AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

The “mediated molecular”-assisted construction of Mo2N islands dispersed on Co-based nanosheets for high-efficient electrocatalytic hydrogen evolution reaction

Fanyi KongAiping WuSiyu WangXinhui ZhangChungui Tian( )Honggang Fu( )
Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People’s Republic of China, Heilongjiang University, Harbin 150080, China
Show Author Information

Graphical Abstract

We reported the construction of two-dimensional (2D) Co-Mo nitrides based heterojunctions for high-efficient hydrogen evolution reaction (HER) based on the use of a “mediated molecular”. The catalyst exhibits an onset potential of 0 mV and the overpotential of 10 mA·cm−2 at 35.0 mV, which is close to that of Pt/C catalyst. It also exhibits an activity superior to Pt/C at high current density (> 100 mA·cm−2).

Abstract

The rational design of the catalysts with easily-accessible surface and high intrinsic activity is desirable for electrocatalytic hydrogen evolution reaction (HER). Here, we reported the construction of two-dimensional (2D) Co-Mo nitrides based heterojunctional catalyst for efficient HER based on a “mediated molecular” assisted route. The 2D Co(OH)2 sheet reacted partially with the “mediated molecular” (2-methylimidazole (2-MIM)) to form zeolitic imidazolate framework (ZIF)-67 at surface, giving ZIF-67/Co(OH)2 sheets. The ZIF-67 combines with [PMo12O40]3− cluster (PMo12) due to the interaction of mediated molecular with PMo12, producing 2D Mo-Co-2MIM/Co(OH)2 bimetallic precursor. After controlled nitriding, the Mo2N islands dispersed on 2D porous Co-based sheets were formed. A series of characterizations and density functional theory (DFT) calculation indicated the formation of a close contact interface, which promotes the electron transfer between Mo and Co components, enhances the electron migration/redistribution and redistribution and down-shift of d-band center and thus gives a high intrinsic activity. The 2D characteristics make the catalyst more accessible contact sites, which is favourable to promot the HER. The tests showed that the optimized catalyst exhibits an onset potential of 0 mV and an overpotential of 10 mA·cm−2 at 35.0 mV, which is quite close to that of Pt/C catalyst. It also exhibits an activity superior to Pt/C at high current density (> 100 mA·cm−2). A good stability of the catalyst was achieved with no significant decay for 100 h of continuous operation. The electrolytic cell composed of optimized catalyst and P-NiFe-layered double hydroxide (LDH) can be driven by low voltage (only 1.47 V) to reach a current density of 10 mA·cm−2.

Electronic Supplementary Material

Video
12274_2023_5878_MOESM2_ESM.mp4
Download File(s)
12274_2023_5878_MOESM1_ESM.pdf (3 MB)

References

[1]

Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 1811.

[2]

Jin, H. Y.; Guo, C. X.; Liu, X.; Liu, J. L.; Vasileff, A.; Jiao, Y.; Zheng, Y.; Qiao, S. Z. Emerging two-dimensional nanomaterials for electrocatalysis. Chem. Rev. 2018, 118, 6337–6408.

[3]

Paul, A.; Upadhyay, K. K.; Backovic, G.; Karmakar, A.; Ferreira, L. F. V.; Šljukić, B.; Montemor, M. F.; Da Silva, M. F. C. G.; Pombeiro, A. J. L. Versatility of amide-functionalized Co(II) and Ni(II) coordination polymers: From thermochromic-triggered structural transformations to supercapacitors and electrocatalysts for water splitting. Inorg. Chem. 2020, 59, 16301–16318.

[4]

Geng, S.; Tian, F. Y.; Li, M. G.; Liu, Y. Q.; Sheng, J.; Yang, W. W.; Yu, Y. S.; Hou, Y. L. Activating interfacial S sites of MoS2 boosts hydrogen evolution electrocatalysis. Nano Res. 2022, 15, 1809–1816.

[5]

Zhou, X. Y.; Guo, Y. H.; Zhao, F.; Shi, W.; Yu, G. H. Topology-controlled hydration of polymer network in hydrogels for solar-driven wastewater treatment. Adv. Mater. 2020, 32, 2007012.

