Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Among many aqueous batteries, flexible zinc-ion (Zn-ion) battery becomes the focus owing to the merits of low cost, non-toxicity, and safety. Here, a Zn dendrite-suppressible hydrogel electrolyte with both flexible and self-healing properties is developed via photoinitiated polymerization. The cross-linked structure of the polyacrylamide-N,N'-methylenebisacrylamide (PAM-MBA)-Zn/Mn hydrogel endows an enlarged chemical stable window, high ionic conductivity, and low polarization potential. After cycling at the current density of 0.5 mA·cm−2 for 250 h, Zn‖Zn symmetrical cell based on PAM-MBA-Zn/Mn electrolyte delivers a low polarization of 40 mV. The suppressed dendrite growth is ascribed to the uniform Zn deposition/stripping on anode. The galvanostatic intermittent titration technique curves display that the Zn-ion battery constructed by the PAM-MBA-Zn/Mn hydrogel electrolyte, free-standing FeVO4/carbon cloth cathode, and Zn nanosheets/carbon cloth anode presents low reaction resistance and fast diffusion coefficient, indicating good endurance of cycling at high current densities. The battery with PAM-MBA-Zn/Mn hydrogel electrolyte presents a good flexible and self-healing performance. After bending 0°, 60°, 90°, and 180° for 30 times, batteries deliver stable capacities. Even cutting into ten pieces, the battery could self-heal and display a potential retention of 93.7% compared to the fresh cell. A good rate-performance is also achieved. After cutting/healing three times during cycling, capacity recovers well compared to the first-time cutting/healing. Moreover, the battery exhibits good flexibility using in an electric watch, indicating a promising potential for wearable electronics.
Lei, D.; Hou, Z. D.; Li, N.; Cao, Y. J.; Ren, L. B.; Liu, H. Y.; Zhang, Y.; Wang, J. G. A homologous N/P-codoped carbon strategy to streamline nanostructured MnO/C and carbon toward boosted lithium-ion capacitors. Carbon 2023, 201, 260–268.
Hao, Z. Q.; Shi, X. Y.; Yang, Z.; Li, L.; Chou, S. L. Developing high-performance metal selenides for sodium-ion batteries. Adv. Funct. Mater. 2022, 32, 2208093.
Pan, J. J.; Xia, Z. P.; Deng, N. P.; Chen, L.; Zhang, H. B.; Lu, Y.; Liu, Y.; Gao, H. C. Eumelanin-inspired nanomaterials in electrochemical energy storage devices: A review. Chem. Eng. J. 2023, 452, 138607.
Ju, Z. N.; Zhao, Q.; Chao, D. L.; Hou, Y.; Pan, H. G.; Sun, W. P.; Yuan, Z. Y.; Li, H.; Ma, T. Y.; Su, D. W. et al. Energetic aqueous batteries. Adv. Energy Mater. 2022, 12, 2201074.
Jia, B. E.; Thang, A. Q.; Yan, C. S.; Liu, C. T.; Lv, C. T.; Zhu, Q.; Xu, J. W.; Chen, J.; Pan, H. G.; Yan, Q. Y. Rechargeable aqueous aluminum-ion battery: Progress and outlook. Small 2022, 18, 2107773.
Guo, C.; Yi, S. J.; Si, R.; Xi, B. J.; An, X. G.; Liu, J.; Li, J. F.; Xiong, S. L. Advances on defect engineering of vanadium-based compounds for high-energy aqueous zinc-ion batteries. Adv. Energy Mater. 2022, 12, 2202039.
Li, C. C.; Wu, Q.; Ma, J.; Pan, H. G.; Liu, Y. X.; Lu, Y. Y. Regulating zinc metal anodes via novel electrolytes in rechargeable zinc-based batteries. J. Mater. Chem. A 2022, 10, 14692–14708.
Ni, Q.; Kim, B.; Wu, C.; Kang, K. Non-electrode components for rechargeable aqueous zinc batteries: Electrolytes, solid-electrolyte-interphase, current collectors, binders, and separators. Adv. Mater. 2022, 34, 2108206.
