Journal Home > Volume 16 , Issue 8

Eliminating the nonselective permeation path inside the mixed-matrix membranes (MMMs) is critical for fabrication of gas separation membranes. We demonstrate that by utilizing the phase separation of block copolymers, we are able to introduce metal-organic polyhedrons (MOPs) with precise pore sizes into a polymer matrix and form an ordered layered structure. We also prove that, by arranging MOP cages into a continuous nanosheet-like layer structure, we are able to generate repeated MOP-effective pathways and deplete the MOP-free permeation pathways, thus enhancing the gas-separation efficiency of MMMs.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Enhance gas-separation efficiency of mixed matrix membranes by lamellarly arranged metal-organic polyhedron

Show Author's information Yida Yang1Bowen Pang1Wang Zeng2( )Bingxu Ma1Panchao Yin1,3Shenglin Yao1Xiufang Wen4Wei Zhang1,3( )
South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
National Centre for Inorganic Mass Spectrometry in Shanghai, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China

Abstract

Eliminating the nonselective permeation path inside the mixed-matrix membranes (MMMs) is critical for fabrication of gas separation membranes. We demonstrate that by utilizing the phase separation of block copolymers, we are able to introduce metal-organic polyhedrons (MOPs) with precise pore sizes into a polymer matrix and form an ordered layered structure. We also prove that, by arranging MOP cages into a continuous nanosheet-like layer structure, we are able to generate repeated MOP-effective pathways and deplete the MOP-free permeation pathways, thus enhancing the gas-separation efficiency of MMMs.

Keywords: metal-organic polyhedrons (MOPs), mixed-matrix membranes (MMMs), phase separation of mixed-matrix membranes, arrangement of MOPs

References(33)

[1]

Chung, T. S.; Jiang, L. Y.; Li, Y.; Kulprathipanja, S. Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation. Prog. Polym. Sci. 2007, 32, 483–507.

[2]

Dechnik, J.; Gascon, J.; Doonan, C. J.; Janiak, C.; Sumby, C. J. Mixed-matrix membranes. Angew. Chem., Int. Ed. 2017, 56, 9292–9310.

[3]

Galizia, M.; Chi, W. S.; Smith, Z. P.; Merkel, T. C.; Baker, R. W.; Freeman, B. D. 50th anniversary perspective: Polymers and mixed matrix membranes for gas and vapor separation: A review and prospective opportunities. Macromolecules 2017, 50, 7809–7843.

[4]

Wang, M.; Wang, Z.; Zhao, S.; Wang, J. X.; Wang, S. C. Recent advances on mixed matrix membranes for CO2 separation. Chin. J. Chem. Eng. 2017, 25, 1581–1597.

[5]

Cheng, Y. D.; Ying, Y. P.; Japip, S.; Jiang, S. D.; Chung, T. S.; Zhang, S.; Zhao, D. Advanced porous materials in mixed matrix membranes. Adv. Mater. 2018, 30, 1802401.

[6]

Chen, W. P.; Xiang, Y.; Kong, X. Y.; Wen, L. P. Polymer-based membranes for promoting osmotic energy conversion. Giant 2022, 10, 100094.

[7]

Zhu, X.; Tian, C. C.; Do-Thanh, C. L.; Dai, S. Two-dimensional materials as prospective scaffolds for mixed-matrix membrane-based CO2 separation. ChemSusChem 2017, 10, 3304–3316.

[8]

Ahmadi, M.; Janakiram, S.; Dai, Z. D.; Ansaloni, L.; Deng, L. Y. Performance of mixed matrix membranes containing porous two-dimensional (2D) and three-dimensional (3D) fillers for CO2 separation: A review. Membranes 2018, 8, 50.

[9]

Huang, M. H.; Wang, Z. G.; Jin, J. Two-dimensional microporous material-based mixed matrix membranes for gas separation. Chem. Asian J. 2020, 15, 2303–2315.

[10]

Yang, G.; Xie, Z. L.; Cran, M.; Wu, C. R.; Gray, S. Dimensional nanofillers in mixed matrix membranes for pervaporation separations: A review. Membranes 2020, 10, 193.

[11]

Zhu, G. H.; O'Nolan, D.; Lively, R. P. Molecularly mixed composite membranes: Challenges and opportunities. Chem. -Eur. J. 2020, 26, 3464–3473.

[12]

Chakrabarty, T.; Giri, A. K.; Sarkar, S. Mixed-matrix gas separation membranes for sustainable future: A mini review. Polym. Adv. Technol. 2022, 33, 1747–1761.

[13]

Eddaoudi, M.; Kim, J.; Wachter, J. B.; Chae, H. K.; O'keeffe, M.; Yaghi, O. M. Porous metal-organic polyhedra: 25 Å cuboctahedron constructed from 12 Cu2(CO2)4 paddle-wheel building blocks. J. Am. Chem. Soc. 2001, 123, 4368–4369.

[14]

Tranchemontagne, D. J.; Ni, Z.; O'Keeffe, M.; Yaghi, O. M. Reticular chemistry of metal-organic polyhedra. Angew. Chem., Int. Ed. 2008, 47, 5136–5147.

[15]

Lee, S.; Jeong, H.; Nam, D.; Lah, M. S.; Choe, W. The rise of metal-organic polyhedra. Chem. Soc. Rev. 2021, 50, 528–555.

[16]

Perez, E. V.; Balkus, K. J. Jr; Ferraris, J. P.; Musselman, I. H. Metal-organic polyhedra 18 mixed-matrix membranes for gas separation. J. Membr. Sci. 2014, 463, 82–93.

