Journal Home > Volume 16 , Issue 8

As a new type of fluorescent nanomaterials, carbon dots (CDs) have exhibited excellent photoluminescence properties with tunable emission and high quantum yields, hence they have attracted an increasing interest in diverse research areas. The photoluminescence performance of CDs is primarily influenced by their precursors, which directly or indirectly determine the structures and specific functions of the resultant CDs. In this review, we aim to summarize the recent progress on synthesis of CDs using small aliphatic molecules, anilines, polyphenol, polycyclic aromatic hydrocarbons, organic dyes, or biomass as precursors. The associations of the physical and chemical properties of the CDs with their respective precursors are comprehensively investigated, and the potential applications and future development of CDs are discussed in detail. It is hoped that this review will open new horizons for CDs preparation by rational selection of the precursors from the vastly available carbon sources and the critical comments presented, here could inspire and guide future research in the design of multifunctional CDs.


menu
Abstract
Full text
Outline
About this article

The function-oriented precursor selection for the preparation of carbon dots

Show Author's information Yalan XuChan Wang( )Huan ZhuoDongrun ZhouQijun Song( )
Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China

Abstract

As a new type of fluorescent nanomaterials, carbon dots (CDs) have exhibited excellent photoluminescence properties with tunable emission and high quantum yields, hence they have attracted an increasing interest in diverse research areas. The photoluminescence performance of CDs is primarily influenced by their precursors, which directly or indirectly determine the structures and specific functions of the resultant CDs. In this review, we aim to summarize the recent progress on synthesis of CDs using small aliphatic molecules, anilines, polyphenol, polycyclic aromatic hydrocarbons, organic dyes, or biomass as precursors. The associations of the physical and chemical properties of the CDs with their respective precursors are comprehensively investigated, and the potential applications and future development of CDs are discussed in detail. It is hoped that this review will open new horizons for CDs preparation by rational selection of the precursors from the vastly available carbon sources and the critical comments presented, here could inspire and guide future research in the design of multifunctional CDs.

Keywords: sensing, photoluminescence, imaging, carbon dots, fluorophore, precursors

References(250)

[1]

Yang, X.; Li, X.; Wang, B. Y.; Ai, L.; Li, G. P.; Yang, B.; Lu, S. Y. Advances, opportunities, and challenge for full-color emissive carbon dots. Chin. Chem. Lett. 2022, 33, 613–625.

[2]

Ai, L.; Song, Z. Q.; Nie, M. J.; Yu, J. K.; Liu, F. K.; Song, H. Q.; Zhang, B.; Waterhouse, G. I. N.; Lu, S. Y. Solid-state fluorescence from carbon dots widely tunable from blue to deep red through surface ligand modulation. Angew. Chem., Int. Ed. 2023, 62, e202217822.

[3]

Xu, X. Y.; Ray, R.; Gu, Y. L.; Ploehn, H. J.; Gearheart, L.; Raker, K.; Scrivens, W. A. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J. Am. Chem. Soc. 2004, 126, 12736–12737.

[4]

Sun, Y. P.; Zhou, B.; Lin, Y.; Wang, W.; Fernando, K. A. S.; Pathak, P.; Meziani, M. J.; Harruff, B. A.; Wang, X.; Wang, H. F. et al. Quantum-sized carbon dots for bright and colorful photoluminescence. J. Am. Chem. Soc. 2006, 128, 7756–7757.

[5]

Li, P. F.; Xue, S. S.; Sun, L.; Zong, X. P.; An, L.; Qu, D.; Wang, X. Y.; Sun, Z. C. Formation and fluorescent mechanism of red emissive carbon dots from o-phenylenediamine and catechol system. Light Sci. Appl. 2022, 11, 298.

[6]

Tao, S. Y.; Feng, T. L.; Zheng, C. Y.; Zhu, S. J.; Yang, B. Carbonized polymer dots: A brand new perspective to recognize luminescent carbon-based nanomaterials. J. Phys. Chem. Lett. 2019, 10, 5182–5188.

[7]

Zhu, S. J.; Song, Y. B.; Zhao, X. H.; Shao, J. R.; Zhang, J. H.; Yang, B. The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): Current state and future perspective. Nano Res. 2015, 8, 355–381.

[8]

Li, J. R.; Gong, X. The emerging development of multicolor carbon dots. Small 2022, 18, 2205099.

[9]

Liu, J. J.; Li, R.; Yang, B. Carbon dots: A new type of carbon-based nanomaterial with wide applications. ACS Cent. Sci. 2020, 6, 2179–2195.

[10]

Liang, L. L.; Veksha, A.; Amrad, M. Z. B. M.; Snyder, S. A.; Lisak, G. Upcycling of exhausted reverse osmosis membranes into value-added pyrolysis products and carbon dots. J. Hazard. Mater. 2021, 419, 126472.

[11]

Xu, Y. L.; Wang, C.; Ran, G. X.; Chen, D.; Pang, Q. F.; Song, Q. J. Phosphate-assisted transformation of methylene blue to red-emissive carbon dots with enhanced singlet oxygen generation for photodynamic therapy. ACS Appl. Nano Mater. 2021, 4, 4820–4828.

[12]

Wei, Z. T.; Lu, W. Y.; Wang, X. M.; Ni, J. P.; Prova, U. H.; Wang, C. X.; Huang, G. Y. Harnessing versatile dynamic carbon precursors for multi-color emissive carbon dots. J. Mater. Chem. C 2022, 10, 1932–1967.

[13]

Wang, Y.; Guo, G.; Gao, J. L.; Li, Z. B.; Yin, X. E.; Zhu, C. Q.; Xia, Y. S. Multicenter-emitting carbon dots: Color tunable fluorescence and dynamics monitoring oxidative stress in vivo. Chem. Mater. 2020, 32, 8146–8157.

[14]

Wang, H. B.; Zhang, M. L.; Wei, K. Q.; Zhao, Y. J.; Nie, H. D.; Ma, Y. R.; Zhou, Y. J.; Huang, H.; Liu, Y.; Shao, M. W. et al. Pyrrolic nitrogen dominated the carbon dot mimic oxidase activity. Carbon 2021, 179, 692–700.

[15]

Zhao, J.; Wang, H. H.; Geng, H. Q.; Yang, Q.; Tong, Y. P.; He, W. W. Au/N-doped carbon dot nanozymes as light-controlled anti- and pro-oxidants. ACS Appl. Nano Mater. 2021, 4, 7253–7263.

[16]

Zhao, N.; Song, J. Q.; Zhao, L. S. Metallic deep eutectic solvents-assisted synthesis of Cu, Cl-doped carbon dots as oxidase-like and peroxidase-like nanozyme for colorimetric assay of hydroquinone and H2O2. Colloids Surf. A 2022, 648, 129390.

[17]

Zhuo, S. J.; Fang, J.; Li, M.; Wang, J.; Zhu, C. Q.; Du, J. Y. Manganese(II)-doped carbon dots as effective oxidase mimics for sensitive colorimetric determination of ascorbic acid. Microchim. Acta 2019, 186, 745.

[18]
Xue, S. S.; Li, P. F.; Sun, L.; An, L.; Qu, D.; Wang, X. Y.; Sun, Z. C. The formation process and mechanism of carbon dots prepared from aromatic compounds as precursors: A review. Small, in press, https://doi.org/10.1002/smll.202206180.
[19]

Zhi, B.; Yao, X. X.; Cui, Y.; Orr, G.; Haynes, C. L. Synthesis, applications and potential photoluminescence mechanism of spectrally tunable carbon dots. Nanoscale 2019, 11, 20411–20428.

[20]

Ai, L.; Yang, Y. S.; Wang, B. Y.; Chang, J. B.; Tang, Z. Y.; Yang, B.; Lu, S. Y. Insights into photoluminescence mechanisms of carbon dots: Advances and perspectives. Sci. Bull. 2021, 66, 839–856.

[21]

He, C.; Xu, P.; Zhang, X. H.; Long, W. J. The synthetic strategies, photoluminescence mechanisms and promising applications of carbon dots: Current state and future perspective. Carbon 2022, 186, 91–127.

[22]

Liu, W. J.; Li, C.; Ren, Y. J.; Sun, X. B.; Pan, W.; Li, Y. H.; Wang, J. P.; Wang, W. J. Carbon dots: Surface engineering and applications. J. Mater. Chem. B 2016, 4, 5772–5788.

[23]

Xu, X. K.; Li, Y. D.; Hu, G. Q.; Mo, L. Q.; Zheng, M. T.; Lei, B. F.; Zhang, X. J.; Hu, C. F.; Zhuang, J. L.; Liu, Y. L. Surface functional carbon dots: Chemical engineering applications beyond optical properties. J. Mater. Chem. C 2020, 8, 16282–16294.

[24]

Zhang, J.; Yu, S. H. Carbon dots: Large-scale synthesis, sensing and bioimaging. Mater. Today 2016, 19, 382–393.

[25]

Han, Y.; Liccardo, L.; Moretti, E.; Zhao, H. G.; Vomiero, A. Synthesis, optical properties and applications of red/near-infrared carbon dots. J. Mater. Chem. C 2022, 10, 11827–11847.

[26]

Li, Y. D.; Xu, X. K.; Wu, Y.; Zhuang, J. L.; Zhang, X. J.; Zhang, H. R.; Lei, B. F.; Hu, C. F.; Liu, Y. L. A review on the effects of carbon dots in plant systems. Mater. Chem. Front. 2020, 4, 437–448.

[27]

Hu, C.; Li, M. Y.; Qiu, J. S.; Sun, Y. P. Design and fabrication of carbon dots for energy conversion and storage. Chem. Soc. Rev. 2019, 48, 2315–2337.

[28]

Yu, M. Z.; Li, P. L.; Huang, R. B.; Xu, C. N.; Zhang, S. Y.; Wang, Y. L.; Gong, X. D.; Xing, X. D. Antibacterial and antibiofilm mechanisms of carbon dots: A review. J. Mater. Chem. B 2023, 11, 734–754.