Zhang, Q. H.; Su, Y. W.; Shi, Z. X.; Yang, X. Z.; Sun, J. Y. Artificial interphase layer for stabilized Zn anodes: Progress and prospects. Small 2022, 18, 2203583.
Wang, X. Y.; Li, X. M.; Fan, H. Q.; Ma, L. T. Solid electrolyte interface in Zn-based battery systems. Nano-Micro Lett. 2022, 14, 205.
Shao, Z. J.; Yin, T. Y.; Jiang, J. B.; He, Y.; Xiang, T.; Zhou, S. B. Wound microenvironment self-adaptive hydrogel with efficient angiogenesis for promoting diabetic wound healing. Bioact. Mater. 2023, 20, 561–573.
Liu, J. H.; Ahmed, S.; Wang, T.; Song, S. H. Flexible thermotolerant Zn-ion hybrid supercapacitors enabled by heat-resistant polymer electrolyte. Chem. Eng. J. 2023, 451, 138512.
Wang, J. W.; Huang, Y.; Liu, B. B.; Li, Z. X.; Zhang, J. Y.; Yang, G. S.; Hiralal, P.; Jin, S. Y.; Zhou, H. Flexible and anti-freezing zinc-ion batteries using a guar-gum/sodium-alginate/ethylene-glycol hydrogel electrolyte. Energy Stor. Mater. 2021, 41, 599–605.
Quan, Y. H.; Zhou, W. J.; Wu, T.; Chen, M. F.; Han, X.; Tian, Q. H.; Xu, J. L.; Chen, J. Z. Sorbitol-modified cellulose hydrogel electrolyte derived from wheat straws towards high-performance environmentally adaptive flexible zinc-ion batteries. Chem. Eng. J. 2022, 446, 137056.
Xu, P. J.; Wang, C. Y.; Zhao, B. X.; Zhou, Y.; Cheng, H. F. A high-strength and ultra-stable halloysite nanotubes-crosslinked polyacrylamide hydrogel electrolyte for flexible zinc-ion batteries. J. Power Sources 2021, 506, 230196.
Huang, S. W.; Hou, L.; Li, T. Y.; Jiao, Y. C.; Wu, P. Y. Antifreezing hydrogel electrolyte with ternary hydrogen bonding for high-performance zinc-ion batteries. Adv. Mater. 2022, 34, 2110140.
Ji, S. G.; Qin, J. X.; Yang, S. S.; Shen, P.; Hu, Y. Y.; Yang, K.; Luo, H.; Xu, J. A mechanically durable hybrid hydrogel electrolyte developed by controllable accelerated polymerization mechanism towards reliable aqueous zinc-ion battery. Energy Stor. Mater. 2023, 55, 236–243.
Ma, L. T.; Chen, S. M.; Li, N.; Liu, Z. X.; Tang, Z. J.; Zapien, J. A.; Chen, S. M.; Fan, J.; Zhi, C. Y. Hydrogen-free and dendrite-free all-solid-state Zn-ion batteries. Adv. Mater. 2020, 32, 1908121.
Zhou, M.; Guo, S.; Li, J. L.; Luo, X. B.; Liu, Z. X.; Zhang, T. S.; Cao, X. X.; Long, M. Q.; Lu, B. A.; Pan, A. Q. et al. Surface-preferred crystal plane for a stable and reversible zinc anode. Adv. Mater. 2021, 33, 2100187.
Guo, S. S.; Koketsu, T.; Hu, Z. W.; Zhou, J.; Kuo, C. Y.; Lin, H. J.; Chen, C. T.; Strasser, P.; Sui, L. J.; Xie, Y. et al. Mo-incorporated magnetite Fe3O4 featuring cationic vacancies enabling fast lithium intercalation for batteries. Small 2022, 18, 2203835.
Hase, Y.; Uyama, T.; Nishioka, K.; Seki, J.; Morimoto, K.; Ogihara, N.; Mukouyama, Y.; Nakanishi, S. Positive feedback mechanism to increase the charging voltage of Li-O2 batteries. J. Am. Chem. Soc. 2022, 144, 1296–1305.
