Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The chirality-induced spin selectivity (CISS) has been found in the antiferromagnetic and paramagnetic chiral inorganic materials with unpaired electrons, while rarely reported in the spin-paired diamagnetic inorganic materials with spin-pairing energy. Here, we report the CISS in the spin-paired diamagnetic BiOBr endowed with three levels of chiral mesostructures. Chiral mesostructured BiOBr films (CMBFs) were fabricated through a sugar alcohol-induced hydrothermal route. The antipodal CMBFs exhibited chirality-dependent, magnetic field-independent magnetic circular dichroism (MCD) signals, which indicates the existence of spin selectivity. The spin selectivity of CMBFs was speculated to be the result of the competing effect between the externally applied magnetic field and the effective magnetic field arisen from the spin electron motions in chiral potential. The chirality-induced effective magnetic field acts on the magnetic moment of electrons, potentially overcoming the spin-pairing energy and producing opposite energy changes for spin-down and spin-up electrons.
Brandt, J. R.; Salerno, F.; Fuchter, M. J. The added value of small-molecule chirality in technological applications. Nat. Rev. Chem. 2017, 1, 0045.
Kim, Y. H.; Zhai, Y. X.; Lu, H. P.; Pan, X.; Xiao, C. X.; Gaulding, E. A.; Harvey, S. P.; Berry, J. J.; Vardeny, Z. V.; Luther, J. M. et al. Chiral-induced spin selectivity enables a room-temperature spin light-emitting diode. Science 2021, 371, 1129–1133.
Metzger, T. S.; Mishra, S.; Bloom, B. P.; Goren, N.; Neubauer, A.; Shmul, G.; Wei, J. M.; Yochelis, S.; Tassinari, F.; Fontanesi, C. et al. The electron spin as a chiral reagent. Angew. Chem., Int. Ed. 2020, 59, 1653–1658.
Naaman, R.; Paltiel, Y.; Waldeck, D. H. Chiral induced spin selectivity and its implications for biological functions. Annu. Rev. Biophys. 2022, 51, 99–114.
Naaman, R.; Waldeck, D. H. Spintronics and chirality: Spin selectivity in electron transport through chiral molecules. Annu. Rev. Phys. Chem. 2015, 66, 263–281.
Göhler, B.; Hamelbeck, V.; Markus, T. Z.; Kettner, M.; Hanne, G. F.; Vager, Z.; Naaman, R.; Zacharias, H. Spin selectivity in electron transmission through self-assembled monolayers of double-stranded DNA. Science 2011, 331, 894–897.
Wolf, Y.; Liu, Y. Z.; Xiao, J. W.; Park, N.; Yan, B. H. Unusual spin polarization in the chirality-induced spin selectivity. ACS Nano 2022, 16, 18601–18607.
Inui, A.; Aoki, R.; Nishiue, Y.; Shiota, K.; Kousaka, Y.; Shishido, H.; Hirobe, D.; Suda, M.; Ohe, J. I.; Kishine, J. I. et al. Chirality-induced spin-polarized state of a chiral crystal CrNb3S6. Phys. Rev. Lett. 2020, 124, 166602.
Gao, X. Y.; Vaidya, S.; Li, K. J.; Ju, P.; Jiang, B. Y.; Xu, Z. J.; Allcca, A. E. L.; Shen, K. H.; Taniguchi, T.; Watanabe, K. et al. Nuclear spin polarization and control in hexagonal boron nitride. Nat. Mater. 2022, 21, 1024–1028.
Möllers, P. V.; Wei, J. M.; Salamon, S.; Bartsch, M.; Wende, H.; Waldeck, D. H.; Zacharias, H. Spin-polarized photoemission from chiral CuO catalyst thin films. ACS Nano 2022, 16, 12145–12155.
Lu, H. P.; Vardeny, Z. V.; Beard, M. C. Control of light, spin and charge with chiral metal halide semiconductors. Nat. Rev. Chem. 2022, 6, 470–485.
Qian, Q.; Ren, H. Y.; Zhou, J. Y.; Wan, Z.; Zhou, J. X.; Yan, X. X.; Cai, J.; Wang, P. Q.; Li, B. L.; Sofer, Z. et al. Chiral molecular intercalation superlattices. Nature 2022, 606, 902–908.
Torres-Cavanillas, R.; Escorcia-Ariza, G.; Brotons-Alcázar, I.; Sanchis-Gual, R.; Mondal, P. C.; Rosaleny, L. E.; Giménez-Santamarina, S.; Sessolo, M.; Galbiati, M.; Tatay, S. et al. Reinforced room-temperature spin filtering in chiral paramagnetic metallopeptides. J. Am. Chem. Soc. 2020, 142, 17572–17580.
Naaman, R.; Waldeck, D. H. Chiral-induced spin selectivity effect. J. Phys. Chem. Lett. 2012, 3, 2178–2187.