[29]

Hebbar, A.; Selvaraj, R.; Vinayagam, R.; Varadavenkatesan, T.; Kumar, P. S.; Duc, P. A.; Rangasamy, G. A critical review on the environmental applications of carbon dots. Chemosphere 2023, 313, 137308.

[30]

Jaleel, J. A.; Pramod, K. Artful and multifaceted applications of carbon dot in biomedicine. J. Control. Release 2018, 269, 302–321.

[31]

Xu, D.; Lin, Q. L.; Chang, H. T. Recent advances and sensing applications of carbon dots. Small Methods 2020, 4, 1900387.

[32]

Kundelev, E. V.; Tepliakov, N. V.; Leonov, M. Y.; Maslov, V. G.; Baranov, A. V.; Fedorov, A. V.; Rukhlenko, I. D.; Rogach, A. L. Amino functionalization of carbon dots leads to red emission enhancement. J. Phys. Chem. Lett. 2019, 10, 5111–5116.

[33]

Zhu, S. J.; Meng, Q. N.; Wang, L.; Zhang, J. H.; Song, Y. B.; Jin, H.; Zhang, K.; Sun, H. C.; Wang, H. Y.; Yang, B. Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew. Chem., Int. Ed. 2013, 52, 3953–3957.

[34]

Schneider, J.; Reckmeier, C. J.; Xiong, Y.; Von Seckendorff, M.; Susha, A. S.; Kasák, P.; Rogach, A. L. Molecular fluorescence in citric acid-based carbon dots. J. Phys. Chem. C 2017, 121, 2014–2022.

[35]

Hu, Y. P.; Yang, J.; Tian, J. W.; Yu, J. S. How do nitrogen-doped carbon dots generate from molecular precursors? An investigation of the formation mechanism and a solution-based large-scale synthesis. J. Mater. Chem. B 2015, 3, 5608–5614.

[36]

Miao, X.; Qu, D.; Yang, D.; Nie, B.; Zhao, Y. K.; Fan, H. Y.; Sun, Z. C. Synthesis of carbon dots with multiple color emission by controlled graphitization and surface functionalization. Adv. Mater. 2018, 30, 1704740.

[37]

Qu, S. N.; Wang, X. Y.; Lu, Q. P.; Liu, X. Y.; Wang, L. J. A biocompatible fluorescent ink based on water-soluble luminescent carbon nanodots. Angew. Chem., Int. Ed. 2012, 51, 12215–12218.

[38]

Tian, Z.; Zhang, X. T.; Li, D.; Zhou, D.; Jing, P. T.; Shen, D. Z.; Qu, S. N.; Zboril, R.; Rogach, A. L. Full-color inorganic carbon dot phosphors for white-light-emitting diodes. Adv. Opt. Mater. 2017, 5, 1700416.

[39]

Liang, T.; Liu, E. S.; Li, M. H.; Ushakova, E. V.; Kershaw, S. V.; Rogach, A. L.; Tang, Z. K.; Qu, S. N. Morphology control of luminescent carbon nanomaterials: From dots to rolls and belts. ACS Nano 2021, 15, 1579–1586.

[40]

Wang, L.; Choi, W. M.; Chung, J. S.; Hur, S. H. Multicolor emitting N-doped carbon dots derived from ascorbic acid and phenylenediamine precursors. Nanoscale Res. Lett. 2020, 15, 222.

[41]

Xu, Y.; Fan, Y.; Zhang, L.; Wang, Q.; Fu, H. Y.; She, Y. B. A novel enhanced fluorescence method based on multifunctional carbon dots for specific detection of Hg2+ in complex samples. Spectrochim. Acta Part A 2019, 220, 117109.

[42]

Edison, T. N. J. I.; Atchudan, R.; Sethuraman, M. G.; Shim, J. J.; Lee, Y. R. Microwave assisted green synthesis of fluorescent N-doped carbon dots: Cytotoxicity and bio-imaging applications. J. Photochem. Photobiol. B: Biol. 2016, 161, 154–161.

[43]

Hao, A. J.; Guo, X. J.; Wu, Q.; Sun, Y.; Cong, C. R.; Liu, W. J. Exploring the interactions between polyethyleneimine modified fluorescent carbon dots and bovine serum albumin by spectroscopic methods. J. Lumin. 2016, 170, 90–96.

[44]

Lv, P. Y.; Xu, Y. Y.; Liu, Z.; Li, G. P.; Ye, B. X. Carbon dots doped lanthanide coordination polymers as dual-function fluorescent probe for ratio sensing Fe2+/3+ and ascorbic acid. Microchem. J. 2020, 152, 104255.

[45]

Tu, J. Q.; Yang, X. Y.; Liu, H. P.; Chen, P.; Liu, K.; Gao, J. A “on-off-on” fluorescent probe for sensitive detection of Fe3+ and ascorbic acid by cross-linking agent protected carbon dots. Int. J. Environ. Anal. Chem. 2020, 102, 243–253.

[46]

Raveendran, V.; Babu, A. R. S.; Renuka, N. K. Mint leaf derived carbon dots for dual analyte detection of Fe(Ⅲ) and ascorbic acid. RSC Adv. 2019, 9, 12070–12077.

[47]

Cui, J. J.; Zhu, X. X.; Liu, Y. P.; Liang, L. M.; Peng, Y. S.; Wu, S. G.; Zhao, Y. N-doped carbon dots as fluorescent “turn-off” nanosensors for ascorbic acid and Fe3+ detection. ACS Appl. Nano Mater. 2022, 5, 7268–7277.

[48]

Cailotto, S.; Amadio, E.; Facchin, M.; Selva, M.; Pontoglio, E.; Rizzolio, F.; Riello, P.; Toffoli, G.; Benedetti, A.; Perosa, A. Carbon dots from sugars and ascorbic acid: Role of the precursors on morphology, properties, toxicity, and drug uptake. ACS Med. Chem. Lett. 2018, 9, 832–837.

[49]

Hallaj, T.; Amjadi, M.; Manzoori, J. L.; Shokri, R. Chemiluminescence reaction of glucose-derived graphene quantum dots with hypochlorite, and its application to the determination of free chlorine. Microchim. Acta 2015, 182, 789–796.

[50]

Ezati, P.; Rhim, J. W.; Molaei, R.; Priyadarshi, R.; Roy, S.; Min, S.; Kim, Y. H.; Lee, S. G.; Han, S. Preparation and characterization of B, S, and N-doped glucose carbon dots: Antibacterial, antifungal, and antioxidant activity. Sustainable Mater. Technol. 2022, 32, e00397.

[51]

Wang, B. Y.; Wei, Z. H.; Sui, L. Z.; Yu, J. K.; Zhang, B. W.; Wang, X. Y.; Feng, S. N.; Song, H. Q.; Yong, X.; Tian, Y. X. et al. Electron-phonon coupling-assisted universal red luminescence of o-phenylenediamine-based carbon dots. Light Sci. Appl. 2022, 11, 172.

[52]

Xu, Y. L.; Wang, C.; Sui, L. Z.; Ran, G. X.; Song, Q. J. Phosphoric acid densified red emissive carbon dots with a well-defined structure and narrow band fluorescence for intracellular reactive oxygen species detection and scavenging. J. Mater. Chem. C 2023, 11, 2984–2994.

[53]

Gao, D.; Liu, A. M.; Zhang, Y. S.; Zhu, Y. D.; Wei, D.; Sun, J.; Luo, H. R.; Fan, H. S. Temperature triggered high-performance carbon dots with robust solvatochromic effect and self-quenching-resistant deep red solid state fluorescence for specific lipid droplet imaging. Chem. Eng. J. 2021, 415, 128984.

[54]

Liu, J. J.; Li, D. W.; Zhang, K.; Yang, M. X.; Sun, H. C.; Yang, B. One-step hydrothermal synthesis of nitrogen-doped conjugated carbonized polymer dots with 31% efficient red emission for in vivo imaging. Small 2018, 14, 1703919.

[55]

Chao, D. Y.; Lyu, W.; Liu, Y. B.; Zhou, L.; Zhang, Q. R.; Deng, R. P.; Zhang, H. J. Solvent-dependent carbon dots and their applications in the detection of water in organic solvents. J. Mater. Chem. C 2018, 6, 7527–7532.

[56]

Jiao, Y.; Liu, Y.; Meng, Y. T.; Gao, Y. F.; Lu, W. J.; Liu, Y.; Gong, X. J.; Shuang, S. M.; Dong, C. Novel processing for color-tunable luminescence carbon dots and their advantages in biological systems. ACS Sustainable Chem. Eng. 2020, 8, 8585–8592.

[57]

Arkin, K.; Zheng, Y. X.; Hao, J. W.; Zhang, S. Y.; Shang, Q. K. Polychromatic carbon dots prepared from m-phenylenediamine and urea as multifunctional fluorescent probes. ACS Appl. Nano Mater. 2021, 4, 8500–8510.

[58]

Zhu, T. T.; Cao, L.; Zhou, Z. Q.; Guo, H. Z.; Ge, M. F.; Dong, W. F.; Li, L. Ultra-bright carbon quantum dots for rapid cell staining. Analyst 2022, 147, 2558–2566.

[59]

Zhan, Y. J.; Luo, F.; Guo, L. H.; Qiu, B.; Lin, Y. H.; Li, J.; Chen, G. N.; Lin, Z. Y. Preparation of an efficient ratiometric fluorescent nanoprobe (m-CDs@[Ru(bpy)3]2+) for visual and specific detection of hypochlorite on site and in living cells. ACS Sens. 2017, 2, 1684–1691.

[60]

Jiang, K.; Sun, S.; Zhang, L.; Lu, Y.; Wu, A. G.; Cai, C. Z.; Lin, H. W. Red, green, and blue luminescence by carbon dots: Full-color emission tuning and multicolor cellular imaging. Angew. Chem., Int. Ed. 2015, 54, 5360–5363.