Tong, B.; Guo, G. J.; Meng, X. Y. X.; Bai, P.; Lyu, J.; Guo, X. H. Highly efficient lithium adsorption and stable isotope separation by metal-organic frameworks. Chem. Commun. 2022, 58, 8866–8869.
Qi, Y. F.; Fan, C. X.; Quan, X.; Xi, F.; Liu, Z. J.; Cao, Q.; Wu, Z. R.; Yue, Q. Y.; Gao, B. Y.; Xu, X. et al. In-situ recycling strategy for co-treatment of antimony-rich sludge char and leachate: Pilot-scale application in an engineering case. Chem. Eng. J. 2022, 446, 137315.
Liu, B.; Yan, Z.; Xu, T.; Li, C. P.; Gao, R.; Hao, H. G.; Bai, J. Co-construction of oxygen vacancies and heterojunctions on CeO2 via one-step Fe doping for enhanced photocatalytic activity in Suzuki reaction. Chem. Eng. J. 2022, 442, 136226.
Holz, L. I. V.; Graça, V. C. D.; Loureiro, F. J. A.; Mikhalev, S. M.; Mendes, D.; Mendes, A.; Fagg, D. P. Tailoring the anion stoichiometry and oxidation kinetics of vanadium (oxy)nitride by the control of ammonolysis conditions. J. Mater. Chem. C 2022, 10, 5608–5620.
Jiang, H. J.; Zheng, L.; Wang, J.; Xu, M. Z.; Gan, X. T.; Wang, X. W.; Huang, W. Inversion symmetry broken in 2H phase vanadium-doped molybdenum disulfide. Nanoscale 2021, 13, 18103–18111.
Yu, Y.; Li, X. Y.; Zhao, R. H.; Liu, H.; Chen, J. Gaseous selenium removal by metal oxide sorbent: Experimental and density functional theory study. Fuel 2022, 325, 124904.
Li, W. D.; Chen, Q. Y.; Zhang, D. Y.; Fang, C.; Nian, S.; Wang, W. X.; Xu, C.; Chang, C. K. High stability of Mo-F dual-doped O3-type NaNi1/3Fe1/3Mn1/3O2 cathode material for sodium-ion battery. Mater. Today Commun. 2022, 32, 103839.
Liao, X. X.; Wang, B.; Wang, L.; Zhu, J. T.; Chu, P.; Zhu, Z. B.; Zheng, S. W. Experimental study on the wettability of coal with different metamorphism treated by surfactants for coal dust control. ACS Omega 2021, 6, 21925–21938.
Hua, B. L.; Zheng, L.; Adeboye, A.; Li, F. T. Defect- and nitrogen-rich porous carbon embedded with Co NPs derived from self-assembled Co-ZIF-8@anionic polyacrylamide network as PMS activator for highly efficient removal of tetracycline hydrochloride from water. Chem. Eng. J. 2022, 443, 136439.
Zhang, K. F.; Pang, Y. J.; Chen, C. Z.; Wu, M.; Liu, Y. X.; Yu, S. T.; Li, L.; Ji, Z.; Pang, J. H. Stretchable and conductive cellulose hydrogel electrolytes for flexible and foldable solid-state supercapacitors. Carbohydr. Polym. 2022, 293, 119673.
Zhou, Y. T.; Zhang, S.; Buckingham, M. A.; Aldous, L.; Beirne, S.; Wu, C.; Liu, Y. Q.; Wallace, G.; Chen, J. Novel porous thermosensitive gel electrolytes for wearable thermo-electrochemical cells. Chem. Eng. J. 2022, 449, 137775.
Zhang, S. Y.; Kieffer, S. J.; Zhang, C. J.; Alleyne, A. G.; Braun, P. V. Directed molecular collection by E-jet printed microscale chemical potential wells in hydrogel films. Adv. Mater. 2018, 30, 1803140.
Cañamares, M. V.; Mieites-Alonso, M. G.; Leona, M. Raman, SERS and DFT analysis of the natural red dyes of Japanese origin alkannin and shikonin. Spectrochim. Acta A: Mol. Biomol. Spectrosc. 2022, 265, 120382.
