AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Encapsulated carbon nanotube array as a thermal interface material compatible with standard electronics packaging

Ruixiang Bai1,§Yangbing Wei1,§Jiyuan Xu3Xiaobo Li1Menglin Li1Ziwen Zou1Xinyan Huang4Chengyu Liu5Yiwei Sun2( )Menglong Hao1( )
Key Laboratory of Energy Thermal conversion and control of Ministry of Education, National Engineering Research Center of Power Generation Control and Safety, School of Energy and Environment, Southeast University, Nanjing 210096, China
School of Materials Science and Engineering, School of Energy and Environment, Southeast University, Nanjing 210096, China
Nanjing Research Institute of Electronics Technology, Nanjing 210039, China
Research Centre for Fire Engineering, Hong Kong Polytechnic University, Kowloon 999077, Hong Kong, China
State Key Laboratory of Bioelectronics, School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China

§ Ruixiang Bai and Yangbing Wei contributed equally to this work.

Show Author Information

Graphical Abstract

A transfer-and-encapsulate strategy is proposed to develop a standalone thermal interface material (TIM) by soldering vertically aligned carbon nanotubes arrays (VACNTs) to copper microfoil. Actual light emitting diode (LED) cooling experiments show low thermal resistance, good reliability, and clear advantages over state-of-the-art commercial TIMs with a 17 °C temperature reduction.

Abstract

Vertically aligned carbon nanotubes arrays (VACNTs) are a promising candidate for the thermal interface material (TIM) of next-generation electronic devices due to their attractive thermal and mechanical properties. However, the environment required for synthesizing VACNTs is harsh and severely incompatible with standard device packaging processes. VACNTs’ extremely low in-plane thermal conductivity also limits its performance for cooling hot spots. Here, using a transfer-and-encapsulate strategy, a two-step soldering method is developed to cap both ends of the VACNTs with copper microfoils, forming a standalone Cu-VACNTs-Cu sandwich TIM and avoiding the need to directly grow VACNTs on chip die. This new TIM is fully compatible with standard packaging, with excellent flexibility and high thermal conductivities in both in-plane and through-plane directions. The mechanical compliance behavior and mechanism, which are critical for TIM applications, are investigated in depth using in situ nanoindentation. The thermal performance is further verified in an actual light emitting diode (LED) cooling experiment, demonstrating low thermal resistance, good reliability, and achieving a 17 °C temperature reduction compared with state-of-the-art commercial TIMs. This study provides a viable solution to VACNTs’ longstanding problem in device integration and free-end contact resistance, bringing it much closer to application and solving the critical thermal bottleneck in next-generation electronics.

Electronic Supplementary Material

Download File(s)
12274_2023_5872_MOESM1_ESM.pdf (3.2 MB)

References

[1]

Ferain, I.; Colinge, C. A.; Colinge, J. P. Multigate transistors as the future of classical metal-oxide-semiconductor field-effect transistors. Nature 2011, 479, 310–316.

[2]

Moore, A. L.; Shi, L. Emerging challenges and materials for thermal management of electronics. Mater. Today 2014, 17, 163–174.

[3]

Maqbool, M.; Guo, H. C.; Bashir, A.; Usman, A.; Abid, A. Y.; He, G. S.; Ren, Y. J.; Ali, Z.; Bai, S. L. Enhancing through-plane thermal conductivity of fluoropolymer composite by developing in situ nano-urethane linkage at graphene–graphene interface. Nano Res. 2020, 13, 2741–2748.

[4]

Guo, X. X.; Cheng, S. J.; Yan, B.; Li, Y. L.; Zhou, Y. H.; Cai, W. W.; Zhang, Y. F.; Zhang, X. A. Extraordinary thermal conductivity of polyvinyl alcohol composite by aligning densified carbon fiber via magnetic field. Nano Res. 2023, 16, 2572–2578.

[5]

Pop, E. Energy dissipation and transport in nanoscale devices. Nano Res. 2010, 3, 147–169.

[6]

Tong, T.; Zhao, Y.; Delzeit, L.; Kashani, A.; Meyyappan, M.; Majumdar, A. Dense vertically aligned multiwalled carbon nanotube arrays as thermal interface materials. IEEE Trans. Comp. Packag. Technol. 2007, 30, 92–100.