[61]

Jia, J.; Lu, W.; Cui, S.; Dong, C.; Shuang, S. Synthesis of multicolor luminescent adjustable carbon dots and their application in anti-counterfeiting. Mater. Today Chem. 2022, 25, 100972.

[62]

Xu, X. K.; Mo, L. Q.; Li, W.; Li, Y. D.; Lei, B. F.; Zhang, X. J.; Zhuang, J. L.; Hu, C. F.; Liu, Y. L. Red, green and blue aggregation-induced emissive carbon dots. Chin. Chem. Lett. 2021, 32, 3927–3930.

[63]

Lu, S. Y.; Sui, L. Z.; Liu, J. J.; Zhu, S. J.; Chen, A. M.; Jin, M. X.; Yang, B. Near-infrared photoluminescent polymer-carbon nanodots with two-photon fluorescence. Adv. Mater. 2017, 29, 1603443.

[64]

Liu, K. K.; Song, S. Y.; Sui, L. Z.; Wu, S. X.; Jing, P. T.; Wang, R. Q.; Li, Q. Y.; Wu, G. R.; Zhang, Z. Z.; Yuan, K. J. et al. Efficient red/near-infrared-emissive carbon nanodots with multiphoton excited upconversion fluorescence. Adv. Sci. 2019, 6, 1900766.

[65]

Xu, J. H.; Liang, Q. J.; Li, Z. J.; Osipov, V. Y.; Lin, Y. J.; Ge, B. H.; Xu, Q.; Zhu, J. F.; Bi, H. Rational synthesis of solid-state ultraviolet B emitting carbon dots via acetic acid-promoted fractions of sp3 bonding strategy. Adv. Mater. 2022, 34, 2200011.

[66]

Wang, B. Y.; Yu, J. K.; Sui, L. Z.; Zhu, S. J.; Tang, Z. Y.; Yang, B.; Lu, S. Y. Rational design of multi-color-emissive carbon dots in a single reaction system by hydrothermal. Adv. Sci. 2021, 8, 2001453.

[67]

Chen, Y. Y.; Wang, C.; Xu, Y. L.; Ran, G. X.; Song, Q. J. Red emissive carbon dots obtained from direct calcination of 1,2,4-triaminobenzene for dual-mode pH sensing in living cells. New J. Chem. 2020, 44, 7210–7217.

[68]

Zhang, Q.; Wang, R. Y.; Feng, B. W.; Zhong, X. X.; Ostrikov, K. Photoluminescence mechanism of carbon dots: Triggering high-color-purity red fluorescence emission through edge amino protonation. Nat. Commun. 2021, 12, 6856.

[69]

Ye, X. X.; Xiang, Y. H.; Wang, Q. R.; Li, Z.; Liu, Z. H. A red emissive two-photon fluorescence probe based on carbon dots for intracellular pH detection. Small 2019, 15, 1901673.

[70]

Sun, Z. S.; Zhou, W. Y.; Luo, J. B.; Fan, J. Q.; Wu, Z. C.; Zhu, H. N.; Huang, J. Q.; Zhang, X. G. High-efficient and pH-sensitive orange luminescence from silicon-doped carbon dots for information encryption and bio-imaging. J. Colloid Interface Sci. 2022, 607, 16–23.

[71]

Zhu, Z.; Liu, C. L.; Song, X. M.; Mao, Q. X.; Ma, T. Y. Carbon dots as an indicator of acid-base titration and a fluorescent probe for endoplasm reticulum imaging. ACS Appl. Bio Mater. 2021, 4, 3623–3629.

[72]

Lu, F.; Yang, S. W.; Song, Y. X.; Zhai, C. M.; Wang, Q. G.; Ding, G. Q.; Kang, Z. H. Hydroxyl functionalized carbon dots with strong radical scavenging ability promote cell proliferation. Mater. Res. Express 2019, 6, 065030.

[73]

Wang, X.; Zhao, L.; Hu, J. S.; Wei, H.; Liu, X. Y.; Li, E. S.; Yang, S. H. Rational design of novel carbon-oxygen quantum dots for ratiometrically mapping pH and reactive oxygen species scavenging. Carbon 2022, 190, 115–124.

[74]

Liu, Y. L.; Shi, J. J. Antioxidative nanomaterials and biomedical applications. Nano Today 2019, 27, 146–177.

[75]

Ingold, K. U.; Pratt, D. A. Advances in radical-trapping antioxidant chemistry in the 21st century: A kinetics and mechanisms perspective. Chem. Rev. 2014, 114, 9022–9046.

[76]

Long, X.; Zhang, Y. Y.; Chen, X.; Zhong, Y. Q.; Wu, S. G.; Hao, L. Synthesis of highly efficient green emissive carbon dots towards UV encryption fluorescent ink. Opt. Mater. 2022, 132, 112829.

[77]

Wang, Y.; Zhang, Y.; Jia, M. Y.; Meng, H.; Li, H.; Guan, Y. F.; Feng, L. Functionalization of carbonaceous nanodots from MnII-coordinating functional knots. Chem.—Eur. J. 2015, 21, 14843–14850.

[78]

Zhang, H. Y.; Wang, Y.; Xiao, S.; Wang, H.; Wang, J. H.; Feng, L. Rapid detection of Cr(VI) ions based on cobalt(II)-doped carbon dots. Biosens. Bioelectron. 2017, 87, 46–52.

[79]

Guo, H. Z.; Liu, Z. K.; Shen, X. Y.; Wang, L. One-pot synthesis of orange emissive carbon quantum dots for all-type high color rendering index white light-emitting diodes. ACS Sustainable Chem. Eng. 2022, 10, 8289–8296.

[80]

Wang, Z. F.; Yuan, F. L.; Li, X. H.; Li, Y. C.; Zhong, H. Z.; Fan, L. Z.; Yang, S. H. 53% efficient red emissive carbon quantum dots for high color rendering and stable warm white-light-emitting diodes. Adv. Mater. 2017, 29, 1702910.

[81]

Yang, Z.; Li, H.; Xu, T. T.; She, M. Y.; Chen, J.; Jia, X. D.; Liu, P.; Liu, X. R.; Li, J. L. Red emissive carbon dots as a fluorescent sensor for fast specific monitoring and imaging of polarity in living cells. J. Mater. Chem. A 2023, 11, 2679–2689.

[82]

Li, Q.; Chang, Y. T. A protocol for preparing, characterizing and using three RNA-specific, live cell imaging probes: E36, E144 and F22. Nat. Protoc. 2006, 1, 2922–2932.

[83]

Gill, M. R.; Garcia-Lara, J.; Foster, S. J.; Smythe, C.; Battaglia, G.; Thomas, J. A. A ruthenium(II) polypyridyl complex for direct imaging of DNA structure in living cells. Nat. Chem. 2009, 1, 662–667.

[84]

Peng, X. J.; Wu, T.; Fan, J. L.; Wang, J. Y.; Zhang, S.; Song, F. L.; Sun, S. G. An effective minor groove binder as a red fluorescent marker for live-cell DNA imaging and quantification. Angew. Chem., Int. Ed. 2011, 50, 4180–4183.

[85]

Xu, N.; Du, J. J.; Yao, Q. C.; Ge, H. Y.; Shi, C.; Xu, F.; Xian, L. M.; Fan, J. L.; Peng, X. J. Carbon dots inspired by structure-inherent targeting for nucleic acid imaging and localized photodynamic therapy. Sens. Actuators B: Chem. 2021, 344, 130322.

[86]

Yang, J. Y.; Guo, L. K.; Yong, X.; Zhang, T. J.; Wang, B. Y.; Song, H. Q.; Zhao, Y. S.; Hou, H. W.; Yang, B.; Ding, J. et al. Simulating the structure of carbon dots via crystalline π-aggregated organic nanodots prepared by kinetically trapped self-assembly. Angew. Chem., Int. Ed. 2022, 61, e202207817.

[87]

Xu, Y. Y.; Zhang, Z. Z.; Lv, P. Y.; Duan, Y. H.; Li, G. P.; Ye, B. X. Ratiometric fluorescence sensing of Fe2+/3+ by carbon dots doped lanthanide coordination polymers. J. Lumin. 2019, 205, 519–524.

[88]

Sun, X. B.; Zhang, J. L.; Wang, X. Y.; Zhao, J. R.; Pan, W.; Yu, G. F.; Qu, Y. J.; Wang, J. P. Colorimetric and fluorimetric dual mode detection of Fe2+ in aqueous solution based on a carbon dots/phenanthroline system. Arabian J. Chem. 2020, 13, 5075–5083.

[89]

Iqbal, A.; Tian, Y. J.; Wang, X. D.; Gong, D. Y.; Guo, Y. L.; Iqbal, K.; Wang, Z. P.; Liu, W. S.; Qin, W. W. Carbon dots prepared by solid state method via citric acid and 1,10-phenanthroline for selective and sensing detection of Fe2+ and Fe3+. Sens. Actuators B: Chem. 2016, 237, 408–415.

[90]

Jiang, T.; Huang, J. F.; Ran, G. X.; Song, Q. J.; Wang, C. A colorimetric and fluorometric dual-mode carbon dots probe derived from phenanthroline precursor for the selective detection of Fe2+ and Fe3+. Anal. Sci. 2023, 39, 325–333.

[91]

Xu, Y. L.; Wang, C.; Jiang, T.; Ran, G. X.; Song, Q. J. Cadmium induced aggregation of orange-red emissive carbon dots with enhanced fluorescence for intracellular imaging. J. Hazard. Mater. 2022, 427, 128092.

[92]

Yuan, B.; Xie, Z.; Chen, P.; Zhou, S. Y. Highly efficient carbon dots and their nanohybrids for trichromatic white LEDs. J. Mater. Chem. C 2018, 6, 5957–5963.