Lowum, S.; Floyd, R.; Bermejo, R.; Maria, J. P. Mechanical strength of cold-sintered zinc oxide under biaxial bending. J. Mater. Sci. 2019, 54, 4518–4522.
de Castro Mendes, I.; dos Santos Oliveira, J. A.; Dantas, M. S. S. Characterization of 20th century art materials from the Lasar Segall Museum. J. Raman Spectrosc. 2019, 50, 281–288.
Liu, S. L.; Ji, J.; Yu, Y.; Huang, H. B. Facile synthesis of amorphous mesoporous manganese oxides for efficient catalytic decomposition of ozone. Catal. Sci. Technol. 2018, 8, 4264–4273.
Ko, S.; Chhetry, A.; Kim, D.; Yoon, H.; Park, J. Y. Hysteresis-free double-network hydrogel-based strain sensor for wearable smart bioelectronics. ACS Appl. Mater. Interfaces 2022, 14, 31363–31372.
Zhao, H. N.; Hao, S. W.; Fu, Q. J.; Zhang, X. R.; Meng, L.; Xu, F.; Yang, J. Ultrafast fabrication of lignin-encapsulated silica nanoparticles reinforced conductive hydrogels with high elasticity and self-adhesion for strain sensors. Chem. Mater. 2022, 34, 5258–5272.
Wang, D.; Zhang, J.; Fan, C. H.; Xing, J.; Wei, A. F.; Xu, W. Z.; Feng, Q.; Wei, Q. F. A strong, ultrastretchable, antifreezing and high sensitive strain sensor based on ionic conductive fiber reinforced organohydrogel. Compos. Part B: Eng. 2022, 243, 110116.
Dean, J. L. S.; Fournier, J. A. Vibrational dynamics of the intramolecular H-bond in acetylacetone investigated with transient and 2D IR spectroscopy. J. Phys. Chem. B 2022, 126, 3551–3562.
Liu, Y. Q.; He, H. N.; Gao, A. M.; Ling, J. Z.; Yi, F. Y.; Hao, J. N.; Li, Q. Z.; Shu, D. Fundamental study on Zn corrosion and dendrite growth in gel electrolyte towards advanced wearable Zn-ion battery. Chem. Eng. J. 2022, 446, 137021.
Chen, W.; Li, G. C.; Yi, X. F.; Day, S. J.; Tarach, K. A.; Liu, Z. Q.; Liu, S. B.; Edman Tsang, S. C.; Góra-Marek, K.; Zheng, A. M. Molecular understanding of the catalytic consequence of ketene intermediates under confinement. J. Am. Chem. Soc. 2021, 143, 15440–15452.
Chen, W. J.; Li, H. F.; Song, J. P.; Zhao, Y. J.; Ma, P. T.; Niu, J. Y.; Wang, J. P. Binuclear Ru(III)-containing polyoxometalate with efficient photocatalytic activity for oxidative coupling of amines to imines. Inorg. Chem. 2022, 61, 2076–2085.
Jia, C. E.; Zhang, X. S.; Liang, S. J.; Fu, Y. C.; Liu, W. T.; Chen, J. Z.; Liu, X. Y.; Zhang, L. L. Environmentally adaptable hydrogel electrolyte with the triple interpenetrating network in the flexible zinc-ion battery with ultralong stability. J. Power Sources 2022, 548, 232072.
Chen, S. G.; Lan, R.; Humphreys, J.; Tao, S. W. Salt-concentrated acetate electrolytes for a high voltage aqueous Zn/MnO2 battery. Energy Stor. Mater. 2020, 28, 205–215.
Zhang, W.; Dai, Y. H.; Chen, R. W.; Xu, Z. M.; Li, J. W.; Zong, W.; Li, H. X.; Li, Z.; Zhang, Z. Y.; Zhu, J. X. et al. Highly reversible zinc metal anode in a dilute aqueous electrolyte enabled by a pH buffer additive. Angew. Chem., Int. Ed. 2023, 62, e202212695.
Liu, Y.; Zheng, Y. F.; Chen, X. H.; Yang, J. A.; Pan, H. B.; Chen, D. F.; Wang, L. N.; Zhang, J. J.; Zhu, D. H.; Wu, S. L. et al. Fundamental theory of biodegradable metals-definition, criteria, and design. Adv. Funct. Mater. 2019, 29, 1805402.
