AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Communication

Enhance gas-separation efficiency of mixed matrix membranes by lamellarly arranged metal-organic polyhedron

Yida Yang1Bowen Pang1Wang Zeng2( )Bingxu Ma1Panchao Yin1,3Shenglin Yao1Xiufang Wen4Wei Zhang1,3( )
South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
National Centre for Inorganic Mass Spectrometry in Shanghai, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
Show Author Information

Graphical Abstract

By arranging metal-organic polyhedron (MOP) cages into a continuous nanosheet-like layer structure in mixed-matrix membranes (MMMs), we are able to generate repeated MOP-effective pathways and deplete the MOP-free permeation pathways, thus enhancing the gas-separation efficiency of MMMs.

Abstract

Eliminating the nonselective permeation path inside the mixed-matrix membranes (MMMs) is critical for fabrication of gas separation membranes. We demonstrate that by utilizing the phase separation of block copolymers, we are able to introduce metal-organic polyhedrons (MOPs) with precise pore sizes into a polymer matrix and form an ordered layered structure. We also prove that, by arranging MOP cages into a continuous nanosheet-like layer structure, we are able to generate repeated MOP-effective pathways and deplete the MOP-free permeation pathways, thus enhancing the gas-separation efficiency of MMMs.

Electronic Supplementary Material

Download File(s)
12274_2023_5874_MOESM1_ESM.pdf (5.4 MB)

References

[1]

Chung, T. S.; Jiang, L. Y.; Li, Y.; Kulprathipanja, S. Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation. Prog. Polym. Sci. 2007, 32, 483–507.

[2]

Dechnik, J.; Gascon, J.; Doonan, C. J.; Janiak, C.; Sumby, C. J. Mixed-matrix membranes. Angew. Chem., Int. Ed. 2017, 56, 9292–9310.

[3]

Galizia, M.; Chi, W. S.; Smith, Z. P.; Merkel, T. C.; Baker, R. W.; Freeman, B. D. 50th anniversary perspective: Polymers and mixed matrix membranes for gas and vapor separation: A review and prospective opportunities. Macromolecules 2017, 50, 7809–7843.

[4]

Wang, M.; Wang, Z.; Zhao, S.; Wang, J. X.; Wang, S. C. Recent advances on mixed matrix membranes for CO2 separation. Chin. J. Chem. Eng. 2017, 25, 1581–1597.

[5]

Cheng, Y. D.; Ying, Y. P.; Japip, S.; Jiang, S. D.; Chung, T. S.; Zhang, S.; Zhao, D. Advanced porous materials in mixed matrix membranes. Adv. Mater. 2018, 30, 1802401.

[6]

Chen, W. P.; Xiang, Y.; Kong, X. Y.; Wen, L. P. Polymer-based membranes for promoting osmotic energy conversion. Giant 2022, 10, 100094.

[7]

Zhu, X.; Tian, C. C.; Do-Thanh, C. L.; Dai, S. Two-dimensional materials as prospective scaffolds for mixed-matrix membrane-based CO2 separation. ChemSusChem 2017, 10, 3304–3316.

[8]

Ahmadi, M.; Janakiram, S.; Dai, Z. D.; Ansaloni, L.; Deng, L. Y. Performance of mixed matrix membranes containing porous two-dimensional (2D) and three-dimensional (3D) fillers for CO2 separation: A review. Membranes 2018, 8, 50.

[9]

Huang, M. H.; Wang, Z. G.; Jin, J. Two-dimensional microporous material-based mixed matrix membranes for gas separation. Chem. Asian J. 2020, 15, 2303–2315.

[10]

Yang, G.; Xie, Z. L.; Cran, M.; Wu, C. R.; Gray, S. Dimensional nanofillers in mixed matrix membranes for pervaporation separations: A review. Membranes 2020, 10, 193.

[11]

Zhu, G. H.; O'Nolan, D.; Lively, R. P. Molecularly mixed composite membranes: Challenges and opportunities. Chem. -Eur. J. 2020, 26, 3464–3473.

[12]

Chakrabarty, T.; Giri, A. K.; Sarkar, S. Mixed-matrix gas separation membranes for sustainable future: A mini review. Polym. Adv. Technol. 2022, 33, 1747–1761.

[13]

Eddaoudi, M.; Kim, J.; Wachter, J. B.; Chae, H. K.; O'keeffe, M.; Yaghi, O. M. Porous metal-organic polyhedra: 25 Å cuboctahedron constructed from 12 Cu2(CO2)4 paddle-wheel building blocks. J. Am. Chem. Soc. 2001, 123, 4368–4369.

[14]

Tranchemontagne, D. J.; Ni, Z.; O'Keeffe, M.; Yaghi, O. M. Reticular chemistry of metal-organic polyhedra. Angew. Chem., Int. Ed. 2008, 47, 5136–5147.

[15]

Lee, S.; Jeong, H.; Nam, D.; Lah, M. S.; Choe, W. The rise of metal-organic polyhedra. Chem. Soc. Rev. 2021, 50, 528–555.

[16]

Perez, E. V.; Balkus, K. J. Jr; Ferraris, J. P.; Musselman, I. H. Metal-organic polyhedra 18 mixed-matrix membranes for gas separation. J. Membr. Sci. 2014, 463, 82–93.

[17]

Kitchin, M.; Teo, J.; Konstas, K.; Lau, C. H.; Sumby, C. J.; Thornton, A. W.; Doonan, C. J.; Hill, M. R. AIMs: A new strategy to control physical aging and gas transport in mixed-matrix membranes. J. Mater. Chem. A 2015, 3, 15241–15247.