[17]

Kitchin, M.; Teo, J.; Konstas, K.; Lau, C. H.; Sumby, C. J.; Thornton, A. W.; Doonan, C. J.; Hill, M. R. AIMs: A new strategy to control physical aging and gas transport in mixed-matrix membranes. J. Mater. Chem. A 2015, 3, 15241–15247.

[18]

Chen, T. H.; Wang, L.; Trueblood, J. V.; Grassian, V. H.; Cohen, S. M. Poly(isophthalic acid)(ethylene oxide) as a macromolecular modulator for metal-organic polyhedra. J. Am. Chem. Soc. 2016, 138, 9646–9654.

[19]

Liu, X. L.; Wang, X. R.; Bavykina, A. V.; Chu, L. Y.; Shan, M. X.; Sabetghadam, A.; Miro, H.; Kapteijn, F.; Gascon, J. Molecular-scale hybrid membranes derived from metal-organic polyhedra for gas separation. ACS Appl. Mater. Interfaces 2018, 10, 21381–21389.

[20]

Yun, Y. N.; Sohail, M.; Moon, J. H.; Kim, T. W.; Park, K. M.; Chun, D. H.; Park, Y. C.; Cho, C. H.; Kim, H. Defect-free mixed-matrix membranes with hydrophilic metal-organic polyhedra for efficient carbon dioxide separation. Chem. Asian J. 2018, 13, 631–635.

[21]

Hosono, N.; Guo, W. B.; Omoto, K.; Yamada, H.; Kitagawa, S. Bottom-up synthesis of defect-free mixed-matrix membranes by using polymer-grafted metal-organic polyhedra. Chem. Lett. 2019, 48, 597–600.

[22]

Liu, J. Y.; Fulong, C. R. P.; Hu, L. Q.; Huang, L.; Zhang, G. Y.; Cook, T. R.; Lin, H. Q. Interpenetrating networks of mixed matrix materials comprising metal-organic polyhedra for membrane CO2 capture. J. Membr. Sci. 2020, 606, 118122.

[23]

Sohail, M.; An, H.; Choi, W.; Singh, J.; Yim, K.; Kim, B. H.; Park, Y. C.; Lee, J. S.; Kim, H. Sorption-enhanced thin film composites with metal-organic polyhedral nanocages for CO2 separation. J. Membr. Sci. 2021, 620, 118826.

[24]

Nagarkar, S. S.; Tsujimoto, M.; Kitagawa, S.; Hosono, N.; Horike, S. Modular self-assembly and dynamics in coordination star polymer glasses: New media for ion transport. Chem. Mater. 2018, 30, 8555–8561.

[25]

Wang, Y. F.; Zhong, M. J.; Park, J. V.; Zhukhovitskiy, A. V.; Shi, W. C.; Johnson, J. A. Block co-polyMOCs by stepwise self-assembly. J. Am. Chem. Soc. 2016, 138, 10708–10715.

[26]

Luo, J. C.; Sun, X. Y.; Yin, J. F.; Yin, P. C.; Liu, T. B. Supramolecular nanostructures constructed from cluster-based hybrid macromolecules. Giant 2020, 2, 100013.

[27]

Wei, Z. C.; Liu, C. H.; Duan, H. Y.; Luo, Q.; Huang, M.; Thanneeru, S.; Nieh, M. P.; He, J. Self-assembly of gold nanoparticles grafted with amphiphilic supramolecular block copolymers. Giant 2022, 10, 100102.

[28]

Ninago, M. D.; Satti, A. J.; Ciolino, A. E.; Vallés, E. M.; Villar, M. A.; Vega, D. A.; Sanz, A.; Nogales, A.; Rueda, D. R. Synthesis and morphology of model PS-b-PDMS copolymers. J. Polym. Sci. A:Polym. Chem. 2010, 48, 3119–3127.

[29]

Jenczyk, J.; Woźniak-Budych, M.; Jarek, M.; Jurga, S. Structural and dynamical study of PDMS and PS based block copolymers. Eur. Polym. J. 2018, 98, 384–393.

[30]

Hosono, N.; Gochomori, M.; Matsuda, R.; Sato, H.; Kitagawa, S. Metal-organic polyhedral core as a versatile scaffold for divergent and convergent star polymer synthesis. J. Am. Chem. Soc. 2016, 138, 6525–6531.

[31]

Li, J. R.; Zhou, H. C. Bridging-ligand-substitution strategy for the preparation of metal-organic polyhedra. Nat. Chem. 2010, 2, 893–898.

[32]

Lai, Y. Y.; Li, M.; Zhang, M. X.; Li, X. P.; Yuan, J.; Wang, W. Y.; Zhou, Q. J.; Huang, M. J.; Yin, P. C. Confinement effect on the surface of a metal-organic polyhedron: Tunable thermoresponsive-ness and water permeability. Macromolecules 2020, 53, 7178–7186.

[33]

Zhang, M. X.; Lai, Y. Y.; Li, M.; Hong, T.; Wang, W. Y.; Yu, H. T.; Li, L. W.; Zhou, Q. J.; Ke, Y. B.; Zhan, X. Z. et al. The microscopic structure-property relationship of metal-organic polyhedron nanocomposites. Angew. Chem., Int. Ed. 2019, 58, 17412–17417.

File
12274_2023_5874_MOESM1_ESM.pdf (5.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 13 May 2023
Revised: 24 May 2023
Accepted: 26 May 2023
Published: 26 July 2023
Issue date: August 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by Guangdong Natural Science Foundation (No. 2018B030306039), the Recruitment Program of Guangdong (No. 2016ZT06C322) and the 111 Project (No. B18023).

Return