AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Gradient CNT/PVDF piezoelectric composite with enhanced force-electric coupling for soccer training

Wanghong Zeng1Weili Deng1( )Tao Yang1Shenglong Wang1Yue Sun1Jieling Zhang1Xiarong Ren1Long Jin1Lihua Tang2Weiqing Yang1,3( )
Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
Department of Mechanical and Mechatronics Engineering, University of Auckland, Auckland 1010, New Zealand
Research Institute of Frontier Science, Southwest Jiaotong University, Chengdu 610031, China
Show Author Information

Graphical Abstract

The force-electric properties of carbon nanotube/polyvinylidene fluoride (CNT/PVDF) composites with different structures were studied, and the piezoelectric sensor with 3-0-3 structure exhibited optimal comprehensive sensing performance. On this basis, a sensor network was constructed to monitor the interaction between the ball and the shoe.

Abstract

Real-time monitoring of ball–shoe interactions can provide essential information for high-quality instruction in personalized soccer training, yet existing monitoring systems struggle to reflect specific forces, loci, and durations of action. Here, we design a self-powered piezoelectric sensor constructed by the gradient carbon nanotube/polyvinylidene fluoride (CNT/PVDF) composite to monitor the interactions between the ball and the shoe. Two-dimensional Raman mapping demonstrates the gradient structure of CNT/PVDF prepared by programmable electrospinning combined with a hot pressing. Benefitting from the synergistic effect of local polarization caused by the enrichment of CNT and the reduced diffusion of silver patterns in gradient structure, the as-prepared composite exhibits enhanced force-electric coupling with an excellent sensitivity of 80 mV/N and durability over 15,000 cycles. On this basis, we conformally attach a 3 × 3 sensor array to a soccer shoe, enabling real-time acquisition of kick position and contact force, which could provide quantitative assessment and personalize guidance for the training of soccer players. This self-powered piezoelectric sensor network system offers a promising paradigm for wearable monitoring under strong impact forces.

Electronic Supplementary Material

Video
12274_2023_5869_MOESM2_ESM.mp4
12274_2023_5869_MOESM3_ESM.mp4
Download File(s)
12274_2023_5869_MOESM1_ESM.pdf (1.8 MB)
12274_2023_5869_MOESM4_ESM.pdf (1.4 MB)

References

[1]

Garrido, D.; Burriel, B.; Resta, R.; Del Campo, R. L.; Buldú, J. M. Heatmaps in soccer: Event vs tracking datasets. Chaos, Solitons Fract. 2022, 165, 112827.

[2]

Baysal, S.; Duygulu, P. Sentioscope: A soccer player tracking system using model field particles. IEEE Trans. Circ. Syst. Video Technol. 2016, 26, 1350–1362.

[3]

Cano, P.; Ruiz-del-Solar, J. Robust tracking of soccer robots using random finite sets. IEEE Intell. Syst. 2017, 32, 22–29.

[4]

Gao, Y. Y.; Yan, C.; Huang, H. C.; Yang, T.; Tian, G.; Xiong, D.; Chen, N. J.; Chu, X.; Zhong, S.; Deng, W. L. et al. Microchannel-confined MXene based flexible piezoresistive multifunctional micro-force sensor. Adv. Funct. Mater. 2020, 30, 1909603.

[5]

Gou, G. Y.; Li, X. S.; Jian, J. M.; Tian, H.; Wu, F.; Ren, J.; Geng, X. S.; Xu, J. D.; Qiao, Y. C.; Yan, Z. Y. et al. Two-stage amplification of an ultrasensitive MXene-based intelligent artificial eardrum. Sci. Adv. 2022, 8, eabn2156.

[6]

Ma, Y. N.; Liu, N. S.; Li, L. Y.; Hu, X. K.; Zou, Z. G.; Wang, J. B.; Luo, S. J.; Gao, Y. H. A highly flexible and sensitive piezoresistive sensor based on MXene with greatly changed interlayer distances. Nat. Commun. 2017, 8, 1207.