[18]

Chen, T. H.; Wang, L.; Trueblood, J. V.; Grassian, V. H.; Cohen, S. M. Poly(isophthalic acid)(ethylene oxide) as a macromolecular modulator for metal-organic polyhedra. J. Am. Chem. Soc. 2016, 138, 9646–9654.

[19]

Liu, X. L.; Wang, X. R.; Bavykina, A. V.; Chu, L. Y.; Shan, M. X.; Sabetghadam, A.; Miro, H.; Kapteijn, F.; Gascon, J. Molecular-scale hybrid membranes derived from metal-organic polyhedra for gas separation. ACS Appl. Mater. Interfaces 2018, 10, 21381–21389.

[20]

Yun, Y. N.; Sohail, M.; Moon, J. H.; Kim, T. W.; Park, K. M.; Chun, D. H.; Park, Y. C.; Cho, C. H.; Kim, H. Defect-free mixed-matrix membranes with hydrophilic metal-organic polyhedra for efficient carbon dioxide separation. Chem. Asian J. 2018, 13, 631–635.

[21]

Hosono, N.; Guo, W. B.; Omoto, K.; Yamada, H.; Kitagawa, S. Bottom-up synthesis of defect-free mixed-matrix membranes by using polymer-grafted metal-organic polyhedra. Chem. Lett. 2019, 48, 597–600.

[22]

Liu, J. Y.; Fulong, C. R. P.; Hu, L. Q.; Huang, L.; Zhang, G. Y.; Cook, T. R.; Lin, H. Q. Interpenetrating networks of mixed matrix materials comprising metal-organic polyhedra for membrane CO2 capture. J. Membr. Sci. 2020, 606, 118122.

[23]

Sohail, M.; An, H.; Choi, W.; Singh, J.; Yim, K.; Kim, B. H.; Park, Y. C.; Lee, J. S.; Kim, H. Sorption-enhanced thin film composites with metal-organic polyhedral nanocages for CO2 separation. J. Membr. Sci. 2021, 620, 118826.

[24]

Nagarkar, S. S.; Tsujimoto, M.; Kitagawa, S.; Hosono, N.; Horike, S. Modular self-assembly and dynamics in coordination star polymer glasses: New media for ion transport. Chem. Mater. 2018, 30, 8555–8561.

[25]

Wang, Y. F.; Zhong, M. J.; Park, J. V.; Zhukhovitskiy, A. V.; Shi, W. C.; Johnson, J. A. Block co-polyMOCs by stepwise self-assembly. J. Am. Chem. Soc. 2016, 138, 10708–10715.

[26]

Luo, J. C.; Sun, X. Y.; Yin, J. F.; Yin, P. C.; Liu, T. B. Supramolecular nanostructures constructed from cluster-based hybrid macromolecules. Giant 2020, 2, 100013.

[27]

Wei, Z. C.; Liu, C. H.; Duan, H. Y.; Luo, Q.; Huang, M.; Thanneeru, S.; Nieh, M. P.; He, J. Self-assembly of gold nanoparticles grafted with amphiphilic supramolecular block copolymers. Giant 2022, 10, 100102.

[28]

Ninago, M. D.; Satti, A. J.; Ciolino, A. E.; Vallés, E. M.; Villar, M. A.; Vega, D. A.; Sanz, A.; Nogales, A.; Rueda, D. R. Synthesis and morphology of model PS-b-PDMS copolymers. J. Polym. Sci. A:Polym. Chem. 2010, 48, 3119–3127.

[29]

Jenczyk, J.; Woźniak-Budych, M.; Jarek, M.; Jurga, S. Structural and dynamical study of PDMS and PS based block copolymers. Eur. Polym. J. 2018, 98, 384–393.

[30]

Hosono, N.; Gochomori, M.; Matsuda, R.; Sato, H.; Kitagawa, S. Metal-organic polyhedral core as a versatile scaffold for divergent and convergent star polymer synthesis. J. Am. Chem. Soc. 2016, 138, 6525–6531.

[31]

Li, J. R.; Zhou, H. C. Bridging-ligand-substitution strategy for the preparation of metal-organic polyhedra. Nat. Chem. 2010, 2, 893–898.

[32]

Lai, Y. Y.; Li, M.; Zhang, M. X.; Li, X. P.; Yuan, J.; Wang, W. Y.; Zhou, Q. J.; Huang, M. J.; Yin, P. C. Confinement effect on the surface of a metal-organic polyhedron: Tunable thermoresponsive-ness and water permeability. Macromolecules 2020, 53, 7178–7186.

[33]

Zhang, M. X.; Lai, Y. Y.; Li, M.; Hong, T.; Wang, W. Y.; Yu, H. T.; Li, L. W.; Zhou, Q. J.; Ke, Y. B.; Zhan, X. Z. et al. The microscopic structure-property relationship of metal-organic polyhedron nanocomposites. Angew. Chem., Int. Ed. 2019, 58, 17412–17417.

Nano Research
Pages 11450-11454
Cite this article:
Yang Y, Pang B, Zeng W, et al. Enhance gas-separation efficiency of mixed matrix membranes by lamellarly arranged metal-organic polyhedron. Nano Research, 2023, 16(8): 11450-11454. https://doi.org/10.1007/s12274-023-5874-9
Topics:

1324

Views

1

Crossref

1

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 13 May 2023
Revised: 24 May 2023
Accepted: 26 May 2023
Published: 26 July 2023
© Tsinghua University Press 2023
Return