Journal Home > Volume 16 , Issue 8

The influence of intrinsic defects of 1T-TaS2 on charge density waves (CDWs) is studied using scanning tunneling microscopy and spectroscopy (STM, STS), angle-resolved photoelectron spectroscopy (ARPES), and density functional theory (DFT). We identify several types of structural defects and find that most have a local character limited to a single CDW site, with a single exception which effectively behaves as a dopant, leading to band-bending and affecting multiple neighboring sites. While only one type of defect can be observed by STM topographic imaging, all defects are easily resolved in STS mapping. Our results indicate modulation of the Mott band gap commensurate with the CDW and breaking of the three-fold symmetry of electronic states. DFT calculations (with included Coulomb interactions) are used to investigate the electronic structure, focusing on both sulfur vacancy and oxygen-sulfur substitution. The sulfur vacancy system, characterized with a metallic behavior, is identified as the origin of one of the experimentally observed defects. Additionally, the effect of oxidation of 1T-TaS2 depends on the substitution site, leading to the heterogeneity of electronic properties.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Influence of structural defects on charge density waves in 1T-TaS2

Show Author's information Iaroslav Lutsyk1Karol Szalowski1( )Pawel Krukowski1Pawel Dabrowski1Maciej Rogala1Witold Kozlowski1Maxime Le Ster1Michal Piskorski1Dorota A. Kowalczyk1Wojciech Rys1Rafal Dunal1Aleksandra Nadolska1Klaudia Toczek1Przemyslaw Przybysz1Ewa Lacinska2Johannes Binder2Andrzej Wysmolek2Natalia Olszowska3,4Jacek J. Kolodziej3,4Martin Gmitra5,6Takuma Hattori7Yuji Kuwahara7Guang Bian8Tai-Chang Chiang9Pawel J. Kowalczyk1( )
Faculty of Physics and Applied Informatics, University of Lodz, Pomorska 149/153, 90-236 Lodz, Poland
Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Lojasiewicza 11, 30-348 Krakow, Poland
National Synchrotron Radiation Centre SOLARIS, Jagiellonian University, Czerwone Maki 98, 30-392 Kraków, Poland
Institute of Physics, Faculty of Science, Pavol Jozef Šafárik University in Košice, Park Angelinum 9, 040 01 Košice, Slovakia
Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Košice, Slovakia
Department of Precision Engineering, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita 565-0871, Japan
Department of Physics and Astronomy, University of Missouri, Columbia, Missouri 65211, USA
Department of Physics and Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801-3080, USA

Abstract

The influence of intrinsic defects of 1T-TaS2 on charge density waves (CDWs) is studied using scanning tunneling microscopy and spectroscopy (STM, STS), angle-resolved photoelectron spectroscopy (ARPES), and density functional theory (DFT). We identify several types of structural defects and find that most have a local character limited to a single CDW site, with a single exception which effectively behaves as a dopant, leading to band-bending and affecting multiple neighboring sites. While only one type of defect can be observed by STM topographic imaging, all defects are easily resolved in STS mapping. Our results indicate modulation of the Mott band gap commensurate with the CDW and breaking of the three-fold symmetry of electronic states. DFT calculations (with included Coulomb interactions) are used to investigate the electronic structure, focusing on both sulfur vacancy and oxygen-sulfur substitution. The sulfur vacancy system, characterized with a metallic behavior, is identified as the origin of one of the experimentally observed defects. Additionally, the effect of oxidation of 1T-TaS2 depends on the substitution site, leading to the heterogeneity of electronic properties.

References(63)

[1]

Hu, Z. H.; Wu, Z. T.; Han, C.; He, J.; Ni, Z. H.; Chen, W. Two-dimensional transition metal dichalcogenides: Interface and defect engineering. Chem. Soc. Rev. 2018, 47, 3100–3128.

[2]

Zhou, M. F.; Wang, W. H.; Lu, J. P.; Ni, Z. H. How defects influence the photoluminescence of TMDCs. Nano Res. 2021, 14, 29–39.

[3]

Liang, Q. J.; Zhang, Q.; Zhao, X. X.; Liu, M. Z.; Wee, A. T. S. Defect engineering of two-dimensional transition-metal dichalcogenides: Applications, challenges, and opportunities. ACS Nano 2021, 15, 2165–2181.

[4]

Ferain, I.; Colinge, C. A.; Colinge, J. P. Multigate transistors as the future of classical metal-oxide-semiconductor field-effect transistors. Nature 2011, 479, 310–316.