[6]

Yan, X. D.; Tian, L. H.; Atkins, S.; Liu, Y.; Murowchick, J.; Chen, X. B. Converting CoMoO4 into CoO/MoOx for overall water splitting by hydrogenation. ACS Sustainable Chem. Eng. 2016, 4, 3743–3749.

[7]

Du, S. C.; Ren, Z. Y.; Zhang, J.; Wu, J.; Xi, W.; Zhu, J. Q.; Fu, H. G. Co3O4 nanocrystal ink printed on carbon fiber paper as a large-area electrode for electrochemical water splitting. Chem. Commun. 2015, 51, 8066–8069.

[8]

Sun, Y. K.; Sun, W. Y.; Chen, L. H.; Meng, A.; Li, G. C.; Wang, L.; Huang, J. F.; Song, A. L.; Zhang, Z. H.; Li, Z. J. Surface reconstruction, doping and vacancy engineering to improve the overall water splitting of CoP nanoarrays. Nano Res. 2023, 16, 228–238.

[9]

Jian, C. Y.; Hong, W. T.; Cai, Q.; Li, J.; Liu, W. Surface electron state engineering enhanced hydrogen evolution of hierarchical molybdenum disulfide in acidic and alkaline media. Appl. Catal. B:Environ. 2020, 266, 118649.

[10]
Zhu, C. R.; Wang, A. L.; Xiao, W.; Chao, D. L.; Zhang, X.; Tiep, N. H.; Chen, S.; Kang, J. N.; Wang, X.; Ding, J. et al. In situ grown epitaxial heterojunction exhibits high-performance electrocatalytic water splitting. Adv. Mater. 2018, 30, 1705516.
[11]
Zhang, Y. X.; Sun, L.; Bai, L. Q.; Si, H. C.; Zhang, Y.; Zhang, Y. H. N-doped-carbon coated Ni2P-Ni sheets anchored on graphene with superior energy storage behavior. Nano Res. 2019, 12, 607–618.
[12]

Peng, X.; Pi, C. R.; Zhang, X. M.; Li, S.; Huo, K. F.; Chu, P. K. Recent progress of transition metal nitrides for efficient electrocatalytic water splitting. Sustainable Energy Fuels 2019, 3, 366–381.

[13]

Theerthagiri, J.; Lee, S. J.; Murthy, A. P.; Madhavan, J.; Choi, M. Y. Fundamental aspects and recent advances in transition metal nitrides as electrocatalysts for hydrogen evolution reaction: A review. Curr. Opin. Solid State Mater. Sci. 2020, 24, 100805.

[14]

Ningthoujam, R. S.; Gajbhiye, N. S. Synthesis, electron transport properties of transition metal nitrides and applications. Prog. Mater Sci. 2015, 70, 50–154.

[15]

Yuan, Y.; Wang, J. C.; Adimi, S.; Shen, H. J.; Thomas, T.; Ma, R. G.; Attfield, J. P.; Yang, M. H. Zirconium nitride catalysts surpass platinum for oxygen reduction. Nat. Mater. 2020, 19, 282–286.

[16]

Nguyen, D. C.; Doan, T. L. L.; Prabhakaran, S.; Tran, D. T.; Kim, D. H.; Lee, J. H.; Kim, N. H. Hierarchical Co and Nb dual-doped MoS2 nanosheets shelled micro-TiO2 hollow spheres as effective multifunctional electrocatalysts for HER, OER, and ORR. Nano Energy 2021, 82, 105750.

[17]

Shen, F. C.; Sun, S. N.; Xin, Z. F.; Li, S. L.; Dong, L. Z.; Huang, Q.; Wang, Y. R.; Liu, J.; Lan, Y. Q. Hierarchically phosphorus doped bimetallic nitrides arrays with unique interfaces for efficient water splitting. Appl. Catal. B:Environ. 2019, 243, 470–480.

[18]

Su, D. N.; Zhang, X. M.; Wu, A. P.; Yan, H. J.; Liu, Z. Y.; Wang, L.; Tian, C. G.; Fu, H. G. CoO-Mo2N hollow heterostructure for high-efficiency electrocatalytic hydrogen evolution reaction. NPG Asia Mater. 2019, 11, 78.

[19]

Shi, R.; Wang, J. X.; Wang, Z.; Li, T. F.; Song, Y. F. Unique NiFe-NiCoO2 hollow polyhedron as bifunctional electrocatalysts for water splitting. J. Energy Chem. 2019, 33, 74–80.