[93]

Liu, Y. P.; Lei, J. H.; Wang, G.; Zhang, Z. M.; Wu, J.; Zhang, B. H.; Zhang, H. Q.; Liu, E. S.; Wang, L. M.; Liu, T. M. et al. Toward strong near-infrared absorption/emission from carbon dots in aqueous media through solvothermal fusion of large conjugated perylene derivatives with post-surface engineering. Adv. Sci. 2022, 9, 2202283.

[94]

Joseph, J.; Anappara, A. A. Microwave-assisted hydrothermal synthesis of UV-emitting carbon dots from tannic acid. New J. Chem. 2016, 40, 8110–8117.

[95]

Liu, Z. X.; Wu, Z. L.; Gao, M. X.; Liu, H.; Huang, C. Z. Carbon dots with aggregation induced emission enhancement for visual permittivity detection. Chem. Commun. 2016, 52, 2063–2066.

[96]

Chen, B. B.; Chang, S.; Jiang, L.; Lv, J.; Gao, Y. T.; Wang, Y.; Qian, R. C.; Li, D. W.; Hafez, M. E. Reversible polymerization of carbon dots based on dynamic covalent imine bond. J. Colloid Interface Sci. 2022, 621, 464–469.

[97]

Li, Y.; Liu, C.; Chen, M. L.; An, Y. L.; Zheng, Y. W.; Tian, H.; Shi, R.; He, X. H.; Lin, X. Solvent-free preparation of tannic acid carbon dots for selective detection of Ni2+ in the environment. Int. J. Mol. Sci. 2022, 23, 6681.

[98]

Achadu, O. J.; Revaprasadu, N. Tannic acid-derivatized graphitic carbon nitride quantum dots as an “on-off-on” fluorescent nanoprobe for ascorbic acid via copper(II) mediation. Microchim. Acta 2019, 186, 87.

[99]

Nozaki, T.; Kakuda, T.; Pottathara, Y. B.; Kawasaki, H. A nanocomposite of N-doped carbon dots with gold nanoparticles for visible light active photosensitisers. Photochem. Photobiol. Sci. 2019, 18, 1235–1241.

[100]

Zhang, Q. Z.; He, J.; Yu, W. M.; Li, Y. C.; Liu, Z. H.; Zhou, B. N.; Liu, Y. M. A promising anticancer drug: A photosensitizer based on the porphyrin skeleton. RSC Med. Chem. 2020, 11, 427–437.

[101]

Sun, S.; Chen, J. Q.; Jiang, K.; Tang, Z. D.; Wang, Y. H.; Li, Z. J.; Liu, C. B.; Wu, A. G.; Lin, H. W. Ce6-modified carbon dots for multimodal-imaging-guided and single-NIR-laser-triggered photothermal/photodynamic synergistic cancer therapy by reduced irradiation power. ACS Appl. Mater. Interfaces 2019, 11, 5791–5803.

[102]

Jia, Q. Y.; Ge, J. C.; Liu, W. M.; Zheng, X. L.; Chen, S. Q.; Wen, Y. M.; Zhang, H. Y.; Wang, P. F. A magnetofluorescent carbon dot assembly as an acidic H2O2-driven oxygenerator to regulate tumor hypoxia for simultaneous bimodal imaging and enhanced photodynamic therapy. Adv. Mater. 2018, 30, 1706090.

[103]

Wang, B. Y.; Song, H. Q.; Qu, X. L.; Chang, J. B.; Yang, B.; Lu, S. Y. Carbon dots as a new class of nanomedicines: Opportunities and challenges. Coord. Chem. Rev. 2021, 442, 214010.

[104]

Huang, P.; Lin, J.; Wang, X. S.; Wang, Z.; Zhang, C. L.; He, M.; Wang, K.; Chen, F.; Li, Z. M.; Shen, G. X. et al. Light-triggered theranostics based on photosensitizer-conjugated carbon dots for simultaneous enhanced-fluorescence imaging and photodynamic therapy. Adv. Mater. 2012, 24, 5104–5110.

[105]

Ji, D. K.; Dali, H.; Guo, S.; Malaganahally, S.; Vollaire, J.; Josserand, V.; Dumortier, H.; Ménard-Moyon, C.; Bianco, A. Multifunctional carbon nanodots: Enhanced near-infrared photosensitizing, photothermal activity, and body clearance. Small Sci. 2022, 2, 2100082.

[106]

Zheng, M.; Li, Y.; Liu, S.; Wang, W. Q.; Xie, Z. G.; Jing, X. B. One-pot to synthesize multifunctional carbon dots for near infrared fluorescence imaging and photothermal cancer therapy. ACS Appl. Mater. Interfaces 2016, 8, 23533–23541.

[107]

Ge, J. C.; Lan, M. H.; Zhou, B. J.; Liu, W. M.; Guo, L.; Wang, H.; Jia, Q. Y.; Niu, G. L.; Huang, X.; Zhou, H. Y. et al. A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation. Nat. Commun. 2014, 5, 4596.

[108]

Zhao, S. J.; Yang, K.; Jiang, L. R.; Xiao, J. F.; Wang, B. H.; Zeng, L. T.; Song, X. Z.; Lan, M. H. Polythiophene-based carbon dots for imaging-guided photodynamic therapy. ACS Appl. Nano Mater. 2021, 4, 10528–10533.

[109]

Nasrin, A.; Hassan, M.; Gomes, V. G. Two-photon active nucleus-targeting carbon dots: Enhanced ROS generation and photodynamic therapy for oral cancer. Nanoscale 2020, 12, 20598–20603.

[110]

Yue, J.; Li, L.; Jiang, C. Y.; Mei, Q.; Dong, W. F.; Yan, R. H. Riboflavin-based carbon dots with high singlet oxygen generation for photodynamic therapy. J. Mater. Chem. B 2021, 9, 7972–7978.

[111]

Li, Y.; Zheng, X. H.; Zhang, X. Y.; Liu, S.; Pei, Q.; Zheng, M.; Xie, Z. G. Porphyrin-based carbon dots for photodynamic therapy of hepatoma. Adv. Healthc. Mater. 2017, 6, 1600924.

[112]

Meng, W. X.; Bai, X.; Wang, B. Y.; Liu, Z. Y.; Lu, S. Y.; Yang, B. Biomass-derived carbon dots and their applications. Energy Environ. Mater. 2019, 2, 172–192.

[113]

Zhu, L. L.; Shen, D. K.; Wu, C. F.; Gu, S. State-of-the-art on the preparation, modification, and application of biomass-derived carbon quantum dots. Ind. Eng. Chem. Res. 2020, 59, 22017–22039.

[114]

Mehta, V. N.; Jha, S.; Basu, H.; Singhal, R. K.; Kailasa, S. K. One-step hydrothermal approach to fabricate carbon dots from apple juice for imaging of mycobacterium and fungal cells. Sens. Actuators B: Chem. 2015, 213, 434–443.

[115]

De, B.; Karak, N. A green and facile approach for the synthesis of water soluble fluorescent carbon dots from banana juice. RSC Adv. 2013, 3, 8286–8290.

[116]

Desa, S. S.; Ishii, T.; Nueangnoraj, K. Sulfur-doped carbons from durian peels, their surface characteristics, and electrochemical behaviors. ACS Omega 2021, 6, 24902–24909.

[117]

Jayaweera, S.; Yin, K.; Ng, W. J. Nitrogen-doped durian shell derived carbon dots for inner filter effect mediated sensing of tetracycline and fluorescent ink. J. Fluoresc. 2019, 29, 221–229.

[118]

Thongsai, N.; Tanawannapong, N.; Praneerad, J.; Kladsomboon, S.; Jaiyong, P.; Paoprasert, P. Real-time detection of alcohol vapors and volatile organic compounds via optical electronic nose using carbon dots prepared from rice husk and density functional theory calculation. Colloids Surf. A 2019, 560, 278–287.

[119]

Wang, C. F.; Sun, D.; Zhuo, K. L.; Zhang, H. C.; Wang, J. J. Simple and green synthesis of nitrogen-, sulfur-, and phosphorus-co-doped carbon dots with tunable luminescence properties and sensing application. RSC Adv. 2014, 4, 54060–54065.

[120]

Chen, W. F.; Li, D. J.; Tian, L.; Xiang, W.; Wang, T. Y.; Hu, W. M.; Hu, Y. L.; Chen, S. N.; Chen, J. F.; Dai, Z. X. Synthesis of graphene quantum dots from natural polymer starch for cell imaging. Green Chem. 2018, 20, 4438–4442.

[121]

Xie, Y. D.; Cheng, D. D.; Liu, X. L.; Han, A. X. Green hydrothermal synthesis of N-doped carbon dots from biomass highland barley for the detection of Hg2+. Sensors 2019, 19, 3169.

[122]

Liu, J.; Kong, T.; Xiong, H.-M. Mulberry-leaves-derived red-emissive carbon dots for feeding silkworms to produce brightly fluorescent silk. Adv. Mater. 2022, 34, 2200152.

[123]

Mou, Z. H.; Yang, Q. B.; Zhao, B.; Li, X. Q.; Xu, Y. X.; Gao, T. T.; Zheng, H.; Zhou, K.; Xiao, D. Scalable and sustainable synthesis of carbon dots from biomass as efficient friction modifiers for polyethylene glycol synthetic oil. ACS Sustainable Chem. Eng. 2021, 9, 14997–15007.

[124]

Xu, J.; Jie, X.; Xie, F. F.; Yang, H. M.; Wei, W. L.; Xia, Z. N. Flavonoid moiety-incorporated carbon dots for ultrasensitive and highly selective fluorescence detection and removal of Pb2+. Nano Res. 2018, 11, 3648–3657.

[125]

Amer, W. A.; Rehab, A. F.; Abdelghafar, M. E.; Torad, N. L.; Atlam, A. S.; Ayad, M. M. Green synthesis of carbon quantum dots from purslane leaves for the detection of formaldehyde using quartz crystal microbalance. Carbon 2021, 179, 159–171.