[7]

Dai, W.; Ma, T. F.; Yan, Q. W.; Gao, J. Y.; Tan, X.; Lv, L.; Hou, H.; Wei, Q. P.; Yu, J. H.; Wu, J. B. et al. Metal-level thermally conductive yet soft graphene thermal interface materials. ACS Nano 2019, 13, 11561–11571.

[8]

Bar-Cohen, A.; Matin, K.; Narumanchi, S. Nanothermal interface materials: Technology review and recent results. J. Electron. Packag. 2015, 137, 040803.

[9]

Prasher, R. Thermal interface materials: Historical perspective, status, and future directions. Proc. IEEE 2006, 94, 1571–1586.

[10]

Schmidt, A. J.; Collins, K. C.; Minnich, A. J.; Chen, G. Thermal conductance and phonon transmissivity of metal–graphite interfaces. J. Appl. Phys. 2010, 107, 104907.

[11]

Xu, S. C.; Cheng, T.; Yan, Q. W.; Shen, C.; Yu, Y.; Lin, C. T.; Ding, F.; Zhang, J. Chloroform-assisted rapid growth of vertical graphene array and its application in thermal interface materials. Adv. Sci. 2022, 9, 2200737.

[12]

Xu, S. C.; Zhang, J. Vertically aligned graphene for thermal interface materials. Small Struct. 2020, 1, 2000034.

[13]
Shackelford, J. F.; Alexander, W. CRC Materials Science and Engineering Handbook; 3rd ed. CRC Press: Boca Raton, 2000.
[14]

Nath, P.; Chopra, K. L. Thermal conductivity of copper films. Thin Solid Films 1974, 20, 53–62.

[15]

Chung, D. D. L. Performance of thermal interface materials. Small 2022, 18, 2200693.

[16]

Chen, W.; Zhang, J. C.; Yue, Y. N. Molecular dynamics study on thermal transport at carbon nanotube interface junctions: Effects of mechanical force and chemical functionalization. Int. J. Heat Mass Transf. 2016, 103, 1058–1064.

[17]

Alisafaei, F.; Han, C. S. Indentation depth dependent mechanical behavior in polymers. Adv. Condens. Matter Phys. 2015, 2015, 391579.

[18]

Zhang, Y. L.; Ma, Z. L.; Ruan, K. P.; Gu, J. W. Multifunctional Ti3C2Tx-(Fe3O4/polyimide) composite films with Janus structure for outstanding electromagnetic interference shielding and superior visual thermal management. Nano Res. 2022, 15, 5601–5609.

[19]

Ding, D. L.; Zhang, S. Y.; Liang, H. Y.; Wang, X.; Wu, Y.; Ye, Y. M.; Liu, Z. G.; Zhang, Q. Y.; Qin, G. Z.; Chen, Y. H. Enhancing thermal conductivity of silicone rubber composites by in-situ constructing SiC networks: A finite-element study based on first principles calculation. Nano Res. 2023, 16, 1430–1440.

[20]
Yan, Y. Z.; Li, S. W.; Park, S. S.; Zhang, W. J.; Lee, J. S.; Kim, J. R.; Seong, D. G.; Ha, C. S. “One stone, two birds” solvent system to fabricate microcrystalline cellulose-Ti3C2Tx nanocomposite film as a flexible dielectric and thermally conductive material. Nano Res. 2023, 16, 3240–3253.
[21]

Loeblein, M.; Tsang, S. H.; Pawlik, M.; Phua, E. J. R.; Yong, H.; Zhang, X. W.; Gan, C. L.; Teo, E. H. T. High-density 3D-boron nitride and 3D-graphene for high-performance nano-thermal interface material. ACS Nano 2017, 11, 2033–2044.

[22]

Zhang, Q. Q.; Lin, D.; Deng, B. W.; Xu, X.; Nian, Q.; Jin, S. Y.; Leedy, K. D.; Li, H.; Cheng, G. J. Flyweight, superelastic, electrically conductive, and flame-retardant 3D multi-nanolayer graphene/ceramic metamaterial. Adv. Mater. 2017, 29, 1605506.

[23]

Jeong, G. H.; Sasikala, S. P.; Yun, T.; Lee, G. Y.; Lee, W. J.; Kim, S. O. Nanoscale assembly of 2D materials for energy and environmental applications. Adv. Mater. 2020, 32, 1907006.

