.; Li, G. C.; Yi, X. F.; Day, S. J.; Tarach, K. A.; Liu, Z. Q.; Liu, S. B.; Edman Tsang, S. C.; Góra-Marek, K.; Zheng, A. M. Molecular understanding of the catalytic consequence of ketene intermediates under confinement. J. Am. Chem. Soc. 2021, 143, 15440–15452.

[44]

Chen, W. J.; Li, H. F.; Song, J. P.; Zhao, Y. J.; Ma, P. T.; Niu, J. Y.; Wang, J. P. Binuclear Ru(III)-containing polyoxometalate with efficient photocatalytic activity for oxidative coupling of amines to imines. Inorg. Chem. 2022, 61, 2076–2085.

[45]

Jia, C. E.; Zhang, X. S.; Liang, S. J.; Fu, Y. C.; Liu, W. T.; Chen, J. Z.; Liu, X. Y.; Zhang, L. L. Environmentally adaptable hydrogel electrolyte with the triple interpenetrating network in the flexible zinc-ion battery with ultralong stability. J. Power Sources 2022, 548, 232072.

[46]

Chen, S. G.; Lan, R.; Humphreys, J.; Tao, S. W. Salt-concentrated acetate electrolytes for a high voltage aqueous Zn/MnO2 battery. Energy Stor. Mater. 2020, 28, 205–215.

[47]

Zhang, W.; Dai, Y. H.; Chen, R. W.; Xu, Z. M.; Li, J. W.; Zong, W.; Li, H. X.; Li, Z.; Zhang, Z. Y.; Zhu, J. X. et al. Highly reversible zinc metal anode in a dilute aqueous electrolyte enabled by a pH buffer additive. Angew. Chem., Int. Ed. 2023, 62, e202212695.

[48]

Liu, Y.; Zheng, Y. F.; Chen, X. H.; Yang, J. A.; Pan, H. B.; Chen, D. F.; Wang, L. N.; Zhang, J. J.; Zhu, D. H.; Wu, S. L. et al. Fundamental theory of biodegradable metals-definition, criteria, and design. Adv. Funct. Mater. 2019, 29, 1805402.

[49]

Luo, Y.; Wei, L. C.; Geng, H. B.; Zhang, Y. F.; Yang, Y.; Li, C. C. Amorphous bimetallic oxides Fe-V-O with tunable compositions toward rechargeable Zn-ion batteries with excellent low-temperature performance. ACS Appl. Mater. Interfaces 2020, 12, 11753–11760.

[50]

Kumar, S.; Verma, V.; Chua, R.; Ren, H.; Kidkhunthod, P.; Rojviriya, C.; Sattayaporn, S.; de Groot, F. M. F.; Manalastas Jr, W.; Srinivasan, M. Multiscalar investigation of FeVO4 conversion cathode for a low concentration Zn(CF3SO3)2 rechargeable Zn-ion aqueous battery. Batteries Supercaps 2020, 3, 619–630.

[51]

Ma, L. T.; Chen, S. M.; Long, C. B.; Li, X. L.; Zhao, Y. W.; Liu, Z. X.; Huang, Z. D.; Dong, B. B.; Zapien, J. A.; Zhi, C. Y. Achieving high-voltage and high-capacity aqueous rechargeable zinc ion battery by incorporating two-species redox reaction. Adv. Energy Mater. 2019, 9, 1902446.

[52]

Yin, B.; Liang, S. Q.; Yu, D. D.; Cheng, B. S.; Egun, I. L.; Lin, J. D.; Xie, X. F.; Shao, H. Z.; He, H. Y.; Pan, A. Q. Increasing accessible subsurface to improving rate capability and cycling stability of sodium-ion batteries. Adv. Mater. 2021, 33, 2100808.

[53]

Ye, F.; Liu, Q.; Dong, H. L.; Guan, K. L.; Chen, Z. Y.; Ju, N.; Hu, L. F. Organic zinc-ion battery: Planar, π-conjugated quinone-based polymer endows ultrafast ion diffusion kinetics. Angew. Chem., Int. Ed. 2022, 61, e202214244.

[54]

Zhang, W.; Wu, Y. L.; Xu, Z. M.; Li, H. X.; Xu, M.; Li, J. W.; Dai, Y. H.; Zong, W.; Chen, R. W.; He, L. et al. Rationally designed sodium chromium vanadium phosphate cathodes with multi-electron reaction for fast-charging sodium-ion batteries. Adv. Energy Mater. 2022, 12, 2201065.

[55]

Rashad, M.; Geaney, H. Vapor–solid–solid growth of silicon nanowires using magnesium seeds and their electrochemical performance in Li-ion battery anodes. Chem. Eng. J. 2023, 452, 139397.

[56]

Shuai, B. B.; Zhou, C.; Pi, Y. Q.; Xu, X. Atomic layer-deposited ZnO layer on hydrated vanadium dioxide cathodes against vanadium dissolution for stable zinc ion batteries. ACS Appl. Energy Mater. 2022, 5, 6139–6145.

[57]

Geng, Y. F.; Pan, L.; Peng, Z. Y.; Sun, Z. F.; Lin, H. C.; Mao, C. W.; Wang, L.; Dai, L.; Liu, H. D.; Pan, K. M. et al. Electrolyte additive engineering for aqueous Zn ion batteries. Energy Stor. Mater. 2022, 51, 733–755.

[58]

Wang, H. B.; Li, H.; Tang, Y. X.; Xu, Z.; Wang, K. X.; Li, Q. Y.; He, B. C.; Liu, Y.; Ge, M. Z.; Chen, S. et al. Stabilizing Zn anode interface by simultaneously manipulating the thermodynamics of Zn nucleation and overpotential of hydrogen evolution. Adv. Funct. Mater. 2022, 32, 2207898.

[59]

Peng, Z.; Wei, Q. L.; Tan, S. S.; He, P.; Luo, W.; An, Q. Y.; Mai, L. Q. Novel layered iron vanadate cathode for high-capacity aqueous rechargeable zinc batteries. Chem. Commun. 2018, 54, 4041–4044.

[60]

Li, C.; Jin, S.; Archer, L. A.; Nazar, L. F. Toward practical aqueous zinc-ion batteries for electrochemical energy storage. Joule 2022, 6, 1733–1738.

Nano Research
Pages 11000-11011
Cite this article:
Long J, Han T, Lin X, et al. An integrated flexible self-healing Zn-ion battery using dendrite-suppressible hydrogel electrolyte and free-standing electrodes for wearable electronics. Nano Research, 2023, 16(8): 11000-11011. https://doi.org/10.1007/s12274-023-5882-9
Topics:

1017

Views

7

Crossref

8

Web of Science

8

Scopus

0

CSCD

Altmetrics

Received: 08 April 2023
Revised: 12 May 2023
Accepted: 30 May 2023
Published: 15 July 2023
© Tsinghua University Press 2023
Return