[7]

Wang, S. L.; Deng, W. L.; Yang, T.; Tian, G.; Xiong, D.; Xiao, X.; Zhang, H. R.; Sun, Y.; Ao, Y.; Huang, J. F. et al. Body-area sensor network featuring micropyramids for sports healthcare. Nano Res. 2023, 16, 1330–1337.

[8]

Lee, S.; Franklin, S.; Hassani, F. A.; Yokota, T.; Nayeem, O. G.; Wang, Y.; Leib, R.; Cheng, G.; Franklin, D. W.; Someya, T. Nanomesh pressure sensor for monitoring finger manipulation without sensory interference. Science 2020, 370, 966–970.

[9]

Zhu, P.; Du, H. F.; Hou, X. Y.; Lu, P.; Wang, L.; Huang, J.; Bai, N. N.; Wu, Z. G.; Fang, N. X.; Guo, C. F. Skin–electrode iontronic interface for mechanosensing. Nat. Commun. 2021, 12, 4731.

[10]

Wen, D. L.; Pang, Y. X.; Huang, P.; Wang, Y. L.; Zhang, X. R.; Deng, H. T.; Zhang, X. S. Silk fibroin-based wearable all-fiber multifunctional sensor for smart clothing. Adv. Fiber Mater. 2022, 4, 873–884.

[11]

Chen, J.; Wang, Z. L. Reviving vibration energy harvesting and self-powered sensing by a triboelectric nanogenerator. Joule 2017, 1, 480–521.

[12]

Jin, L.; Xiao, X.; Deng, W. L.; Nashalian, A.; He, D. R.; Raveendran, V.; Yan, C.; Su, H.; Chu, X.; Yang, T. et al. Manipulating relative permittivity for high-performance wearable triboelectric nanogenerators. Nano Lett. 2020, 20, 6404–6411.

[13]

Tang, Q.; Pu, X. J.; Zeng, Q. X.; Yang, H. M.; Li, J.; Wu, Y.; Guo, H. Y.; Huang, Z. Y.; Hu, C. G. A strategy to promote efficiency and durability for sliding energy harvesting by designing alternating magnetic stripe arrays in triboelectric nanogenerator. Nano Energy 2019, 66, 104087.

[14]

Zhang, B. B.; Wu, Z. Y.; Lin, Z. M.; Guo, H. Y.; Chun, F. J.; Yang, W. Q.; Wang, Z. L. All-in-one 3D acceleration sensor based on coded liquid-metal triboelectric nanogenerator for vehicle restraint system. Mater. Today 2021, 43, 37–44.

[15]

Chen, Z. F.; Wang, Z.; Li, X. M.; Lin, Y. X.; Luo, N. Q.; Long, M. Z.; Zhao, N.; Xu, J. B. Flexible piezoelectric-induced pressure sensors for static measurements based on nanowires/graphene heterostructures. ACS Nano 2017, 11, 4507–4513.

[16]

Yang, Y.; Pan, H.; Xie, G. Z.; Jiang, Y. D.; Chen, C. X.; Su, Y. J.; Wang, Y.; Tai, H. L. Flexible piezoelectric pressure sensor based on polydopamine-modified BaTiO3/PVDF composite film for human motion monitoring. Sensors Actuat. A:Phys. 2020, 301, 111789.

[17]

Tian, G.; Deng, W. L.; Gao, Y. Y.; Xiong, D.; Yan, C.; He, X. B.; Yang, T.; Jin, L.; Chu, X.; Zhang, H. T. et al. Rich lamellar crystal baklava-structured PZT/PVDF piezoelectric sensor toward individual table tennis training. Nano Energy 2019, 59, 574–581.

[18]

Deng, W. L.; Zhou, Y. H.; Libanori, A.; Chen, G. R.; Yang, W. Q.; Chen, J. Piezoelectric nanogenerators for personalized healthcare. Chem. Soc. Rev. 2022, 51, 3380–3435.

[19]

Liu, J. Q.; Tian, G.; Yang, W. Q.; Deng, W. L. Recent progress in flexible piezoelectric devices toward human–machine interactions. Soft Sci. 2022, 2, 22.