[20]

Linnemann, J.; Kanokkanchana, K.; Tschulik, K. Design strategies for electrocatalysts from an electrochemist’s perspective. ACS Catal. 2021, 11, 5318–5346.

[21]

Zhang, A.; Liang, Y. X.; Zhang, H.; Geng, Z. G.; Zeng, J. Doping regulation in transition metal compounds for electrocatalysis. Chem. Soc. Rev. 2021, 50, 9817–9844.

[22]
Zhang, H.; Wang, J.; Qin, F. Q.; Liu, H. L.; Wang, C. V-doped Ni3N/Ni heterostructure with engineered interfaces as a bifunctional hydrogen electrocatalyst in alkaline solution: Simultaneously improving water dissociation and hydrogen adsorption. Nano Res. 2021, 14, 3489–3496.
[23]

Duan, Z. X.; Zhao, D. P.; Sun, Y. C.; Tan, X. J.; Wu, X. Bifunctional Fe-doped CoP@Ni2P heteroarchitectures for high-efficient water electrocatalysis. Nano Res. 2022, 15, 8865–8871.

[24]

Ma, H. B.; Chen, Z. W.; Wang, Z. L.; Sing, C. V.; Jiang, Q. Interface engineering of Co/CoMoN/NF heterostructures for high-performance electrochemical overall water splitting. Adv. Sci. 2022, 9, 2105313.

[25]

Tang, Y. J.; Zhu, H. J.; Dong, L. Z.; Zhang, A. M.; Li, S. L.; Liu, J.; Lan, Y. Q. Solid-phase hot-pressing of POMs-ZIFs precursor and derived phosphide for overall water splitting. Appl. Catal. B:Environ. 2019, 245, 528–535.

[26]

Guo, H.; Wu, A. P.; Xie, Y.; Yan, H. J.; Wang, D. X.; Wang, L.; Tian, C. G. 2D porous molybdenum nitride/cobalt nitride heterojunction nanosheets with interfacial electron redistribution for effective electrocatalytic overall water splitting. J. Mater. Chem. A 2021, 9, 8620–8629.

[27]

Li, Z. H.; Zhang, X.; Cheng, H. F.; Liu, J. W.; Shao, M. F.; Wei, M.; Evans, D. G.; Zhang, H.; Duan, X. Confined synthesis of 2D nanostructured materials toward electrocatalysis. Adv. Energy Mater. 2020, 10, 1900486.

[28]

Liu, S. J.; Zhu, J.; Sun, M.; Ma, Z. X.; Hu, K.; Nakajima, T.; Liu, X. H.; Schmuki, P.; Wang, L. Promoting the hydrogen evolution reaction through oxygen vacancies and phase transformation engineering on layered double hydroxide nanosheets. J. Mater. Chem. A 2020, 8, 2490–2497.

[29]

Hong, Y. L.; Liu, Z. B.; Wang, L.; Zhou, T. Y.; Ma, W.; Xu, C.; Feng, S.; Chen, L.; Chen, M. L.; Sun, D. M. et al. Chemical vapor deposition of layered two-dimensional MoSi2N4 materials. Science 2020, 369, 670–674.

[30]

Chen, C. F.; Wu, A. P.; Yan, H. J.; Xiao, Y. L.; Tian, C. G.; Fu, H. G. Trapping [PMo12O40]3− clusters into pre-synthesized ZIF-67 toward MoxCoxC particles confined in uniform carbon polyhedrons for efficient overall water splitting. Chem. Sci. 2018, 9, 4746–4755.

[31]

Guo, X. L.; Xing, T. T.; Lou, Y. B.; Chen, J. X. Controlling ZIF-67 crystals formation through various cobalt sources in aqueous solution. J. Solid State Chem. 2016, 235, 107–112.

[32]

Chen, T. Y.; Lin, L. Y.; Geng, D. S.; Lee, P. Y. Systematic synthesis of ZIF-67 derived Co3O4 and N-doped carbon composite for supercapacitors via successive oxidation and carbonization. Electrochim. Acta 2021, 376, 137986.