[126]

Long, W. J.; Li, X. Q.; Yu, Y.; He, C. Green synthesis of biomass-derived carbon dots as an efficient corrosion inhibitor. J. Mol. Liq. 2022, 360, 119522.

[127]

Sharma, V.; Singh, S. K.; Mobin, S. M. Bioinspired carbon dots: From rose petals to tunable emissive nanodots. Nanoscale Adv. 2019, 1, 1290–1296.

[128]

Gu, D.; Hong, L.; Zhang, L.; Liu, H.; Shang, S. M. Nitrogen and sulfur co-doped highly luminescent carbon dots for sensitive detection of Cd(II) ions and living cell imaging applications. J. Photochem. Photobiol. B: Biol. 2018, 186, 144–151.

[129]

Campalani, C.; Cattaruzza, E.; Zorzi, S.; Vomiero, A.; You, S. J.; Matthews, L.; Capron, M.; Mondelli, C.; Selva, M.; Perosa, A. Biobased carbon dots: From fish scales to photocatalysis. Nanomaterials 2021, 11, 524.

[130]

Mandani, S.; Dey, D.; Sharma, B.; Sarma, T. K. Natural occurrence of fluorescent carbon dots in honey. Carbon 2017, 119, 569–572.

[131]

Wang, D.; Zhu, L.; Mccleese, C.; Burda, C.; Chen, J. F.; Dai, L. M. Fluorescent carbon dots from milk by microwave cooking. RSC Adv. 2016, 6, 41516–41521.

[132]

Gu, D.; Zhang, P. B.; Zhang, L.; Liu, H.; Pu, Z. B.; Shang, S. M. Nitrogen and phosphorus co-doped carbon dots derived from lily bulbs for copper ion sensing and cell imaging. Opt. Mater. 2018, 83, 272–278.

[133]

Yang, W.; Shimanouchi, T.; Kimura, Y. Characterization of the residue and liquid products produced from husks of nuts from Carya cathayensis sarg by hydrothermal carbonization. ACS Sustainable Chem. Eng. 2015, 3, 591–598.

[134]

Sachdev, A.; Gopinath, P. Green synthesis of multifunctional carbon dots from coriander leaves and their potential application as antioxidants, sensors and bioimaging agents. Analyst 2015, 140, 4260–4269.

[135]

Wang, Q.; Liu, X.; Zhang, L. C.; Lv, Y. Microwave-assisted synthesis of carbon nanodots through an eggshell membrane and their fluorescent application. Analyst 2012, 137, 5392–5397.

[136]

Wang, J.; Wang, C. F.; Chen, S. Amphiphilic egg-derived carbon dots: Rapid plasma fabrication, pyrolysis process, and multicolor printing patterns. Angew. Chem., Int. Ed. 2012, 51, 9297–9301.

[137]

Chen, J.; Wang, Y. T.; Wang, L.; Liu, M. J.; Fang, L. L.; Chu, P.; Gao, C. Z.; Chen, D. P.; Ren, D. Z.; Zhang, J. B. Multi-applications of carbon dots and polydopamine-coated carbon dots for Fe3+ detection, bioimaging, dopamine assay and photothermal therapy. Discover Nano 2023, 18, 30.

[138]

Zhang, Z. H.; Sun, W. H.; Wu, P. Y. Highly photoluminescent carbon dots derived from egg white: Facile and green synthesis, photoluminescence properties, and multiple applications. ACS Sustainable Chem. Eng. 2015, 3, 1412–1418.

[139]

Wang, C. J.; Shi, H. X.; Yang, M.; Yan, Y.; Liu, E. Z.; Ji, Z.; Fan, J. Facile synthesis of novel carbon quantum dots from biomass waste for highly sensitive detection of iron ions. Mater. Res. Bull. 2020, 124, 110730.

[140]

Li, L.; Shi, L. H.; Jia, J.; Chang, D.; Dong, C.; Shuang, S. M. Fe3+ detection, bioimaging, and patterning based on bright blue-fluorescent N-doped carbon dots. Analyst 2020, 145, 5450–5457.

[141]

Gu, L.; Zhang, J. R.; Yang, G. X.; Tang, Y. Y.; Zhang, X.; Huang, X. Y.; Zhai, W. L.; Fodjo, E. K.; Kong, C. Green preparation of carbon quantum dots with wolfberry as on-off-on nanosensors for the detection of Fe3+ and l-ascorbic acid. Food Chem. 2022, 376, 131898.

[142]

Zhao, W. B.; Liu, K. K.; Song, S. Y.; Zhou, R.; Shan, C. X. Fluorescent nano-biomass dots: Ultrasonic-assisted extraction and their application as nanoprobe for Fe3+ detection. Nanoscale Res. Lett. 2019, 14, 130.

[143]

Wang, Z. Y.; Sheng, L. N.; Yang, X. X.; Sun, J. D.; Ye, Y. L.; Geng, S. X.; Ning, D. L.; Zheng, J. Y.; Fan, M. H.; Zhang, Y. Z. et al. Natural biomass-derived carbon dots as potent antimicrobial agents against multidrug-resistant bacteria and their biofilms. Sustainable Mater. Technol. 2023, 36, e00584.

[144]

Chen, K.; Qing, W. X.; Hu, W. P.; Lu, M. H.; Wang, Y.; Liu, X. H. On-off-on fluorescent carbon dots from waste tea: Their properties, antioxidant and selective detection of CrO42−, Fe3+, ascorbic acid and L-cysteine in real samples. Spectrochim. Acta Part A 2019, 213, 228–234.

[145]

Murru, C.; Badia-Laino, R.; Diaz-Garcia, M. E. Synthesis and characterization of green carbon dots for scavenging radical oxygen species in aqueous and oil samples. Antioxidants 2020, 9, 1147.

[146]

Šafranko, S.; Stanković, A.; Hajra, S.; Kim, H. J.; Strelec, I.; Dutour-Sikirić, M.; Weber, I.; Bosnar, M. H.; Grbčić, P.; Pavelić, S. K. et al. Preparation of multifunctional N-doped carbon quantum dots from Citrus clementina peel: Investigating targeted pharmacological activities and the potential application for Fe3+ sensing. Pharmaceuticals 2021, 14, 857.

[147]

Das, B.; Dadhich, P.; Pal, P.; Srivas, P. K.; Bankoti, K.; Dhara, S. Carbon nanodots from date molasses: New nanolights for the in vitro scavenging of reactive oxygen species. J. Mater. Chem. B 2014, 2, 6839–6847.

[148]

Wang, H. B.; Zhang, M. L.; Ma, Y. R.; Wang, B.; Shao, M. W.; Huang, H.; Liu, Y.; Kang, Z. H. Selective inactivation of Gram-negative bacteria by carbon dots derived from natural biomass: Artemisia argyi leaves. J. Mater. Chem. B 2020, 8, 2666–2672.

[149]

Tang, H. J.; Song, P.; Li, J.; Zhao, D. S. Effect of Salvia miltiorrhiza on acetylcholinesterase: Enzyme kinetics and interaction mechanism merging with molecular docking analysis. Int. J. Biol. Macromol. 2019, 135, 303–313.

[150]

Wang, W. H.; Hsuan, K. Y.; Chu, L. Y.; Lee, C. Y.; Tyan, Y. C.; Chen, Z. S.; Tsai, W. C. Anticancer effects of Salvia miltiorrhiza alcohol extract on oral squamous carcinoma cells. Evid. Based. Complement. Alternat. Med. 2017, 2017, 5364010.

[151]

Meng, X. G.; Jiang, J. J.; Pan, H.; Wu, S. Y.; Wang, S. W.; Lou, Y. F.; Fan, G. R. Preclinical absorption, distribution, metabolism, and excretion of sodium danshensu, one of the main water-soluble ingredients in Salvia miltiorrhiza, in Rats. Front. Pharmacol. 2019, 10, 554.

[152]

Li, Y. J.; Li, W.; Yang, X.; Kang, Y. Y.; Zhang, H. R.; Liu, Y. L.; Lei, B. F. Salvia miltiorrhiza-derived carbon dots as scavengers of reactive oxygen species for reducing oxidative damage of plants. ACS Appl. Nano Mater. 2021, 4, 113–120.

[153]

Pichardo-Molina, J. L.; Cardoso-Avila, P. E.; Flores-Villavicencio, L. L.; Gomez-Ortiz, N. M.; Rodriguez-Rivera, M. A. Fluorescent carbon nanoparticles synthesized from bovine serum albumin nanoparticles. Int. J. Biol. Macromol. 2020, 142, 724–731.

[154]

Ding, S. C.; Zhang, N.; Lyu, Z. Y.; Zhu, W. L.; Chang, Y. C.; Hu, X. L.; Du, D.; Lin, Y. H. Protein-based nanomaterials and nanosystems for biomedical applications: A review. Mater. Today 2021, 43, 166–184.

[155]

Maity, S.; Bhat, A. H.; Giri, K.; Ambatipudi, K. BoMiProt: A database of bovine milk proteins. J. Proteomics 2020, 215, 103648.

[156]

Sugár, S.; Turiák, L.; Vékey, K.; Drahos, L. Widespread presence of bovine proteins in human cell lines. J. Mass Spectrom. 2020, 55, e4464.

[157]

Tang, M. H.; Teng, P.; Long, Y. J.; Wang, X. L.; Liang, L. P.; Shen, D. J.; Wang, J.; Zheng, H. Z. Hollow carbon dots labeled with FITC or TRITC for use in fluorescent cellular imaging. Microchim. Acta 2018, 185, 223.

[158]

Xu, Y. L.; Wang, C.; Wu, T.; Ran, G. X.; Song, Q. J. Template-free synthesis of porous fluorescent carbon nanomaterials with gluten for intracellular imaging and drug delivery. ACS Appl. Mater. Interfaces 2022, 14, 21310–21318.

