Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Eliminating the nonselective permeation path inside the mixed-matrix membranes (MMMs) is critical for fabrication of gas separation membranes. We demonstrate that by utilizing the phase separation of block copolymers, we are able to introduce metal-organic polyhedrons (MOPs) with precise pore sizes into a polymer matrix and form an ordered layered structure. We also prove that, by arranging MOP cages into a continuous nanosheet-like layer structure, we are able to generate repeated MOP-effective pathways and deplete the MOP-free permeation pathways, thus enhancing the gas-separation efficiency of MMMs.
Chung, T. S.; Jiang, L. Y.; Li, Y.; Kulprathipanja, S. Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation. Prog. Polym. Sci. 2007, 32, 483–507.
Dechnik, J.; Gascon, J.; Doonan, C. J.; Janiak, C.; Sumby, C. J. Mixed-matrix membranes. Angew. Chem., Int. Ed. 2017, 56, 9292–9310.
Galizia, M.; Chi, W. S.; Smith, Z. P.; Merkel, T. C.; Baker, R. W.; Freeman, B. D. 50th anniversary perspective: Polymers and mixed matrix membranes for gas and vapor separation: A review and prospective opportunities. Macromolecules 2017, 50, 7809–7843.
Wang, M.; Wang, Z.; Zhao, S.; Wang, J. X.; Wang, S. C. Recent advances on mixed matrix membranes for CO2 separation. Chin. J. Chem. Eng. 2017, 25, 1581–1597.
Cheng, Y. D.; Ying, Y. P.; Japip, S.; Jiang, S. D.; Chung, T. S.; Zhang, S.; Zhao, D. Advanced porous materials in mixed matrix membranes. Adv. Mater. 2018, 30, 1802401.
Chen, W. P.; Xiang, Y.; Kong, X. Y.; Wen, L. P. Polymer-based membranes for promoting osmotic energy conversion. Giant 2022, 10, 100094.
Zhu, X.; Tian, C. C.; Do-Thanh, C. L.; Dai, S. Two-dimensional materials as prospective scaffolds for mixed-matrix membrane-based CO2 separation. ChemSusChem 2017, 10, 3304–3316.
Ahmadi, M.; Janakiram, S.; Dai, Z. D.; Ansaloni, L.; Deng, L. Y. Performance of mixed matrix membranes containing porous two-dimensional (2D) and three-dimensional (3D) fillers for CO2 separation: A review. Membranes 2018, 8, 50.
Huang, M. H.; Wang, Z. G.; Jin, J. Two-dimensional microporous material-based mixed matrix membranes for gas separation. Chem. Asian J. 2020, 15, 2303–2315.
Yang, G.; Xie, Z. L.; Cran, M.; Wu, C. R.; Gray, S. Dimensional nanofillers in mixed matrix membranes for pervaporation separations: A review. Membranes 2020, 10, 193.
Zhu, G. H.; O'Nolan, D.; Lively, R. P. Molecularly mixed composite membranes: Challenges and opportunities. Chem. -Eur. J. 2020, 26, 3464–3473.
Chakrabarty, T.; Giri, A. K.; Sarkar, S. Mixed-matrix gas separation membranes for sustainable future: A mini review. Polym. Adv. Technol. 2022, 33, 1747–1761.
Eddaoudi, M.; Kim, J.; Wachter, J. B.; Chae, H. K.; O'keeffe, M.; Yaghi, O. M. Porous metal-organic polyhedra: 25 Å cuboctahedron constructed from 12 Cu2(CO2)4 paddle-wheel building blocks. J. Am. Chem. Soc. 2001, 123, 4368–4369.
Tranchemontagne, D. J.; Ni, Z.; O'Keeffe, M.; Yaghi, O. M. Reticular chemistry of metal-organic polyhedra. Angew. Chem., Int. Ed. 2008, 47, 5136–5147.
Lee, S.; Jeong, H.; Nam, D.; Lah, M. S.; Choe, W. The rise of metal-organic polyhedra. Chem. Soc. Rev. 2021, 50, 528–555.
Perez, E. V.; Balkus, K. J. Jr; Ferraris, J. P.; Musselman, I. H. Metal-organic polyhedra 18 mixed-matrix membranes for gas separation. J. Membr. Sci. 2014, 463, 82–93.
Kitchin, M.; Teo, J.; Konstas, K.; Lau, C. H.; Sumby, C. J.; Thornton, A. W.; Doonan, C. J.; Hill, M. R. AIMs: A new strategy to control physical aging and gas transport in mixed-matrix membranes. J. Mater. Chem. A 2015, 3, 15241–15247.