[20]

Jiang, F.; Zhou, X. R.; Lv, J.; Chen, J.; Chen, J. T.; Kongcharoen, H.; Zhang, Y. H.; Lee, P. S. Stretchable, breathable, and stable lead-free perovskite/polymer nanofiber composite for hybrid triboelectric and piezoelectric energy harvesting. Adv. Mater. 2022, 34, 2200042.

[21]

Li, S.; Zhang, Y.; Wang, Y. L.; Xia, K. L.; Yin, Z.; Wang, H. M.; Zhang, M. C.; Liang, X. P.; Lu, H. J.; Zhu, M. J. et al. Physical sensors for skin-inspired electronics. InfoMat 2020, 2, 184–211.

[22]

Panda, P. K.; Sahoo, B. PZT to lead free piezo ceramics: A review. Ferroelectrics 2015, 474, 128–143.

[23]

Jo, W.; Dittmer, R.; Acosta, M.; Zang, J. D.; Groh, C.; Sapper, E.; Wang, K.; Rödel, J. Giant electric-field-induced strains in lead-free ceramics for actuator applications—Status and perspective. J. Electroceram. 2012, 29, 71–93.

[24]

Sun, E. W.; Cao, W. W. Relaxor-based ferroelectric single crystals: Growth, domain engineering, characterization and applications. Prog. Mater. Sci. 2014, 65, 124–210.

[25]

Hwang, G. T.; Park, H.; Lee, J. H.; Oh, S.; Park, K. I.; Byun, M.; Park, H.; Ahn, G.; Jeong, C. K.; No, K. et al. Self-powered cardiac pacemaker enabled by flexible single crystalline PMN-PT piezoelectric energy harvester. Adv. Mater. 2014, 26, 4880–4887.

[26]

Gao, J. H.; Ke, X. Q.; Acosta, M.; Glaum, J.; Ren, X. B. High piezoelectricity by multiphase coexisting point: Barium titanate derivatives. MRS Bull. 2018, 43, 595–599.

[27]

Acosta, M.; Novak, N.; Rojas, V.; Patel, S.; Vaish, R.; Koruza, J.; Rossetti, G. A. Jr; Rodel, J. BaTiO3-based piezoelectrics: Fundamentals, current status, and perspectives. Appl. Phys. Rev. 2017, 4, 041305.

[28]

Jeong, C. K.; Baek, C.; Kingon, A. I.; Park, K. I.; Kim, S. H. Lead-free perovskite nanowire-employed piezopolymer for highly efficient flexible nanocomposite energy harvester. Small 2018, 14, 1704022.

[29]

Shin, Y. J.; Kim, Y.; Kang, S. J.; Nahm, H. H.; Murugavel, P.; Kim, J. R.; Cho, M. R.; Wang, L. F.; Yang, S. M.; Yoon, J. G. et al. Interface control of ferroelectricity in an SrRuO3/BaTiO3/SrRuO3 capacitor and its critical thickness. Adv. Mater. 2017, 29, 1602795.

[30]

Wang, L. F.; Cho, M. R.; Shin, Y. J.; Kim, J. R.; Das, S.; Yoon, J. G.; Chung, J. S.; Noh, T. W. Overcoming the fundamental barrier thickness limits of ferroelectric tunnel junctions through BaTiO3/SrTiO3 composite barriers. Nano Lett. 2016, 16, 3911–3918.

[31]

Ruan, L. X.; Yao, X. N.; Chang, Y. F.; Zhou, L. Q.; Qin, G. W.; Zhang, X. M. Properties and applications of the β phase poly(vinylidene fluoride). Polymers 2018, 10, 228.

[32]

Hong, Y.; Wang, B.; Long, Z. H.; Zhang, Z. M.; Pan, Q. Q.; Liu, S. Y.; Luo, X. W.; Yang, Z. B. Hierarchically interconnected piezoceramic textile with a balanced performance in piezoelectricity, flexibility, toughness, and air permeability. Adv. Funct. Mater. 2021, 31, 2104737.