[159]

Carbonaro, C. M.; Corpino, R.; Salis, M.; Mocci, F.; Thakkar, S. V.; Olla, C.; Ricci, P. C. On the emission properties of carbon dots: Reviewing data and discussing models. J. Carbon Res. 2019, 5, 60.

[160]

Alivisatos, A. P. Semiconductor Clusters, Nanocrystals, and quantum dots. Science 1996, 271, 933–937.

[161]

Sk, M. A.; Ananthanarayanan, A.; Huang, L.; Lim, K. H.; Chen, P. Revealing the tunable photoluminescence properties of graphene quantum dots. J. Mater. Chem. C 2014, 2, 6954–6960.

[162]

Yuan, F. L.; Yuan, T.; Sui, L. Z.; Wang, Z. B.; Xi, Z. F.; Li, Y. C.; Li, X. H.; Fan, L. Z.; Tan, Z. A.; Chen, A. M. et al. Engineering triangular carbon quantum dots with unprecedented narrow bandwidth emission for multicolored LEDs. Nat. Commun. 2018, 9, 2249.

[163]

Wang, L.; Li, W. T.; Yin, L. Q.; Liu, Y. J.; Guo, H. Z.; Lai, J. W.; Han, Y.; Li, G.; Li, M.; Zhang, J. H. et al. Full-color fluorescent carbon quantum dots. Sci. Adv. 2020, 6, eabb6772.

[164]

Li, H. J.; Han, S. C.; Lyu, B. W.; Hong, T.; Zhi, S. B.; Xu, L.; Xue, F. F.; Sai, L. M.; Yang, J. H.; Wang, X. Y. et al. Tunable light emission from carbon dots by controlling surface defects. Chin. Chem. Lett. 2021, 32, 2887–2892.

[165]

Yuan, K.; Zhang, X. H.; Qin, R. H.; Ji, X. F.; Cheng, Y. H.; Li, L. L.; Yang, X. J.; Lu, Z. M.; Liu, H. Surface state modulation of red emitting carbon dots for white light-emitting diodes. J. Mater. Chem. C 2018, 6, 12631–12637.

[166]

Song, Y. B.; Zhu, S. J.; Zhang, S. T.; Fu, Y.; Wang, L.; Zhao, X. H.; Yang, B. Investigation from chemical structure to photoluminescent mechanism: A type of carbon dots from the pyrolysis of citric acid and an amine. J. Mater. Chem. C 2015, 3, 5976–5984.

[167]

Shi, L.; Yang, J. H.; Zeng, H. B.; Chen, Y. M.; Yang, S. C.; Wu, C.; Zeng, H.; Yoshihito, O.; Zhang, Q. Q. Carbon dots with high fluorescence quantum yield: The fluorescence originates from organic fluorophores. Nanoscale 2016, 8, 14374–14378.

[168]

Kasprzyk, W.; Świergosz, T.; Bednarz, S.; Walas, K.; Bashmakova, N. V.; Bogdał, D. Luminescence phenomena of carbon dots derived from citric acid and urea—A molecular insight. Nanoscale 2018, 10, 13889–13894.

[169]

Cao, L.; Zan, M. H.; Chen, F. M.; Kou, X. Y.; Liu, Y. L.; Wang, P. Y.; Mei, Q.; Hou, Z.; Dong, W. F.; Li, L. Formation mechanism of carbon dots: From chemical structures to fluorescent behaviors. Carbon 2022, 194, 42–51.

[170]

Soni, N.; Singh, S.; Sharma, S.; Batra, G.; Kaushik, K.; Rao, C.; Verma, N. C.; Mondal, B.; Yadav, A.; Nandi, C. K. Absorption and emission of light in red emissive carbon nanodots. Chem. Sci. 2021, 12, 3615–3626.

[171]

Wang, B. Y.; Song, H. Q.; Tang, Z. Y.; Yang, B.; Lu, S. Y. Ethanol-derived white emissive carbon dots: The formation process investigation and multi-color/white LEDs preparation. Nano Res. 2021, 15, 942–949.

[172]

Wang, F.; Wang, C. L.; Chen, M. L.; Gong, W. L.; Zhang, Y.; Han, S. S.; Situ, G. H. Far-field super-resolution ghost imaging with a deep neural network constraint. Light Sci. Appl. 2022, 11, 1.

[173]

Lin, Y. C.; Zheng, Y. F.; Guo, Y. C.; Yang, Y. L.; Li, H. B.; Fang, Y.; Wang, C. Peptide-functionalized carbon dots for sensitive and selective Ca2+ detection. Sens. Actuators B: Chem. 2018, 273, 1654–1659.

[174]

Yang, J.; Jin, X. L.; Cheng, Z.; Zhou, H. W.; Gao, L. N.; Jiang, D. L.; Jie, X. L.; Ma, Y. T.; Chen, W. X. Facile and green synthesis of bifunctional carbon dots for detection of Cu2+ and ClO in aqueous solution. ACS Sustainable Chem. Eng. 2021, 9, 13206–13214.

[175]

Feng, J.; Zhao, X. R.; Bian, W.; Tang, X. J. Microwave-assisted synthesis of nitrogen-rich carbon dots as effective fluorescent probes for sensitive detection of Ag+. Mater. Chem. Front. 2019, 3, 2751–2758.

[176]

Sun, Z. S.; Zhou, Y. P.; Zhou, W. Y.; Luo, J. B.; Liu, R. Y.; Zhang, X. G.; Zhou, L. Y.; Pang, Q. Pb(II) detection and versatile bio-imaging of green-emitting carbon dots with excellent stability and bright fluorescence. Nanoscale 2021, 13, 2472–2480.

[177]

Wei, S. S.; Tan, L. H.; Yin, X. Y.; Wang, R. M.; Shan, X. R.; Chen, Q.; Li, T. H.; Zhang, X. Y.; Jiang, C. Z.; Sun, G. Y. A sensitive “on-off” fluorescent probe based on carbon dots for Fe2+ detection and cell imaging. Analyst 2020, 145, 2357–2366.

[178]

Wang, B. B.; Jin, J. C.; Xu, Z. Q.; Jiang, Z. W.; Li, X.; Jiang, F. L.; Liu, Y. Single-step synthesis of highly photoluminescent carbon dots for rapid detection of Hg2+ with excellent sensitivity. J. Colloid Interface Sci. 2019, 551, 101–110.

[179]

Wang, N.; Chai, H. J.; Dong, X. L.; Zhou, Q.; Zhu, L. H. Detection of Fe(III)EDTA by using photoluminescent carbon dot with the aid of F ion. Food Chem. 2018, 258, 51–58.

[180]

Wang, L. L.; Jana, J.; Chung, J. S.; Choi, W. M.; Hur, S. H. Designing an intriguingly fluorescent N, B-doped carbon dots based fluorescent probe for selective detection of NO2 ions. Spectrochim. Acta Part A 2022, 268, 120657.

[181]

Liu, Q. L.; Niu, X. Y.; Xie, K. X.; Yan, Y. M.; Ren, B. R.; Liu, R. R.; Li, Y. X.; Li, L. Fluorescent carbon dots as nanosensors for monitoring and imaging Fe3+ and [HPO4]2− ions. ACS Appl. Nano Mater. 2021, 4, 190–197.

[182]

Liu, A. K.; Cai, H. J.; Xu, Z. B.; Li, J. L.; Weng, X. Y.; Liao, C. R.; He, J.; Liu, L. W.; Wang, Y. P.; Qu, J. L. et al. Multifunctional carbon dots for glutathione detection and Golgi imaging. Talanta 2023, 259, 124520.

[183]

Yu, X.; Zhang, C. X.; Zhang, L. N.; Xue, Y. R.; Li, H. W.; Wu, Y. Q. The construction of a FRET assembly by using gold nanoclusters and carbon dots and their application as a ratiometric probe for cysteine detection. Sens. Actuators B: Chem. 2018, 263, 327–335.

[184]

Li, F.; Chen, J.; Wen, J. Y.; Peng, Y. Y.; Tang, X. M.; Qiu, P. Ratiometric fluorescence and colorimetric detection for uric acid using bifunctional carbon dots. Sens. Actuators B: Chem. 2022, 369, 132381.

[185]

Wang, B.; Liu, F.; Wu, Y. Y.; Chen, Y. F.; Weng, B.; Li, C. M. Synthesis of catalytically active multielement-doped carbon dots and application for colorimetric detection of glucose. Sens. Actuators B: Chem. 2018, 255, 2601–2607.

[186]

Yang, H.; Long, Y. W.; Li, H. X.; Pan, S.; Liu, H.; Yang, J. D.; Hu, X. L. Carbon dots synthesized by hydrothermal process via sodium citrate and NH4HCO3 for sensitive detection of temperature and sunset yellow. J. Colloid Interface Sci. 2018, 516, 192–201.

[187]

Shi, W. L.; Guo, F.; Han, M. M.; Yuan, S. L.; Guan, W. S.; Li, H.; Huang, H.; Liu, Y.; Kang, Z. H. N,S co-doped carbon dots as a stable bio-imaging probe for detection of intracellular temperature and tetracycline. J. Mater. Chem. B 2017, 5, 3293–3299.

[188]

Liao, X. F.; Chen, C. J.; Wang, P. W.; Zhou, R. X.; Zhao, X. L.; Fan, H.; Huang, Z. Q. Carbon dots derived from cellobiose for temperature and phosalone detection. Mater. Res. Bull. 2022, 151, 111790.

[189]

Wang, C.; He, Y. M.; Xu, Y. L.; Sui, L. Z.; Jiang, T.; Ran, G. X.; Song, Q. J. “Light on” fluorescence carbon dots with intramolecular hydrogen bond-regulated co-planarization for cell imaging and temperature sensing. J. Mater. Chem. A 2022, 10, 2085–2095.