[24]

Kim, P.; Shi, L.; Majumdar, A.; McEuen, P. L. Thermal transport measurements of individual multiwalled nanotubes. Phys. Rev. Lett. 2001, 87, 215502.

[25]

He, H.; Peng, W.; Liu, J.; Chan, X.Y.; Liu, S.; Lu, L.; Le Ferrand, H. Microstructured BN composites with internally designed high thermal conductivity paths for 3D electronic packaging. Advanced Materials 2022, 34, 2205120.

[26]

Balandin, A. A. Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 2011, 10, 569–581.

[27]

He, P.; Du, T.; Zhao, K. R.; Dong, J. Q.; Liang, Y. S.; Zhang, Q. Q. Lightweight 3D graphene metamaterials with tunable negative thermal expansion. Adv. Mater. 2023, 35, 2208562.

[28]

Maschmann, M. R.; Zhang, Q. H.; Du, F.; Dai, L. M.; Baur, J. Length dependent foam-like mechanical response of axially indented vertically oriented carbon nanotube arrays. Carbon 2011, 49, 386–397.

[29]

Ge, X.; Tay, G.; Hou, Y.; Zhao, Y.; Sugumaran, P.J.; Thai, B.Q.; Ang, C.K.; Zhai, W.; Yang, Y. Flexible and leakage-proof phase change composite for microwave attenuation and thermal management. Carbon 2023, 210, 118084.

[30]

Yu, W.; Duan, Z.; Zhang, G.; Liu, C. H.; Fan, S. S. Effect of an auxiliary plate on passive heat dissipation of carbon nanotube-based materials. Nano Lett. 2018, 18, 1770–1776.

[31]

Panzer, M. A.; Duong, H. M.; Okawa, J.; Shiomi, J.; Wardle, B. L.; Maruyama, S.; Goodson, K. E. Temperature-dependent phonon conduction and nanotube engagement in metalized single wall carbon nanotube films. Nano Lett. 2010, 10, 2395–2400.

[32]

Aliev, A. E.; Lima, M. H.; Silverman, E. M.; Baughman, R. H. Thermal conductivity of multi-walled carbon nanotube sheets: Radiation losses and quenching of phonon modes. Nanotechnology 2010, 21, 035709.

[33]

Wang, X. W.; Zhong, Z. R.; Xu, J. Noncontact thermal characterization of multiwall carbon nanotubes. J. Appl. Phys. 2005, 97, 064302.

[34]

Pettes, M. T.; Shi, L. Thermal and structural characterizations of individual single-, double-, and multi-walled carbon nanotubes. Adv. Funct. Mater. 2009, 19, 3918–3925.

[35]

Li, Q. W.; Liu, C. H.; Fan, S. S. Thermal boundary resistances of carbon nanotubes in contact with metals and polymers. Nano Lett. 2009, 9, 3805–3809.

[36]

Marconnet, A. M.; Yamamoto, N.; Panzer, M. A.; Wardle, B. L.; Goodson, K. E. Thermal conduction in aligned carbon nanotube-polymer nanocomposites with high packing density. ACS Nano 2011, 5, 4818–4825.

[37]

Panzer, M. A.; Zhang, G.; Mann, D.; Hu, X.; Pop, E.; Dai, H.; Goodson, K. E. Thermal properties of metal-coated vertically aligned single-wall nanotube arrays. J. Heat Transf. 2008, 130, 052401.

[38]

Lin, W.; Moon, K. S.; Wong, C. P. A combined process of in situ functionalization and microwave treatment to achieve ultrasmall thermal expansion of aligned carbon nanotube-polymer nanocomposites: Toward applications as thermal interface materials. Adv. Mater. 2009, 21, 2421–2424.

[39]

Huang, H.; Liu, C. H.; Wu, Y.; Fan, S. Aligned carbon nanotube composite films for thermal management. Adv. Mater. 2005, 17, 1652–1656.

[40]

Zhang, G.; Liu, C. H.; Fan, S. S. Temperature dependence of thermal boundary resistances between multiwalled carbon nanotubes and some typical counterpart materials. ACS Nano 2012, 6, 3057–3062.

[41]

Hao, M. L.; Kumar, A.; Hodson, S. L.; Zemlyanov, D.; He, P. G.; Fisher, T. S. Brazed carbon nanotube arrays: Decoupling thermal conductance and mechanical rigidity. Adv. Mater. Interfaces 2017, 4, 1601042.