[33]

Wang, Z. H.; Cheng, J.; Xie, Y.; Wang, Y. H.; Yu, Z. H.; Li, S.; Li, L. T.; Dong, S. X.; Wang, H. Lead-free piezoelectric composite based on a metamaterial for electromechanical energy conversion. Adv. Mater. Technol. 2022, 7, 2200650.

[34]

Chen, X. L.; Li, X. M.; Shao, J. Y.; An, N. L.; Tian, H. M.; Wang, C.; Han, T. Y.; Wang, L.; Lu, B. H. High-performance piezoelectric nanogenerators with imprinted P(VDF-TrFE)/BaTiO3 nanocomposite micropillars for self-powered flexible sensors. Small 2017, 13, 1604245.

[35]

Shi, S. H.; Zhai, Y. Z.; Zhang, Y. L.; Wang, H.; Li, Z. C.; Fan, X.; Zhang, Y. Y.; Liu, J. J.; Li, P.; Zhai, J. W. et al. Ultra-sensitive flexible piezoelectric energy harvesters inspired by pine branches for detection. Nano Energy 2022, 99, 107422.

[36]

Gao, X.; Zheng, M. P.; Lv, H. J.; Zhang, Y. Z.; Zhu, M. K.; Hou, Y. D. Ultrahigh sensitive flexible sensor based on textured piezoelectric composites for preventing sports injuries. Compos. Sci. Technol. 2022, 229, 109693.

[37]

Zhu, M. M.; Li, J. L.; Yu, J. Y.; Li, Z. L.; Ding, B. Superstable and intrinsically self-healing fibrous membrane with bionic confined protective structure for breathable electronic skin. Angew. Chem., Int. Ed. 2022, 61, e202200226.

[38]

Zhu, M. M.; Yu, J. Y.; Li, Z. L.; Ding, B. Self-healing fibrous membranes. Angew. Chem., Int. Ed. 2022, 61, e202208949.

[39]

Qi, F. W.; Zeng, Z. C.; Yao, J.; Cai, W. L.; Zhao, Z. Y.; Peng, S. P.; Shuai, C. J. Constructing core–shell structured BaTiO3@carbon boosts piezoelectric activity and cell response of polymer scaffolds. Mater. Sci. Eng.: C 2021, 126, 112129.

[40]

Tu, S. B.; Jiang, Q.; Zhang, X. X.; Alshareef, H. N. Large dielectric constant enhancement in MXene percolative polymer composites. ACS Nano 2018, 12, 3369–3377.

[41]

Tian, G.; Deng, W. L.; Xiong, D.; Yang, T.; Zhang, B. B.; Ren, X. R.; Lan, B. L.; Zhong, S.; Jin, L.; Zhang, H. R. et al. Dielectric micro-capacitance for enhancing piezoelectricity via aligning MXene sheets in composites. Cell Rep. Phys. Sci. 2022, 3, 100814.

[42]

Xu, R.; Guo, J. F.; Mi, S.; Wen, H. F.; Pang, F.; Ji, W.; Cheng, Z. H. Advanced atomic force microscopies and their applications in two-dimensional materials: A review. Mater. Futures 2022, 1, 032302.

[43]

Tian, G.; Deng, W. L.; Yang, T.; Xiong, D.; Zhang, H. R.; Lan, B. L.; Deng, L.; Zhang, B. B.; Jin, L.; Huang, H. C. et al. Insight into interfacial polarization for enhancing piezoelectricity in ferroelectric nanocomposites. Small 2023, 19, 2207947.

[44]

Cai, J. Y.; Du, M. J.; Li, Z. L. Flexible temperature sensors constructed with fiber materials. Adv. Mater. Technol. 2022, 7, 2101182.

[45]

Shi, S. H.; Pan, Z. B.; Cheng, Y.; Zhai, Y. Z.; Zhang, Y. L.; Ding, X. P.; Liu, J. J.; Zhai, J. W.; Xu, J. K. Three-dimensional polypyrrole induced high-performance flexible piezoelectric nanogenerators for mechanical energy harvesting. Compos. Sci. Technol. 2022, 219, 109260.