[33]

Qin, M. L.; Li, S. M.; Zhao, Y. Z.; Lao, C. Y.; Zhang, Z. L.; Liu, L. A.; Fang, F.; Wu, H. Y.; Jia, B. R.; Liu, Z. W. et al. Unprecedented synthesis of holey 2D layered double hydroxide nanomesh for enhanced oxygen evolution. Adv. Energy Mater. 2019, 9, 1803060.

[34]

Dou, Y. H.; Yuan, D.; Yu, L. P.; Zhang, W. P.; Zhang, L.; Fan, K. C.; Al-Mamun, M.; Liu, P. R.; He, C. T.; Zhao, H. J. Interpolation between W dopant and Co vacancy in CoOOH for enhanced oxygen evolution catalysis. Adv. Mater. 2021, 34, 2104667.

[35]

Wang, T.; Cao, Y. F.; Wu, H. M.; Feng, C. Q.; Ding, Y.; Mei, H. N-doped M/CoO (M = Ni, Co, and Mn) hybrid grown on nickel foam as efficient electrocatalyst for the chemical-assisted water electrolysis. Int. J. Hydrogen Energy 2022, 47, 5766–5778.

[36]

Ge, R. Y.; Huo, J. J.; Li, Y.; Liao, T.; Zhang, J. J.; Zhu, M. Y.; Ahamad, T.; Li, S. A.; Liu, H.; Feng, L. Y. et al. Electrocatalyst nanoarchitectonics with molybdenum-cobalt bimetallic alloy encapsulated in nitrogen-doped carbon for water splitting reaction. J. Alloys Compd. 2022, 904, 164084.

[37]

Gu, Y.; Wu, A. P.; Jiao, Y. Q.; Zheng, H. R.; Wang, X. Q.; Xie, Y.; Wang, L.; Tian, C. G.; Fu, H. G. Two-dimensional porous molybdenum phosphide/nitride heterojunction nanosheets for pH-universal hydrogen evolution reaction. Angew. Chem., Int. Ed. 2021, 60, 6673–6681.

[38]

Cai, Z. C.; Wu, A. P.; Yan, H. J.; Tian, C. G.; Guo, D. Z.; Fu, H. G. Zn-doped porous CoNiP nanosheet arrays as efficient and stable bifunctional electrocatalysts for overall water splitting. Energy Technol. 2020, 8, 1901079.

[39]

Tang, L.; Yu, L.; Ma, C.; Song, Y.; Tu, Y. C.; Zhang, Y. L.; Bo, X.; Deng, D. H. Three-dimensional CoOOH nanoframes confining high-density Mo single atoms for large-current-density oxygen evolution. J. Mater. Chem. A 2022, 10, 6242–6250.

[40]

Chen, Z. L.; Ha, Y.; Liu, Y.; Wang, H.; Yang, H. Y.; Xu, H. B.; Li, Y. J.; Wu, R. B. In situ formation of cobalt nitrides/graphitic carbon composites as efficient bifunctional electrocatalysts for overall water splitting. ACS Appl. Mater. Interfaces 2018, 10, 7134–7144.

[41]

Shu, X. X.; Chen, S.; Chen, S.; Pan, W.; Zhang, J. T. Cobalt nitride embedded holey N-doped graphene as advanced bifunctional electrocatalysts for Zn-air batteries and overall water splitting. Carbon 2020, 157, 234–243.

[42]

Lee, G.; Na, W.; Kim, J.; Lee, S.; Jang, J. Improved electrochemical performances of MOF-derived Ni-Co layered double hydroxide complexes using distinctive hollow-in-hollow structures. J. Mater. Chem. A 2019, 7, 17637–17647.

[43]

Kuru, C.; Alaf, M.; Simsek, Y. E.; Tocoglu, U. Sulfurized Co-Mo alloy thin films as efficient electrocatalysts for hydrogen evolution reaction. Catal. Lett. 2022, 152, 315–323.

[44]

McEnaney, J. M.; Soucy, T. L.; Hodges, J. M.; Callejas, J. F.; Mondschein, J. S.; Schaak, R. E. Colloidally-synthesized cobalt molybdenum nanoparticles as active and stable electrocatalysts for the hydrogen evolution reaction under alkaline conditions. J. Mater. Chem. A 2016, 4, 3077–3081.