[5]

Allen, T. G.; Bullock, J.; Yang, X. B.; Javey, A.; de Wolf, S. Passivating contacts for crystalline silicon solar cells. Nat. Energy 2019, 4, 914–928.

[6]

Chen, Y. Q.; Shu, Z. W.; Zhang, S.; Zeng, P.; Liang, H. K.; Zheng, M. J.; Duan, H. G. Sub-10 nm fabrication: Methods and applications. Int. J. Extrem. Manuf. 2021, 3, 032002.

[7]

Wu, F.; Tian, H.; Shen, Y.; Hou, Z.; Ren, J.; Gou, G. Y.; Sun, Y. B.; Yang, Y.; Ren, T. L. Vertical MoS2 transistors with sub-1-nm gate lengths. Nature 2022, 603, 259–264.

[8]
Kanungo, S.; Ahmad, G.; Sahatiya, P.; Mukhopadhyay, A.; Chattopadhyay, S. 2D materials-based nanoscale tunneling field effect transistors: Current developments and future prospects. NPJ 2D Mater. Appl. 2022, 6, 83.
[9]

Fiori, G.; Bonaccorso, F.; Iannaccone, G.; Palacios, T.; Neumaier, D.; Seabaugh, A.; Banerjee, S. K.; Colombo, L. Electronics based on two-dimensional materials. Nat. Nanotechnol. 2014, 9, 768–779.

[10]

Akinwande, D.; Huyghebaert, C.; Wang, C. H.; Serna, M. I.; Goossens, S.; Li, L. J.; Wong, H. S. P.; Koppens, F. H. L. Graphene and two-dimensional materials for silicon technology. Nature 2019, 573, 507–518.

[11]

Mak, K. F.; Shan, J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photonics 2016, 10, 216–226.

[12]
Tan, T.; Jiang, X. T.; Wang, C.; Yao, B. C.; Zhang, H. 2D material optoelectronics for information functional device applications: Status and challenges. Adv. Sci. 2020, 7, 2000058.
[13]

Bekaert, J.; Khestanova, E.; Hopkinson, D. G.; Birkbeck, J.; Clark, N.; Zhu, M. J.; Bandurin, D. A.; Gorbachev, R.; Fairclough, S.; Zou, Y. C. et al. Enhanced superconductivity in few-layer TaS2 due to healing by oxygenation. Nano Lett. 2020, 20, 3808–3818.

[14]

Rossnagel, K. On the origin of charge-density waves in select layered transition-metal dichalcogenides. J. Phys. :Condens. Matter 2011, 23, 213001.

[15]

Han, T. R. T.; Zhou, F. R.; Malliakas, C. D.; Duxbury, P. M.; Mahanti, S. D.; Kanatzidis, M. G.; Ruan, C. Y. Exploration of metastability and hidden phases in correlated electron crystals visualized by femtosecond optical doping and electron crystallography. Sci. Adv. 2015, 1, e1400173.

[16]

Wang, W.; Dietzel, D.; Schirmeisen, A. Lattice discontinuities of 1T-TaS2 across first order charge density wave phase transitions. Sci. Rep. 2019, 9, 7066.

[17]

Wang, Y. D.; Yao, W. L.; Xin, Z. M.; Han, T. T.; Wang, Z. G.; Chen, L.; Cai, C.; Li, Y.; Zhang, Y. Band insulator to Mott insulator transition in 1T-TaS2. Nat. Commun. 2020, 11, 4215.

[18]

Jiang, T.; Hu, T.; Zhao, G. D.; Li, Y. C.; Xu, S. W.; Liu, C.; Cui, Y. N.; Ren, W. Two-dimensional charge density waves in TaX2 (X = S, Se, Te) from first principles. Phys. Rev. B 2021, 104, 075147.

[19]

Klanjšek, M.; Zorko, A.; Žitko, R.; Mravlje, J.; Jagličić, Z.; Biswas, P. K.; Prelovšek, P.; Mihailovic, D.; Arčon, D. A high-temperature quantum spin liquid with polaron spins. Nat. Phys. 2017, 13, 1130–1134.

[20]

Butler, C. J.; Yoshida, M.; Hanaguri, T.; Iwasa, Y. Mottness versus unit-cell doubling as the driver of the insulating state in 1T-TaS2. Nat. Commun. 2020, 11, 2477.