Luo, Y.; Wei, L. C.; Geng, H. B.; Zhang, Y. F.; Yang, Y.; Li, C. C. Amorphous bimetallic oxides Fe-V-O with tunable compositions toward rechargeable Zn-ion batteries with excellent low-temperature performance. ACS Appl. Mater. Interfaces 2020, 12, 11753–11760.
Kumar, S.; Verma, V.; Chua, R.; Ren, H.; Kidkhunthod, P.; Rojviriya, C.; Sattayaporn, S.; de Groot, F. M. F.; Manalastas Jr, W.; Srinivasan, M. Multiscalar investigation of FeVO4 conversion cathode for a low concentration Zn(CF3SO3)2 rechargeable Zn-ion aqueous battery. Batteries Supercaps 2020, 3, 619–630.
Ma, L. T.; Chen, S. M.; Long, C. B.; Li, X. L.; Zhao, Y. W.; Liu, Z. X.; Huang, Z. D.; Dong, B. B.; Zapien, J. A.; Zhi, C. Y. Achieving high-voltage and high-capacity aqueous rechargeable zinc ion battery by incorporating two-species redox reaction. Adv. Energy Mater. 2019, 9, 1902446.
Yin, B.; Liang, S. Q.; Yu, D. D.; Cheng, B. S.; Egun, I. L.; Lin, J. D.; Xie, X. F.; Shao, H. Z.; He, H. Y.; Pan, A. Q. Increasing accessible subsurface to improving rate capability and cycling stability of sodium-ion batteries. Adv. Mater. 2021, 33, 2100808.
Ye, F.; Liu, Q.; Dong, H. L.; Guan, K. L.; Chen, Z. Y.; Ju, N.; Hu, L. F. Organic zinc-ion battery: Planar, π-conjugated quinone-based polymer endows ultrafast ion diffusion kinetics. Angew. Chem., Int. Ed. 2022, 61, e202214244.
Zhang, W.; Wu, Y. L.; Xu, Z. M.; Li, H. X.; Xu, M.; Li, J. W.; Dai, Y. H.; Zong, W.; Chen, R. W.; He, L. et al. Rationally designed sodium chromium vanadium phosphate cathodes with multi-electron reaction for fast-charging sodium-ion batteries. Adv. Energy Mater. 2022, 12, 2201065.
Rashad, M.; Geaney, H. Vapor–solid–solid growth of silicon nanowires using magnesium seeds and their electrochemical performance in Li-ion battery anodes. Chem. Eng. J. 2023, 452, 139397.
Shuai, B. B.; Zhou, C.; Pi, Y. Q.; Xu, X. Atomic layer-deposited ZnO layer on hydrated vanadium dioxide cathodes against vanadium dissolution for stable zinc ion batteries. ACS Appl. Energy Mater. 2022, 5, 6139–6145.
Geng, Y. F.; Pan, L.; Peng, Z. Y.; Sun, Z. F.; Lin, H. C.; Mao, C. W.; Wang, L.; Dai, L.; Liu, H. D.; Pan, K. M. et al. Electrolyte additive engineering for aqueous Zn ion batteries. Energy Stor. Mater. 2022, 51, 733–755.
Wang, H. B.; Li, H.; Tang, Y. X.; Xu, Z.; Wang, K. X.; Li, Q. Y.; He, B. C.; Liu, Y.; Ge, M. Z.; Chen, S. et al. Stabilizing Zn anode interface by simultaneously manipulating the thermodynamics of Zn nucleation and overpotential of hydrogen evolution. Adv. Funct. Mater. 2022, 32, 2207898.
Peng, Z.; Wei, Q. L.; Tan, S. S.; He, P.; Luo, W.; An, Q. Y.; Mai, L. Q. Novel layered iron vanadate cathode for high-capacity aqueous rechargeable zinc batteries. Chem. Commun. 2018, 54, 4041–4044.
Li, C.; Jin, S.; Archer, L. A.; Nazar, L. F. Toward practical aqueous zinc-ion batteries for electrochemical energy storage. Joule 2022, 6, 1733–1738.