[190]

Wang, C.; He, Y. M.; Huang, J. F.; Sui, L. Z.; Ran, G. X.; Zhu, H.; Song, Q. J. Intramolecular hydrogen bond-tuned thermal-responsive carbon dots and their application to abnormal body temperature imaging. J. Colloid Interface Sci. 2023, 634, 221–230.

[191]

Zhai, X. Y.; Zhang, P.; Liu, C. J.; Bai, T.; Li, W. C.; Dai, L. M.; Liu, W. G. Highly luminescent carbon nanodots by microwave-assisted pyrolysis. Chem. Commun. 2012, 48, 7955–7957.

[192]

Casey, J. R.; Grinstein, S.; Orlowski, J. Sensors and regulators of intracellular pH. Nat. Rev. Mol. Cell Biol. 2010, 11, 50–61.

[193]

Geng, X.; Sun, Y. Q.; Li, Z. H.; Yang, R.; Zhao, Y. M.; Guo, Y. F.; Xu, J. J.; Li, F. T.; Wang, Y.; Lu, S. Y. et al. Retrosynthesis of tunable fluorescent carbon dots for precise long-term mitochondrial tracking. Small 2019, 15, 1901517.

[194]

Wei, Y. Y.; Chen, L.; Zhang, X.; Du, J. L.; Li, Q.; Luo, J.; Liu, X. G.; Yang, Y. Z.; Yu, S. P.; Gao, Y. D. Orange-emissive carbon quantum dots for ligand-directed Golgi apparatus-targeting and in vivo imaging. Biomater. Sci. 2022, 10, 4345–4355.

[195]

Shuang, E.; Mao, Q. X.; Wang, J. H.; Chen, X. W. Carbon dots with tunable dual emissions: From the mechanism to the specific imaging of endoplasmic reticulum polarity. Nanoscale 2020, 12, 6852–6860.

[196]

Chen, J. Y.; Li, F.; Gu, J.; Zhang, X.; Bartoli, M.; Domena, J. B.; Zhou, Y. Q.; Zhang, W.; Paulino, V.; Ferreira, B, C. L. B. et al. Cancer cells inhibition by cationic carbon dots targeting the cellular nucleus. J. Colloid Interface Sci. 2023, 637, 193–206.

[197]

Guo, S.; Sun, Y. Q.; Geng, X.; Yang, R.; Xiao, L. H.; Qu, L. B.; Li, Z. H. Intrinsic lysosomal targeting fluorescent carbon dots with ultrastability for long-term lysosome imaging. J. Mater. Chem. B 2020, 8, 736–742.

[198]

Dai, R. Y.; Chen, X. P.; Ouyang, N.; Hu, Y. P. A pH-controlled synthetic route to violet, green, and orange fluorescent carbon dots for multicolor light-emitting diodes. Chem. Eng. J. 2022, 431, 134172.

[199]

Shen, J.; Zheng, X. J.; Lin, L. L.; Xu, H. J.; Xu, G. H. Reaction time-controlled synthesis of multicolor carbon dots for white light-emitting diodes. ACS Appl. Nano Mater. 2023, 6, 2478–2490.

[200]

Han, Q. R.; Xu, W. J.; Ji, C. Y.; Xiong, G. Y.; Shi, C. S.; Zhang, D. M.; Shi, W. Q.; Jiang, Y. X.; Peng, Z. L. Multicolor and single-component white light-emitting carbon dots from a single precursor for light-emitting diodes. ACS Appl. Nano Mater. 2022, 5, 15914–15924.

[201]

Wang, Z. B.; Jiang, N. Z.; Liu, M. L.; Zhang, R. D.; Huang, F.; Chen, D. Q. Bright electroluminescent white-light-emitting diodes based on carbon dots with tunable correlated color temperature enabled by aggregation. Small 2021, 17, 2104551.

[202]

Wang, B. Y.; Lu, S. Y. The light of carbon dots: From mechanism to applications. Matter 2022, 5, 110–149.

[203]

Zhu, L. L.; Shen, D. K.; Wang, Q.; Luo, K. H. Green synthesis of tunable fluorescent carbon quantum dots from lignin and their application in anti-counterfeit printing. ACS Appl. Mater. Interfaces 2021, 13, 56465–56475.

[204]
Wang, C.; Huang, J. F.; He, Y. M.; Ran, G. X.; Song, Q. J. Preparation of multicolor carbon dots with thermally turn-on fluorescence for multidimensional information encryption. Chin. Chem. Lett., in press, https://doi.org/10.1016/j.cclet.2023.108420.
[205]

Tao, S. Y.; Lu, S. Y.; Geng, Y. J.; Zhu, S. J.; Redfern, S. A. T.; Song, Y. B.; Feng, T. L.; Xu, W. Q.; Yang, B. Design of metal-free polymer carbon dots: A new class of room-temperature phosphorescent materials. Angew. Chem., Int. Ed. 2018, 57, 2393–2398.

[206]

Wang, C.; Chen, Y. Y.; Hu, T. T.; Chang, Y.; Ran, G. X.; Wang, M.; Song, Q. J. Color tunable room temperature phosphorescent carbon dot based nanocomposites obtainable from multiple carbon sources via a molten salt method. Nanoscale 2019, 11, 11967–11974.

[207]

Qiao, L.; Zhou, M. J.; Shi, G.; Cui, Z.; Zhang, X. M.; Fu, P.; Liu, M. Y.; Qiao, X. G.; He, Y. J.; Pang, X. C. Ultrafast visible-light-induced ATRP in aqueous media with carbon quantum dots as the catalyst and its application for 3D printing. J. Am. Chem. Soc. 2022, 144, 9817–9826.

[208]

Su, W.; Guo, R. H.; Yuan, F. L.; Li, Y. C.; Li, X. H.; Zhang, Y.; Zhou, S. X.; Fan, L. Z. Red-emissive carbon quantum dots for nuclear drug delivery in cancer stem cells. J. Phys. Chem. Lett. 2020, 11, 1357–1363.

[209]

Shivalkar, S.; Gautam, P. K.; Verma, A.; Maurya, K.; Sk, P.; Samanta, S. K.; Sahoo, A. K. Autonomous magnetic microbots for environmental remediation developed by organic waste derived carbon dots. J. Environ. Manage. 2021, 297, 113322.

[210]
Chen, L. T.; Wang, C. F.; Liu, C.; Chen, S. Facile access to fabricate carbon dots and perspective of large-scale applications. Small, in press, https://doi.org/10.1002/smll.202206671.
[211]

Li, W.; Wu, S. S.; Zhang, H. R.; Zhang, X. J.; Zhuang, J. L.; Hu, C. F.; Liu, Y. L.; Lei, B. F.; Ma, L.; Wang, X. J. Enhanced biological photosynthetic efficiency using light-harvesting engineering with dual-emissive carbon dots. Adv. Funct. Mater. 2018, 28, 1804004.

[212]

Chen, J.; Guo, Y. X.; Zhang, X. L.; Liu, J. H.; Gong, P.; Su, Z. Q.; Fan, L. H.; Li, G. L. Emerging nanoparticles in food: Sources, application, and safety. J. Agric. Food Chem. 2023, 71, 3564–3582.

[213]

Wang, Q. L.; Huang, X. X.; Long, Y. J.; Wang, X. L.; Zhang, H. J.; Zhu, R.; Liang, L. P.; Teng, P.; Zheng, H. Z. Hollow luminescent carbon dots for drug delivery. Carbon 2013, 59, 192–199.

[214]

Wang, S. P.; Zhao, H. R.; Yang, J. L.; Dong, Y. H.; Guo, S. Z.; Cheng, Q.; Li, Y.; Liu, S. X. Preparation of multicolor biomass carbon dots based on solvent control and their application in Cr(VI) detection and advanced anti-counterfeiting. ACS Omega 2023, 8, 6550–6558.

[215]

Liu, J. J.; Geng, Y. J.; Li, D. W.; Yao, H.; Huo, Z. P.; Li, Y. F.; Zhang, K.; Zhu, S. J.; Wei, H. T.; Xu, W. Q. et al. Deep red emissive carbonized polymer dots with unprecedented narrow full width at half maximum. Adv. Mater. 2020, 32, 1906641.

[216]
John, V. L.; Nayana, A. R.; Keerthi, T. R.; K. A, A. K.; Sasidharan, B. C. P.; T. P, V. Mulberry leaves (Morus rubra)-derived blue-emissive carbon dots fed to silkworms to produce augmented silk applicable for the ratiometric detection of dopamine. Macromol. Biosci., in press, https://doi.org/10.1002/mabi.202300081 .
[217]

Huang, K.; He, Q.; Sun, R. S.; Fang, L. L.; Song, H. Y.; Li, L.; Li, Z.; Tian, Y.; Cui, H. X.; Zhang, J. B. Preparation and application of carbon dots derived from cherry blossom flowers. Chem. Phys. Lett. 2019, 731, 136586.

[218]

Qi, H. Y.; Liu, C. T.; Jing, J.; Jing, T.; Zhang, X. H.; Li, J. L.; Luo, C.; Qiu, L. X.; Li, Q. Y. Two kinds of biomass-derived carbon dots with one-step synthesis for Fe3+ and tetracyclines detection. Dyes Pigm. 2022, 206, 110555.

[219]

Wu, L.; Pan, W. Y.; Ye, H.; Liang, N.; Zhao, L. S. Sensitive fluorescence detection for hydrogen peroxide and glucose using biomass carbon dots: Dual-quenching mechanism insight. Colloids Surf. A 2022, 638, 128330.

[220]

Xu, L. N.; Fan, H.; Huang, L. X.; Xia, J. L.; Huang, J. R.; Li, M.; Ding, H. Y.; Huang, K.; Li, S. H. Eosinophilic nitrogen-doped carbon dots derived from tribute chrysanthemum for label-free detection of Fe3+ ions and hydrazine. J. Taiwan Inst. Chem. Eng. 2017, 78, 247–253.