[21]

Ma, L. G.; Ye, C.; Yu, Y. J.; Lu, X. F.; Niu, X. H.; Kim, S.; Feng, D. L.; Tománek, D.; Son, Y. W.; Chen, X. H.; et al. A metallic mosaic phase and the origin of Mott-insulating state in 1T-TaS2. Nat. Commun. 2016, 7, 10956.

[22]

Stojchevska, L.; Vaskivskyi, I.; Mertelj, T.; Kusar, P.; Svetin, D.; Brazovskii, S.; Mihailovic, D. Ultrafast switching to a stable hidden quantum state in an electronic crystal. Science 2014, 344, 177–180.

[23]

Vaskivskyi, I.; Gospodaric, J.; Brazovskii, S.; Svetin, D.; Sutar, P.; Goreshnik, E.; Mihailovic, I. A.; Mertelj, T.; Mihailovic, D. Controlling the metal-to-insulator relaxation of the metastable hidden quantum state in 1T-TaS2. Sci. Adv. 2015, 1, e1500168.

[24]

Stahl, Q.; Kusch, M.; Heinsch, F.; Garbarino, G.; Kretzschmar, N.; Hanff, K.; Rossnagel, K.; Geck, J.; Ritschel, T. Collapse of layer dimerization in the photo-induced hidden state of 1T-TaS2. Nat. Commun. 2020, 11, 1247.

[25]

Zong, A.; Shen, X. Z.; Kogar, A.; Ye, L. D.; Marks, C.; Chowdhury, D.; Rohwer, T.; Freelon, B.; Weathersby, S.; Li, R. K. et al. Ultrafast manipulation of mirror domain walls in a charge density wave. Sci. Adv. 2018, 4, eaau5501.

[26]

Lacinska, E. M.; Furman, M.; Binder, J.; Lutsyk, I.; Kowalczyk, P. J.; Stepniewski, R.; Wysmolek, A. Raman optical activity of 1T-TaS2. Nano Lett. 2022, 22, 2835–2842.

[27]

Gao, J. J.; Zhang, W. H.; Si, J. G.; Luo, X.; Yan, J.; Jiang, Z. Z.; Wang, W.; Lv, H. Y.; Tong, P.; Song, W. H. et al. Chiral charge density waves induced by Ti-doping in 1T-TaS2. Appl. Phys. Lett. 2021, 118, 213105.

[28]

Zhang, W. H.; Gao, J. J.; Cheng, L.; Bu, K. L.; Wu, Z. X.; Fei, Y.; Zheng, Y.; Wang, L.; Li, F. S.; Luo, X. et al. Visualizing the evolution from Mott insulator to Anderson insulator in Ti-doped 1T-TaS2. NPJ Quantum Mater. 2022, 7, 8.

[29]

Liu, Y.; Ang, R.; Lu, W. J.; Song, W. H.; Li, L. J.; Sun, Y. P. Superconductivity induced by Se-doping in layered charge-density-wave system 1T-TaS2–xSex. Appl. Phys. Lett. 2013, 102, 192602.

[30]

Zhao, Y.; Nie, Z. W.; Hong, H.; Qiu, X.; Han, S. Y.; Yu, Y.; Liu, M. X.; Qiu, X. H.; Liu, K. H.; Meng, S. et al. Spectroscopic visualization and phase manipulation of chiral charge density waves in 1T-TaS2. Nat. Commun. 2023, 14, 2223.

[31]

Ishioka, J.; Liu, Y. H.; Shimatake, K.; Kurosawa, T.; Ichimura, K.; Toda, Y.; Oda, M.; Tanda, S. Chiral charge-density waves. Phys. Rev. Lett. 2010, 105, 176401.

[32]

Yu, X. L.; Liu, D. Y.; Quan, Y. M.; Wu, J. S.; Lin, H. Q.; Chang, K.; Zou, L. J. Electronic correlation effects and orbital density wave in the layered compound 1T-TaS2. Phys. Rev. B 2017, 96, 125138.

[33]

Lutsyk, I.; Rogala, M.; Dabrowski, P.; Krukowski, P.; Kowalczyk, P. J.; Busiakiewicz, A.; Kowalczyk, D. A.; Lacinska, E.; Binder, J.; Olszowska, N. et al. Electronic structure of commensurate, nearly commensurate, and incommensurate phases of 1T-TaS2 by angle-resolved photoelectron spectroscopy, scanning tunneling spectroscopy, and density functional theory. Phys. Rev. B 2018, 98, 195425.