[42]

Kaur, S.; Raravikar, N.; Helms, B. A.; Prasher, R.; Ogletree, D. F. Enhanced thermal transport at covalently functionalized carbon nanotube array interfaces. Nat. Commun. 2014, 5, 3082.

[43]

Taphouse, J. H.; Smith, O. L.; Marder, S. R.; Cola, B. A. A pyrenylpropyl phosphonic acid surface modifier for mitigating the thermal resistance of carbon nanotube contacts. Adv. Funct. Mater. 2014, 24, 465–471.

[44]
Barako, M. T.; Gao, Y.; Marconnet, A. M.; Asheghi, M.; Goodson, K. E. Solder-bonded carbon nanotube thermal interface materials. In Proceedings of the 13th InterSociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, San Diego, CA, USA, 2012, pp 1225–1233.
[45]

Yu, W.; Liu, C. H.; Fan, S. S. Advances of CNT-based systems in thermal management. Nano Res. 2021, 14, 2471–2490.

[46]

Wang, M.; Li, T. T.; Yao, Y. G.; Lu, H. F.; Li, Q.; Chen, M. H.; Li, Q. W. Wafer-scale transfer of vertically aligned carbon nanotube arrays. J. Am. Chem. Soc. 2014, 136, 18156–18162.

[47]

Wang, H.; Tazebay, A. S.; Yang, G.; Lin, H. T.; Choi, W.; Yu, C. Highly deformable thermal interface materials enabled by covalently-bonded carbon nanotubes. Carbon 2016, 106, 152–157.

[48]

Kong, Q. Y.; Bodelot, L.; Lebental, B.; Lim, Y. D.; Shiau, L. L.; Gusarov, B.; Tan, C. W.; Liang, K.; Lu, C. X.; Tan, C. S. et al. Novel three-dimensional carbon nanotube networks as high performance thermal interface materials. Carbon 2018, 132, 359–369.

[49]

Cai, Y.; Yu, H. T.; Chen, C.; Feng, Y. Y.; Qin, M. M.; Feng, W. Improved thermal conductivities of vertically aligned carbon nanotube arrays using three-dimensional carbon nanotube networks. Carbon 2022, 196, 902–912.

[50]

Peng, L. Q.; Yu, H. T.; Chen, C.; He, Q. X.; Zhang, H.; Zhao, F. L.; Qin, M. M.; Feng, Y. Y.; Feng, W. Tailoring dense, orientation-tunable, and interleavedly structured carbon-based heat dissipation plates. Adv. Sci. 2023, 10, 2205962.

[51]

Yu, H. T.; Feng, Y. Y.; Chen, C.; Zhang, Z. X.; Cai, Y.; Qin, M. M.; Feng, W. Thermally conductive, self-healing, and elastic polyimide@vertically aligned carbon nanotubes composite as smart thermal interface material. Carbon 2021, 179, 348–357.

[52]

Xu, J.; Fisher, T. S. Enhanced thermal contact conductance using carbon nanotube array interfaces. IEEE Trans. Comp. Packag. Technol. 2006, 29, 261–267.

[53]
Jing, L.; Cheng, R.; Garg, R.; Gong, W.; Lee, I.; Schmit, A.; Cohen-Karni, T.; Zhang, X.; Shen, S. 3D graphene-nanowire “sandwich” thermal interface with ultralow resistance and stiffness. ACS Nano 2023, 17, 2602–2610.
[54]

Gong, W.; Li, P. F.; Zhang, Y. H.; Feng, X. H.; Major, J.; DeVoto, D.; Paret, P.; King, C.; Narumanchi, S.; Shen, S. Ultracompliant heterogeneous copper-tin nanowire arrays making a supersolder. Nano Lett. 2018, 18, 3586–3592.

[55]

Alisafaei, F.; Han, C. S.; Lakhera, N. Characterization of indentation size effects in epoxy. Polym. Test. 2014, 40, 70–78.

[56]
Wang, H. D.; Zhu, L. N.; Xu, B. S. Residual Stresses and Nanoindentation Testing of Films and Coatings; Springer: Singapore, 2018.
[57]

Leitner, A.; Maier-Kiener, V.; Kiener, D. Dynamic nanoindentation testing: Is there an influence on a material’s hardness. Mater. Res. Lett. 2017, 5, 486–493.