Chen, T. H.; Wang, L.; Trueblood, J. V.; Grassian, V. H.; Cohen, S. M. Poly(isophthalic acid)(ethylene oxide) as a macromolecular modulator for metal-organic polyhedra. J. Am. Chem. Soc. 2016, 138, 9646–9654.
Liu, X. L.; Wang, X. R.; Bavykina, A. V.; Chu, L. Y.; Shan, M. X.; Sabetghadam, A.; Miro, H.; Kapteijn, F.; Gascon, J. Molecular-scale hybrid membranes derived from metal-organic polyhedra for gas separation. ACS Appl. Mater. Interfaces 2018, 10, 21381–21389.
Yun, Y. N.; Sohail, M.; Moon, J. H.; Kim, T. W.; Park, K. M.; Chun, D. H.; Park, Y. C.; Cho, C. H.; Kim, H. Defect-free mixed-matrix membranes with hydrophilic metal-organic polyhedra for efficient carbon dioxide separation. Chem. Asian J. 2018, 13, 631–635.
Hosono, N.; Guo, W. B.; Omoto, K.; Yamada, H.; Kitagawa, S. Bottom-up synthesis of defect-free mixed-matrix membranes by using polymer-grafted metal-organic polyhedra. Chem. Lett. 2019, 48, 597–600.
Liu, J. Y.; Fulong, C. R. P.; Hu, L. Q.; Huang, L.; Zhang, G. Y.; Cook, T. R.; Lin, H. Q. Interpenetrating networks of mixed matrix materials comprising metal-organic polyhedra for membrane CO2 capture. J. Membr. Sci. 2020, 606, 118122.
Sohail, M.; An, H.; Choi, W.; Singh, J.; Yim, K.; Kim, B. H.; Park, Y. C.; Lee, J. S.; Kim, H. Sorption-enhanced thin film composites with metal-organic polyhedral nanocages for CO2 separation. J. Membr. Sci. 2021, 620, 118826.
Nagarkar, S. S.; Tsujimoto, M.; Kitagawa, S.; Hosono, N.; Horike, S. Modular self-assembly and dynamics in coordination star polymer glasses: New media for ion transport. Chem. Mater. 2018, 30, 8555–8561.
Wang, Y. F.; Zhong, M. J.; Park, J. V.; Zhukhovitskiy, A. V.; Shi, W. C.; Johnson, J. A. Block co-polyMOCs by stepwise self-assembly. J. Am. Chem. Soc. 2016, 138, 10708–10715.
Luo, J. C.; Sun, X. Y.; Yin, J. F.; Yin, P. C.; Liu, T. B. Supramolecular nanostructures constructed from cluster-based hybrid macromolecules. Giant 2020, 2, 100013.
Wei, Z. C.; Liu, C. H.; Duan, H. Y.; Luo, Q.; Huang, M.; Thanneeru, S.; Nieh, M. P.; He, J. Self-assembly of gold nanoparticles grafted with amphiphilic supramolecular block copolymers. Giant 2022, 10, 100102.
Ninago, M. D.; Satti, A. J.; Ciolino, A. E.; Vallés, E. M.; Villar, M. A.; Vega, D. A.; Sanz, A.; Nogales, A.; Rueda, D. R. Synthesis and morphology of model PS-b-PDMS copolymers. J. Polym. Sci. A:Polym. Chem. 2010, 48, 3119–3127.
Jenczyk, J.; Woźniak-Budych, M.; Jarek, M.; Jurga, S. Structural and dynamical study of PDMS and PS based block copolymers. Eur. Polym. J. 2018, 98, 384–393.
Hosono, N.; Gochomori, M.; Matsuda, R.; Sato, H.; Kitagawa, S. Metal-organic polyhedral core as a versatile scaffold for divergent and convergent star polymer synthesis. J. Am. Chem. Soc. 2016, 138, 6525–6531.
Li, J. R.; Zhou, H. C. Bridging-ligand-substitution strategy for the preparation of metal-organic polyhedra. Nat. Chem. 2010, 2, 893–898.
Lai, Y. Y.; Li, M.; Zhang, M. X.; Li, X. P.; Yuan, J.; Wang, W. Y.; Zhou, Q. J.; Huang, M. J.; Yin, P. C. Confinement effect on the surface of a metal-organic polyhedron: Tunable thermoresponsive-ness and water permeability. Macromolecules 2020, 53, 7178–7186.
Zhang, M. X.; Lai, Y. Y.; Li, M.; Hong, T.; Wang, W. Y.; Yu, H. T.; Li, L. W.; Zhou, Q. J.; Ke, Y. B.; Zhan, X. Z. et al. The microscopic structure-property relationship of metal-organic polyhedron nanocomposites. Angew. Chem., Int. Ed. 2019, 58, 17412–17417.