[34]

Song, X.; Liu, L. W.; Chen, Y. Y.; Yang, H.; Huang, Z. P.; Hou, B. F.; Hou, Y. H.; Han, X.; Yang, H. X.; Zhang, Q. Z. et al. Atomic-scale visualization of chiral charge density wave superlattices and their reversible switching. Nat. Commun. 2022, 13, 1843.

[35]

Luican-Mayer, A.; Zhang, Y.; DiLullo, A.; Li, Y.; Fisher, B.; Ulloa, S. E.; Hla, S. W. Negative differential resistance observed on the charge density wave of a transition metal dichalcogenide. Nanoscale 2019, 11, 22351–22358.

[36]
Hla, S. W.; Marinković, V.; Prodan, A.; Muševič, I. STM/AFM investigations of β-MoTe2, α-MoTe2 and WTe2. Surf. Sci. 1996, 352354, 105–111.
DOI
[37]

Spera, M.; Scarfato, A.; Pásztor, Á.; Giannini, E.; Bowler, D. R.; Renner, C. Insight into the charge density wave gap from contrast inversion in topographic STM images. Phys. Rev. Lett. 2020, 125, 267603.

[38]

Pásztor, Á.; Scarfato, A.; Spera, M.; Flicker, F.; Barreteau, C.; Giannini, E.; van Wezel, J.; Renner, C. Multiband charge density wave exposed in a transition metal dichalcogenide. Nat. Commun. 2021, 12, 6037.

[39]

Hu, Y. N.; Zhang, T. Z.; Zhao, D. M.; Chen, C.; Ding, S. Y.; Yang, W. T.; Wang, X.; Li, C. H.; Wang, H. T.; Feng, D. L. et al. Real-space observation of incommensurate spin density wave and coexisting charge density wave on Cr(001) surface. Nat. Commun. 2022, 13, 445.

[40]

N’Diaye, A. T.; Coraux, J.; Plasa, T. N.; Busse, C.; Michely, T. Structure of epitaxial graphene on Ir(111). New J. Phys. 2008, 10, 043033.

[41]

Aishwarya, A.; Raghavan, A.; Howard, S.; Cai, Z. Z.; Thakur, G. S.; Won, C.; Cheong, S. W.; Felser, C.; Madhavan, V. Long-lifetime spin excitations near domain walls in 1T-TaS2. Proc. Natl. Acad. Sci. USA 2022, 119, e2121740119.

[42]

Odds, F. C. Spirolaterals. Math. Teach. 1973, 66, 121–124.

[43]

Cho, D.; Gye, G.; Lee, J.; Lee, S. H.; Wang, L. H.; Cheong, S. W.; Yeom, H. W. Correlated electronic states at domain walls of a Mott-charge-density-wave insulator 1T-TaS2. Nat. Commun. 2017, 8, 392.

[44]

Chen, Y.; Ruan, W.; Wu, M.; Tang, S. J.; Ryu, H.; Tsai, H. Z.; Lee, R. L.; Kahn, S.; Liou, F.; Jia, C. H. et al. Strong correlations and orbital texture in single-layer 1T-TaSe2. Nat. Phys. 2020, 16, 218–224.

[45]

Liu, M. K.; Leveillee, J.; Lu, S. Z.; Yu, J.; Kim, H.; Tian, C.; Shi, Y. G.; Lai, K. J.; Zhang, C. D.; Giustino, F. et al. Monolayer 1T-NbSe2 as a 2D-correlated magnetic insulator. Sci. Adv. 2021, 7, eabi6339.

[46]

Shah, A.; Munshi, A. H.; Nicholson, A. P.; Thiyagarajan, A.; Pozzoni, U. M.; Sampath, W. S. Atomistic modeling of energy band alignment in CdSeTe surfaces. Appl. Surf. Sci. 2021, 544, 148762.

[47]

Darancet, P.; Millis, A. J.; Marianetti, C. A. Three-dimensional metallic and two-dimensional insulating behavior in octahedral tantalum dichalcogenides. Phys. Rev. B 2014, 90, 45134.

[48]

Kohsaka, Y.; Taylor, C.; Fujita, K.; Schmidt, A.; Lupien, C.; Hanaguri, T.; Azuma, M.; Takano, M.; Eisaki, H.; Takagi, H. et al. An intrinsic bond-centered electronic glass with unidirectional domains in underdoped cuprates. Science 2007, 315, 1380–1385.