[45]

Li, N.; Guan, Y.; Li, Y. L.; Mi, H. W.; Deng, L. B.; Sun, L. N.; Zhang, Q. L.; He, C. X.; Ren, X. Z. Co-Mo-P carbon nanospheres derived from metal-organic frameworks as a high-performance electrocatalyst towards efficient water splitting. J. Mater. Chem. A 2021, 9, 1143–1149.

[46]

Tahir, M. U.; Arshad, H.; Zhang, H.; Hou, Z. Y.; Wang, J. D.; Yang, C.; Su, X. T. Room temperature and aqueous synthesis of bimetallic ZIF derived CoNi layered double hydroxides and their applications in asymmetric supercapacitors. J. Colloid Interface Sci. 2020, 579, 195–204.

[47]

Fan, M. H.; Zheng, Y. N.; Li, A.; Li, K. Q.; Liu, H. Y.; Qiao, Z. A. Janus CoN/Co cocatalyst in porous N-doped carbon: Toward enhanced catalytic activity for hydrogen evolution. Catal. Sci. Technol. 2018, 8, 3695–3703.

[48]

Kim, G. T.; Park, T. K.; Chung, H.; Kim, Y. T.; Kwon, M. H.; Choi, J. G. Growth and characterization of chloronitroaniline crystals for optical parametric oscillators: I. XPS study of Mo-based compounds. Appl. Surf. Sci. 1999, 152, 35–43.

[49]

Atuchin, V. V.; Khyzhun, O. Y.; Chimitova, O. D.; Molokeev, M. S.; Gavrilova, T. A.; Bazarov, B. G.; Bazarova, J. G. Electronic structure of β-RbNd(MoO4)2 by XPS and XES. J. Phys. Chem. Solids 2015, 77, 101–108.

[50]

Peng, Z. Ji, X. J.; Jiao, Z. W.; Wang, R. X. Structural regulation of molybdenum carbide/nitride electrocatalyst for enhanced hydrogen evolution in acidic and alkaline media. J. Alloys Compd. 2022, 924, 166553.

[51]

Fominski, V.; Demin, M.; Nevolin, V.; Fominski, D.; Romanov, R.; Gritskevich, M.; Smirnov, N. Reactive pulsed laser deposition of clustered-type MoSx (x ~ 2, 3, and 4) films and their solid lubricant properties at low temperature. Nanomaterials 2020, 10, 653.

[52]

Qian, X. K.; Wang, H.; Wang, R. R.; Zhang, L. L.; Li, M. M.; Zhou, Y. N.; Wu, R. B. Dual-carbon coupled Co5.47N composites for capacitive lithium-ion storage. J. Colloid Interface Sci. 2021, 587, 192–201.

[53]

Wang, P.; Li, N.; Zhang, Z. A.; Hong, B.; Li, J.; Zhang, K.; Xie, K. Y.; Lai, Y. Q. Synergetic enhancement of polysulfide chemisorption and electrocatalysis over bicontinuous MoN@N-rich carbon porous nano-octahedra for Li-S batteries. J. Mater. Chem. A 2019, 7, 21934–21943.

[54]

Yao, R. Q.; Shi, H.; Wan, W. B.; Wen, Z.; Lang, X. Y.; Jiang, Q. Flexible Co-Mo-N/Au electrodes with a hierarchical nanoporous architecture as highly efficient electrocatalysts for oxygen evolution reaction. Adv. Mater. 2020, 32, 1907214.

[55]

Liu, T. T.; Cai, S.; Mei, Z. Y.; Zhao, G. F.; Xu, L. F.; An, Q.; Fu, Y.; Wang, H.; Li, M.; Guo, H. Boosting the water splitting activity of cobalt nitride through morphological design: A comparison of the influence of structure on the hydrogen and oxygen evolution reactions. Sustainable Energy Fuels 2021, 5, 3632–3639.

[56]

Li, Z. Y.; Li, J. W.; Xiong, M.; Lei, J. K. Chen, Y. Y.; Zhang, S. K. Effects of Mo single-doping and Mo-Al co-doping on ZnO transparent conductive films. Appl. Surf. Sci. 2022, 584, 152588.