[46]

Zhang, C.; Fan, Y. J.; Li, H. Y.; Li, Y. Y.; Zhang, L.; Cao, S. B.; Kuang, S. Y.; Zhao, Y. B.; Chen, A. H.; Zhu, G. et al. Fully rollable lead-free poly(vinylidene fluoride)-niobate-based nanogenerator with ultra-flexible nano-network electrodes. ACS Nano 2018, 12, 4803–4811.

[47]

Cai, S. Y.; Xu, C. S.; Jiang, D. F.; Yuan, M. L.; Zhang, Q. W.; Li, Z. L.; Wang, Y. Air-permeable electrode for highly sensitive and noninvasive glucose monitoring enabled by graphene fiber fabrics. Nano Energy 2022, 93, 106904.

[48]

Zhou, Z.; Du, X. X.; Luo, J. K.; Yao, L. Q.; Zhang, Z.; Yang, H.; Zhang, Q. L. Coupling of interface effects and porous microstructures in translucent piezoelectric composites for enhanced energy harvesting and sensing. Nano Energy 2021, 84, 105895.

[49]

Araujo, C. F.; Nolasco, M. M.; Ribeiro, A. M. P.; Ribeiro-Claro, P. J. A. Identification of microplastics using Raman spectroscopy: Latest developments and future prospects. Water Res. 2018, 142, 426–440.

[50]

Butler, H. J.; Ashton, L.; Bird, B.; Cinque, G.; Curtis, K.; Dorney, J.; Esmonde-White, K.; Fullwood, N. J.; Gardner, B.; Martin-Hirsch, P. L. et al. Using Raman spectroscopy to characterize biological materials. Nat. Protoc. 2016, 11, 664–687.

[51]

Zhang, R.; Zhang, Y.; Dong, Z. C.; Jiang, S.; Zhang, C.; Chen, L. G.; Zhang, L.; Liao, Y.; Aizpurua, J.; Luo, Y. et al. Chemical mapping of a single molecule by plasmon-enhanced Raman scattering. Nature 2013, 498, 82–86.

[52]

Jiang, J. Y.; Shen, Z. H.; Qian, J. F.; Dan, Z. K.; Guo, M. F.; He, Y.; Lin, Y. H.; Nan, C. W.; Chen, L. Q.; Shen, Y. Synergy of micro-/mesoscopic interfaces in multilayered polymer nanocomposites induces ultrahigh energy density for capacitive energy storage. Nano Energy 2019, 62, 220–229.

[53]

Lu, X.; Qu, H.; Skorobogatiy, M. Piezoelectric micro- and nanostructured fibers fabricated from thermoplastic nanocomposites using a fiber drawing technique: Comparative study and potential applications. ECS Trans. 2018, 86, 57–69.

[54]

Kang, H. B.; Han, C. S.; Pyun, J. C.; Ryu, W. H.; Kang, C. Y.; Cho, Y. S. (Na,K)NbO3 nanoparticle-embedded piezoelectric nanofiber composites for flexible nanogenerators. Compos. Sci. Technol. 2015, 111, 1–8.

[55]

Choi, M.; Murillo, G.; Hwang, S.; Kim, J. W.; Jung, J. H.; Chen, C. Y.; Lee, M. Mechanical and electrical characterization of PVDF-ZnO hybrid structure for application to nanogenerator. Nano Energy 2017, 33, 462–468.

[56]

Mishra, M.; Roy, A.; Dash, S.; Mukherjee, S. Flexible nano-GFO/PVDF piezoelectric-polymer nano-composite films for mechanical energy harvesting. IOP Conf. Ser.: Mater. Sci. Eng. 2018, 338, 012026.

Nano Research
Pages 11312-11319
Cite this article:
Zeng W, Deng W, Yang T, et al. Gradient CNT/PVDF piezoelectric composite with enhanced force-electric coupling for soccer training. Nano Research, 2023, 16(8): 11312-11319. https://doi.org/10.1007/s12274-023-5869-6
Topics:

774

Views

12

Crossref

11

Web of Science

11

Scopus

0

CSCD

Altmetrics

Received: 27 March 2023
Revised: 16 May 2023
Accepted: 23 May 2023
Published: 21 June 2023
© Tsinghua University Press 2023
Return