[221]

Yang, X. M.; Zhuo, Y.; Zhu, S. S.; Luo, Y. W.; Feng, Y. J.; Dou, Y. Novel and green synthesis of high-fluorescent carbon dots originated from honey for sensing and imaging. Biosens. Bioelectron. 2014, 60, 292–298.

[222]

Dong, Y.; Zhang, Y. D.; Zhi, S. M.; Yang, X. Y.; Yao, C. Green synthesized fluorescent carbon dots from Momordica charantia for selective and sensitive detection of Pd2+ and Fe3+. ChemistrySelect 2021, 6, 123–130.

[223]

Sahoo, N. K.; Jana, G. C.; Aktara, M. N.; Das, S.; Nayim, S.; Patra, A.; Bhattacharjee, P.; Bhadra, K.; Hossain, M. Carbon dots derived from lychee waste: Application for Fe3+ ions sensing in real water and multicolor cell imaging of skin melanoma cells. Mater. Sci. Eng. C 2020, 108, 110429.

[224]

Emami, E.; Mousazadeh, M. H. Nitrogen-doped carbon dots for sequential “on-off-on” fluorescence probe for the sensitive detection of Fe3+ and l-alanine/l-histidine. J. Photochem. Photobiol. A: Chem. 2023, 438, 114536.

[225]

Durrani, S.; Zhang, J.; Mukramin; Wang, H. Y.; Wang, Z. H.; Khan, L. U.; Zhang, F. N.; Durrani, F.; Wu, F. G.; Lin, F. M. Biomass-based carbon dots for Fe3+ and adenosine triphosphate detection in mitochondria. ACS Appl. Nano Mater. 2023, 6, 76–85.

[226]

Zulfajri, M.; Gedda, G.; Chang, C. J.; Chang, Y. P.; Huang, G. G. Cranberry beans derived carbon dots as a potential fluorescence sensor for selective detection of Fe3+ ions in aqueous solution. ACS Omega 2019, 4, 15382–15392.

[227]

Picard, M.; Thakur, S.; Misra, M.; Mohanty, A. K. Miscanthus grass-derived carbon dots to selectively detect Fe3+ ions. RSC Adv. 2019, 9, 8628–8637.

[228]

Wang, W. X.; Chen, J.; Wang, D. K.; Shen, Y. M.; Yang, L. K.; Zhang, T.; Ge, J. Facile synthesis of biomass waste-derived fluorescent N, S, P co-doped carbon dots for detection of Fe3+ ions in solutions and living cells. Anal. Methods 2021, 13, 789–795.

[229]

Ma, H. T.; Guan, L.; Chen, M. J.; Zhang, Y.; Wu, Y.; Liu, Z. Y.; Wang, D. W.; Wang, F. H.; Li, X. Synthesis and enhancement of carbon quantum dots from Mopan persimmons for Fe3+ sensing and anti-counterfeiting applications. Chem. Eng. J. 2023, 453, 139906.

[230]

Zhao, P.; Zhang, Q.; Cao, J. J.; Qian, C.; Ye, J.; Xu, S. Y.; Zhang, Y. G.; Li, Y. B. Facile and green synthesis of highly fluorescent carbon quantum dots from water hyacinth for the detection of ferric iron and cellular imaging. Nanomaterials 2022, 12, 1528.

[231]

Wang, B. Y.; Guo, L. J.; Yan, X. T.; Hou, F. J.; Zhong, L. L.; Xu, H. Dual-mode detection sensor based on nitrogen-doped carbon dots from pine needles for the determination of Fe3+ and folic acid. Spectrochim. Acta Part A 2023, 285, 121891.

[232]

Atchudan, R.; Edison, T. N. J. I.; Perumal, S.; Muthuchamy, N.; Lee, Y. R. Hydrophilic nitrogen-doped carbon dots from biowaste using dwarf banana peel for environmental and biological applications. Fuel 2020, 275, 117821.

[233]

Zhang, D. W.; Zhang, F. R.; Liao, Y. H.; Wang, F. H.; Liu, H. L. Carbon quantum dots from pomelo peel as fluorescence probes for “turn-off-on” high-sensitivity detection of Fe3+ and L-cysteine. Molecules 2022, 27, 4099.

[234]

Liu, H. C.; Ding, J.; Chen, L. G.; Ding, L. A novel fluorescence assay based on self-doping biomass carbon dots for rapid detection of dimethoate. J. Photochem. Photobiol. A: Chem. 2020, 400, 112724.

[235]

Deng, X. Y.; Feng, Y. L.; Li, H. R.; Du, Z. W.; Teng, Q.; Wang, H. J. N-doped carbon quantum dots as fluorescent probes for highly selective and sensitive detection of Fe3+ ions. Particuology 2018, 41, 94–100.

[236]

Yuan, H. R.; Zhang, X.; Li, D. N.; Chen, Y. Strongly fluorescent carbon quantum dots from biomass tar as highly selective and sensitive probe for Fe3+ detection. Nano 2018, 13, 1850043.

[237]

Chen, M. L.; Zhai, J. C.; An, Y. L.; Li, Y.; Zheng, Y. W.; Tian, H.; Shi, R.; He, X. H.; Liu, C.; Lin, X. Solvent-free pyrolysis strategy for the preparation of biomass carbon dots for the selective detection of Fe3+ ions. Front. Chem. 2022, 10, 940398.

[238]

Krishnaiah, P.; Atchudan, R.; Perumal, S.; Salama, E. S.; Lee, Y. R.; Jeon, B. H. Utilization of waste biomass of Poa pratensis for green synthesis of n-doped carbon dots and its application in detection of Mn2+ and Fe3+. Chemosphere 2022, 286, 131764.

[239]

Huang, J.; Deng, Z. Q.; Ding, C. H.; Jin, Y. Z.; Wang, B.; Chen, J. C. Peroxyoxalate/carbon dots chemiluminescent reaction for fluorescent and visual determination of Fe3+. Microchem. J. 2022, 181, 107782.

[240]

Zhang, W. Y.; Jia, L. H.; Guo, X. F.; Yang, R.; Zhang, Y.; Zhao, Z. L. Green synthesis of up- and down-conversion photoluminescent carbon dots from coffee beans for Fe3+ detection and cell imaging. Analyst 2019, 144, 7421–7431.

[241]

Ge, L.; Yu, H. L.; Ren, H. T.; Shi, B.; Guo, Q.; Gao, W. S.; Li, Z. Q.; Li, J. G. Photoluminescence of carbon dots and their applications in Hela cell imaging and Fe3+ ion detection. J. Mater. Sci. 2017, 52, 9979–9989.

[242]

Guo, Z. C.; Liu, X. R.; Yu, H. Y.; Hou, F. J.; Gao, S. M.; Zhong, L. L.; Xu, H.; Yu, Y.; Meng, J. L.; Wang, R. R. Continuous response fluorescence sensor for three small molecules based on nitrogen-doped carbon quantum dots from prunus lannesiana and their logic gate operation. Spectrochim. Acta Part A 2021, 257, 119774.

[243]

Qiu, Y. J.; Li, D. N.; Li, Y. C.; Ma, X. J.; Li, J. N. Green carbon quantum dots from sustainable lignocellulosic biomass and its application in the detection of Fe3+. Cellulose 2021, 29, 367–378.

[244]

Jagannathan, M.; Dhinasekaran, D.; Soundharraj, P.; Rajendran, S.; Vo, D. V. N.; Prakasarao, A.; Ganesan, S. Green synthesis of white light emitting carbon quantum dots: Fabrication of white fluorescent film and optical sensor applications. J. Hazard. Mater. 2021, 416, 125091.

[245]

Zhu, L. L.; Shen, D. K.; Liu, Q.; Wu, C. F.; Gu, S. Sustainable synthesis of bright green fluorescent carbon quantum dots from lignin for highly sensitive detection of Fe3+ ions. Appl. Surface Sci. 2021, 565, 150526.

[246]

Zhang, L.; Li, B.; Zhou, Y.; Wu, Y.; Le, T.; Sun, Q. Green synthesis of cow milk-derived carbon quantum dots and application for Fe3+ detection. J. Sol-Gel Sci. Technol. 2023, 106, 173–185.

[247]

Ding, S.; Gao, Y.; Ni, B. S.; Yang, X. D. Green synthesis of biomass-derived carbon quantum dots as fluorescent probe for Fe3+ detection. Inorg. Chem. Commun. 2021, 130, 108636.

[248]

Xia, L.; Li, X. J.; Zhang, Y. H.; Zhou, K.; Yuan, L.; Shi, R.; Zhang, K. L.; Fu, Q. F. Sustainable and green synthesis of waste-biomass-derived carbon dots for parallel and semi-quantitative visual detection of Cr(VI) and Fe3+. Molecules 2022, 27, 1258.

[249]

Zhang, J. B.; Zheng, G. S.; Tian, Y.; Zhang, C. H.; Wang, Y. T.; Liu, M. J.; Ren, D. Z.; Sun, H. J.; Yu, W. T. Green synthesis of carbon dots from elm seeds via hydrothermal method for Fe3+ detection and cell imaging. Inorg. Chem. Commun. 2022, 144, 109837.

[250]

Murugan, N.; Sundramoorthy, A. K. Green synthesis of fluorescent carbon dots from Borassus flabellifer flowers for label-free highly selective and sensitive detection of Fe3+ ions. New J. Chem. 2018, 42, 13297–13307.

Publication history
Copyright
Acknowledgements

Publication history

Received: 14 April 2023
Revised: 24 May 2023
Accepted: 25 May 2023
Published: 06 July 2023
Issue date: August 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51973083) and Fundamental Research Funds for the Central Universities (No. JUSRP22027). We would like to acknowledge the work of Central Laboratory, School of Chemical and Material Engineering, Jiangnan University. We also would like to acknowledge the support of China Scholarship Council.

Return