[57]

Cai, Z. Y.; Shen, J.; Zhang, M. Z.; Cui, L.; Liu, W.; Liu, J. Q. CuxO nanorod arrays shelled with CoNi layered double hydroxide nanosheets for enhanced oxygen evolution reaction under alkaline conditions. J. Colloid Interface Sci. 2023, 630, 57–65.

[58]

Tang, S. S. Li, X. G.; Courté, M.; Peng, J. J.; Fichou, D. Hierarchical Cu(OH)2@Co(OH)2 nanotrees for water oxidation electrolysis. ChemCatChem 2020, 12, 4038–4043.

[59]

Li, Z. X.; Zhang, X.; Kang, Y. K.; Yu, C. C.; Wen, Y. Y.; Hu, M. L.; Meng, D.; Song, W. Y.; Yang, Y. Interface engineering of Co-LDH@MOF heterojunction in highly stable and efficient oxygen evolution reaction. Adv. Sci. 2021, 8, 2002631.

[60]

Li, Q. Q.; Huang, F. Z.; Li, S. K.; Zhang, H.; Yu, X. Y. Oxygen vacancy engineering synergistic with surface hydrophilicity modification of hollow Ru doped CoNi-LDH nanotube arrays for boosting hydrogen evolution. Small 2022, 18, 2104323.

[61]

Zhang, M. L.; Wang, J. L.; Ma, L. F.; Gong, Y. Q. Spontaneous synthesis of silver nanoparticles on cobalt-molybdenum layer double hydroxide nanocages for improved oxygen evolution reaction. J. Colloid Interface Sci. 2022, 628, 299–307.

[62]

Gao, X. P.; Zhou, Y. N.; Tan, Y. J.; Yang, B. W.; Cheng, Z. W.; Shen, Z. M.; Jia, J. P. Mo isolated single atoms on S, N-codoped carbon as efficient catalyst for hydrogen evolution reaction: A theoretical evaluation. Appl. Surf. Sci. 2019, 473, 770–776.

[63]

Li, Z. H.; Wu, A. P.; Xie, Y.; Gu, Y.; Yan, H. J.; Wang, D. X.; Wang, S. Y.; Jin, C. X.; Wang, L.; Tian, C. G. Integration of heterointerface and porosity engineering to achieve efficient hydrogen evolution of 2D porous NiMoN nanobelts coupled with Ni particles. Electrochim. Acta 2022, 403, 139702.

[64]

Gao, X. P.; Zhou, Y. N.; Tan, Y. J.; Yang, B. W.; Cheng, Z. W.; Shen, Z. M. Single Mo atoms supported on N-doped carbon with N/C edge-site for enhanced electrochemical hydrogen evolution. Int. J. Hydrogen Energy 2019, 44, 14861–14868.

[65]

Noerskov, J. K.; Bligaard, T.; Logadottir, A.; Kitchin, J. R.; Chen, J. G.; Pandelov, S.; Stimming, U. Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 2005, 152, J23–J26.

[66]

Qi, Y.; Yang, Z.; Dong, Y. C.; Bao, X. Q.; Bai, J. L.; Li, H.; Wang, M. T.; Xiong, D. H. A CoNi telluride heterostructure supported on Ni foam as an efficient electrocatalyst for the oxygen evolution reaction. Inorg. Chem. Front. 2022, 9, 5240–5251.

[67]

Zhang, X. H.; Wu, A. P.; Wang, D. X.; Jiao, Y. Q.; Yan, H. J.; Jin, C. X. Xie, Y.; Tian, C. G. Fine-tune the electronic structure in Co-Mo based catalysts to give easily coupled HER and OER catalysts for effective water splitting. Appl. Catal. B:Environ. 2023, 328, 122474.

Nano Research
Pages 10857-10866
Cite this article:
Kong F, Wu A, Wang S, et al. The “mediated molecular”-assisted construction of Mo2N islands dispersed on Co-based nanosheets for high-efficient electrocatalytic hydrogen evolution reaction. Nano Research, 2023, 16(8): 10857-10866. https://doi.org/10.1007/s12274-023-5878-5
Topics:

471

Views

5

Crossref

5

Web of Science

5

Scopus

0

CSCD

Altmetrics

Received: 01 April 2023
Revised: 15 May 2023
Accepted: 29 May 2023
Published: 17 July 2023
© Tsinghua University Press 2023
Return