[58]

Elmustafa, A. A.; Stone, D. S. Nanoindentation and the indentation size effect: Kinetics of deformation and strain gradient plasticity. J. Mech. Phys. Solids 2003, 51, 357–381.

[59]

Lin, Z. S.; Dong, J. Q.; Wang, X.; Huang, Q. T.; Shen, X.; Yang, M. L.; Sun, X. X.; Yuan, Y.; Wang, S. S.; Ning, Y. H. et al. Twin-structured graphene metamaterials with anomalous mechanical properties. Adv. Mater. 2022, 34, 2200444.

[60]

Tong, T.; Zhao, Y.; Delzeit, L.; Kashani, A.; Meyyappan, M.; Majumdar, A. Height independent compressive modulus of vertically aligned carbon nanotube arrays. Nano Lett. 2008, 8, 511–515.

[61]

Maschmann, M. R.; Zhang, Q. H.; Wheeler, R.; Du, F.; Dai, L. M.; Baur, J. In situ SEM observation of column-like and foam-like CNT array nanoindentation. ACS Appl. Mater. Interfaces 2011, 3, 648–653.

[62]

Pour Shahid Saeed Abadi, P.; Hutchens, S. B.; Greer, J. R.; Cola, B. A.; Graham, S. Buckling-driven delamination of carbon nanotube forests. Appl. Phys. Lett. 2013, 102, 223103.

[63]

Li, Y. P.; Kim, H. I.; Wei, B. Q.; Kang, J. M.; Choi, J. B.; Nam, J. D.; Suhr, J. Understanding the nanoscale local buckling behavior of vertically aligned MWCNT arrays with van der Waals interactions. Nanoscale 2015, 7, 14299–14304.

[64]
Bauchau, O. A.; Craig, J. I. Euler-Bernoulli beam theory. In Structural Analysis: With Applications to Aerospace Structures. Bauchau, O. A.; Craig, J. I., Eds.; Springer: Dordrecht, 2009; pp 173–221.
[65]

Xu, S. C.; Wang, S. S.; Chen, Z.; Sun, Y. Y.; Gao, Z. F.; Zhang, H.; Zhang, J. Electric-field-assisted growth of vertical graphene arrays and the application in thermal interface materials. Adv. Funct. Mater. 2020, 30, 2003302.

[66]

Hao, M. L.; Saviers, K. R.; Fisher, T. S. Design and validation of a high-temperature thermal interface resistance measurement system. J. Therm. Sci. Eng. Appl. 2016, 8, 031008.

[67]

Zhang, X. Carbon nanotube/polyetheretherketone nanocomposites: Mechanical, thermal, and electrical properties. Journal of Composite Materials 2021, 5, 2115–2132.

[68]

Zhang, K.; Chai, Y.; Yuen, M. M. F.; Xiao, D. G. W.; Chan, P. C. H. Carbon nanotube thermal interface material for high-brightness light-emitting-diode cooling. Nanotechnology 2008, 19, 215706.

[69]

Cola, B. A.; Xu, X. F.; Fisher, T. S. Increased real contact in thermal interfaces: A carbon nanotube/foil material. Appl. Phys. Lett. 2007, 90, 093513.

[70]
DeVoto, D.; Major, J.; Paret, P.; Blackman, G. S.; Wong, A.; Meth, J. S. Degradation characterization of thermal interface greases. In Proceedings of the 2017 16th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), Orlando, FL, USA, 2017, pp 394–399.
[71]

Khuu, V.; Osterman, M.; Bar-Cohen, A.; Pecht, M. Effects of temperature cycling and elevated temperature/humidity on the thermal performance of thermal interface materials. IEEE Trans. Device Mater. Reliab. 2009, 9, 379–391.

[72]

Razeeb, K. M.; Dalton, E.; Cross, G. L. W.; Robinson, A. J. Present and future thermal interface materials for electronic devices. Int. Mater. Rev. 2018, 63, 1–21.

[73]

Hao, M. L.; Huang, Z. X.; Saviers, K. R.; Xiong, G. P.; Hodson, S. L.; Fisher, T. S. Characterization of vertically oriented carbon nanotube arrays as high-temperature thermal interface materials. Int. J. Heat Mass Transf. 2017, 106, 1287–1293.

[74]

Barako, M. T.; Isaacson, S. G.; Lian, F. F.; Pop, E.; Dauskardt, R. H.; Goodson, K. E.; Tice, J. Dense vertically aligned copper nanowire composites as high performance thermal interface materials. ACS Appl. Mater. Interfaces 2017, 9, 42067–42074.