[49]

Wu, Z. X.; Bu, K. L.; Zhang, W. H.; Fei, Y.; Zheng, Y.; Gao, J. J.; Luo, X.; Liu, Z.; Sun, Y. P.; Yin, Y. Effect of stacking order on the electronic state of 1T-TaS2. Phys. Rev. B 2022, 105, 035109.

[50]

Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo, I. et al. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter 2009, 21, 395502.

[51]

Giannozzi, P.; Andreussi, O.; Brumme, T.; Bunau, O.; Buongiorno Nardelli, M.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Cococcioni, M. et al. Advanced capabilities for materials modelling with quantum ESPRESSO. J. Phys. :Condens. Matter 2017, 29, 465901.

[52]

Hohenberg, P.; Kohn, W. Inhomogeneous electron gas. Phys. Rev. 1964, 136, B864–B871.

[53]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[54]

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

[55]

Dal Corso, A. Pseudopotentials periodic table: From H to Pu. Comput. Mater. Sci. 2014, 95, 337–350.

[56]

Cococcioni, M.; de Gironcoli, S. Linear response approach to the calculation of the effective interaction parameters in the LDA + U method. Phys. Rev. B 2005, 71, 035105.

[57]

Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799.

[58]

Barone, V.; Casarin, M.; Forrer, D.; Pavone, M.; Sambi, M.; Vittadini, A. Role and effective treatment of dispersive forces in materials: Polyethylene and graphite crystals as test cases. J. Comput. Chem. 2009, 30, 934–939.

[59]

Bengtsson, L. Dipole correction for surface supercell calculations. Phys. Rev. B 1999, 59, 12301–12304.

[60]
Medeiros, P. V. C.; Tsirkin, S. S.; Stafström, S.; Björk, J. Unfolding spinor wave functions and expectation values of general operators: Introducing the unfolding-density operator. Phys. Rev. B 2015, 91, 041116(R).
DOI
[61]
Medeiros, P. V. C.; Stafström, S.; Björk, J. Effects of extrinsic and intrinsic perturbations on the electronic structure of graphene: Retaining an effective primitive cell band structure by band unfolding. Phys. Rev. B 2014, 89, 041407(R).
DOI
[62]

Iraola, M.; Mañes, J. L.; Bradlyn, B.; Horton, M. K.; Neupert, T.; Vergniory, M. G.; Tsirkin, S. S. IrRep: Symmetry eigenvalues and irreducible representations of ab initio band structures. Comput. Phys. Commun. 2022, 272, 108226.

[63]

Otero-de-la-Roza, A.; Johnson, E. R.; Luaña, V. Critic2: A program for real-space analysis of quantum chemical interactions in solids. Comput. Phys. Commun. 2014, 185, 1007–1018.

Video
12274_2023_5876_MOESM2_ESM.avi
File
12274_2023_5876_MOESM1_ESM.pdf (1.8 MB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 18 March 2023
Revised: 22 May 2023
Accepted: 30 May 2023
Published: 18 July 2023
Issue date: August 2023

Copyright

© The authors, corrected publication 2023

Acknowledgements

This work has been supported by the National Science Centre, Poland under grants 2015/19/B/ST3/03142 and 2019/32/T/ST3/00487. M. L. S. thanks for University of Lodz support under IDUB 6/JRR/2021 project. T. -C. C acknowledges support of the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Materials Science and Engineering, under Grant No. DE-FG02-07ER46383. M. G. acknowledges financial support provided by Slovak Research and Development Agency provided under Contract No. APVV-SK-CZ-RD-21-0114 and by the Ministry of Education, Science, Research and Sport of the Slovak Republic provided under Grant No. VEGA 1/0105/20 and Slovak Academy of Sciences project IMPULZ IM-2021-42 and project FLAG ERA JTC 2021 2DSOTECH. Author acknowledges the provision of the Polish Ministry of Education and Science project (Support for research and development with the use of research infrastructure of the National Synchrotron Radiation Centre SOLARIS” under contract nr 1/SOL/2021/2). We acknowledge the SOLARIS Centre for the access to the Beamline URANOS (former UARPES), where the measurements were performed.

Rights and permissions

Copyright: © 2023 by the author(s). This article is an open access article distributed under Creative Commons Attribution License (CC BY 4.0), visit https://creativecommons.org/licenses/by/4.0/.

Return