[75]

Ivanov, I.; Puretzky, A.; Eres, G.; Wang, H.; Pan, Z. W.; Cui, H. T.; Jin, R. Y.; Howe, J.; Geohegan, D. B. Fast and highly anisotropic thermal transport through vertically aligned carbon nanotube arrays. Appl. Phys. Lett. 2006, 89, 223110.

[76]

Jakubinek, M. B.; White, M. A.; Li, G.; Jayasinghe, C.; Cho, W.; Schulz, M. J.; Shanov, V. Thermal and electrical conductivity of tall, vertically aligned carbon nanotube arrays. Carbon 2010, 48, 3947–3952.

[77]

Marconnet, A. M.; Panzer, M. A.; Goodson, K. E. Thermal conduction phenomena in carbon nanotubes and related nanostructured materials. Rev. Mod. Phys. 2013, 85, 1295–1326.

[78]

Okamoto, A.; Gunjishima, I.; Inoue, T.; Akoshima, M.; Miyagawa, H.; Nakano, T.; Baba, T.; Tanemura, M.; Oomi, G. Thermal and electrical conduction properties of vertically aligned carbon nanotubes produced by water-assisted chemical vapor deposition. Carbon 2011, 49, 294–298.

[79]

Pal, S. K.; Son, Y.; Borca-Tasciuc, T.; Borca-Tasciuc, D. A.; Kar, S.; Vajtai, R.; Ajayan, P. M. Thermal and electrical transport along MWCNT arrays grown on inconel substrates. J. Mater. Res. 2008, 23, 2099–2105.

[80]

Son, Y.; Pal, S. K.; Borca-Tasciuc, T.; Ajayan, P. M.; Siegel, R. W. Thermal resistance of the native interface between vertically aligned multiwalled carbon nanotube arrays and their SiO2/Si substrate. J. Appl. Phys. 2008, 103, 024911.

[81]

Yang, D. J.; Wang, S. G.; Zhang, Q.; Sellin, P. J.; Chen, G. Thermal and electrical transport in multi-walled carbon nanotubes. Phys. Lett. A 2004, 329, 207–213.

[82]

Yang, D. J.; Zhang, Q.; Chen, G.; Yoon, S. F.; Ahn, J.; Wang, S. G.; Zhou, Q.; Wang, Q.; Li, J. Q. Thermal conductivity of multiwalled carbon nanotubes. Phys. Rev. B 2002, 66, 165440.

[83]

Yang, J.; Maragliano, C.; Schmidt, A. J. Thermal property microscopy with frequency domain thermoreflectance. Rev. Sci. Instrum. 2013, 84, 104904.

[84]

Ziade, E. Wide bandwidth frequency-domain thermoreflectance: Volumetric heat capacity, anisotropic thermal conductivity, and thickness measurements. Rev. Sci. Instrum. 2020, 91, 124901.

[85]

Goli, P.; Ning, H.; Li, X. S.; Lu, C. Y.; Novoselov, K. S.; Balandin, A. A. Thermal properties of graphene-copper-graphene heterogeneous films. Nano Lett. 2014, 14, 1497–1503.

[86]

Shaikh, S.; Li, L.; Lafdi, K.; Huie, J. Thermal conductivity of an aligned carbon nanotube array. Carbon 2007, 45, 2608–2613.

[87]
Ye, C.; Chen, Y.; Kang, R. Calculation of failure rate of semiconductor devices based on mechanism consistency. In Engineering Asset Management—Systems, Professional Practices and Certification. Tse, P. W.; Mathew, J.; Wong, K.; Lam, R.; Ko, C. N. , Eds.; Springer: Cham, 2015; pp 1789–1796.
Nano Research
Pages 11389-11400
Cite this article:
Bai R, Wei Y, Xu J, et al. Encapsulated carbon nanotube array as a thermal interface material compatible with standard electronics packaging. Nano Research, 2023, 16(8): 11389-11400. https://doi.org/10.1007/s12274-023-5872-y
Topics:

1261

Views

4

Crossref

4

Web of Science

4

Scopus

0

CSCD

Altmetrics

Received: 16 March 2023
Revised: 10 May 2023
Accepted: 24 May 2023
Published: 17 July 2023
© Tsinghua University Press 2023
Return