Waldeck, D. H.; Naaman, R.; Paltiel, Y. The spin selectivity effect in chiral materials. APL Mater. 2021, 9, 040902.
Bai, T.; Ai, J.; Liao, L. Y.; Luo, J. W.; Song, C.; Duan, Y. Y.; Han, L.; Che, S. N. Chiral mesostructured NiO films with spin polarisation. Angew. Chem., Int. Ed. 2021, 60, 9421–9426.
Bai, T.; Ai, J.; Duan, Y. Y.; Han, L.; Che, S. N. Spin selectivity of chiral mesostructured iron oxides with different magnetisms. Small 2022, 18, 2104509.
Bai, T.; Ai, J.; Ma, J.; Duan, Y. Y.; Han, L.; Jiang, J. G.; Che, S. N. Resistance-chiral anisotropy of chiral mesostructured half-metallic Fe3O4 films. Angew. Chem., Int. Ed. 2021, 60, 20036–20041.
Liu, Z. X.; Ai, J.; Bai, T.; Fang, Y. X.; Ding, K.; Duan, Y. Y.; Han, L.; Che, S. N. Photomagnetic-chiral anisotropy of chiral nanostructured gold films. Chem 2022, 8, 186–196.
Mishra, D.; Markus, T. Z.; Naaman, R.; Kettner, M.; Göhler, B.; Zacharias, H.; Friedman, N.; Sheves, M.; Fontanesi, C. Spin-dependent electron transmission through bacteriorhodopsin embedded in purple membrane. Pro. Natl. Acad. Sci. USA 2013, 110, 14872–14876.
Kettner, M.; Maslyuk, V. V.; Nürenberg, D.; Seibel, J.; Gutierrez, R.; Cuniberti, G.; Ernst, K. H.; Zacharias, H. Chirality-dependent electron spin filtering by molecular monolayers of helicenes. J. Phys. Chem. Lett. 2018, 9, 2025–2030.
Ganose, A. M.; Cuff, M.; Butler, K. T.; Walsh, A.; Scanlon, D. O. Interplay of orbital and relativistic effects in bismuth oxyhalides: BiOF, BiOCl, BiOBr, and BiOI. Chem. Mater. 2016, 28, 1980–1984.
Li, T.; Zhang, X. C.; Zhang, C. M.; Li, R.; Liu, J. X.; Lv, R.; Zhang, H.; Han, P. D.; Fan, C. M.; Zheng, Z. F. Theoretical insights into photo-induced electron transfer at BiOX (X = F, Cl, Br, I) (001) surfaces and interfaces. Phys. Chem. Chem. Phys. 2019, 21, 868–875.
Kato, T. The essential role of vibronic interactions in electron pairing in the micro- and macroscopic sized materials. Chem. Phys. 2010, 376, 84–93.
König, E.; Kremer, S. Exact spin-pairing energies at the crossovers in octahedral d4, d5, d6, and d7 transition metal complexes. Theor. Chim. Acta 1971, 23, 12–20.
Ding, K.; Ai, J.; Duan, Y. Y.; Han, L.; Qu, Z. B.; Che, S. N. Mechanism of diastereoisomer-induced chirality of BiOBr. Chem. Sci. 2022, 13, 2450–2455.
Ding, K.; Ai, J.; Deng, Q. Z.; Huang, B.; Zhou, C.; Duan, T. W.; Duan, Y. Y.; Han, L.; Jiang, J. J.; Che, S. N. Chiral mesostructured BiOBr films with circularly polarized colour response. Angew. Chem., Int. Ed. 2021, 60, 19024–19029.
Gaidamauskas, E.; Norkus, E.; Vaičiūnienė, J.; Crans, D. C.; Vuorinen, T.; Jačiauskienė, J.; Baltrūnas, G. Evidence of two-step deprotonation of D-mannitol in aqueous solution. Carbohydr. Res. 2005, 340, 1553–1556.
Odenthal, P.; Talmadge, W.; Gundlach, N.; Wang, R. Z.; Zhang, C.; Sun, D. L.; Yu, Z. G.; Valy Vardeny, Z.; Li, Y. S. Spin-polarized exciton quantum beating in hybrid organic-inorganic perovskites. Nat. Phys. 2017, 13, 894–899.
Nagao, K.; Tsunenori, N.; Masahiro, H. Near-infrared magnetic circular dichroism studies on iron(III) horse heart cytochrome c. Bull. Chem. Soc. Japan 1981, 54, 919–920.
Yin, P. H.; Tan, Y.; Fang, H. B.; Hegde, M.; Radovanovic, P. V. Plasmon-induced carrier polarization in semiconductor nanocrystals. Nat. Nanotechnol. 2018, 13, 463–467.
Takao, Y.;Tsunenori, N.;Nagao, K.; Masahiro, H. Origins and spin dependence of near infrared magnetic circular dichroism of iron(III) hemoproteins. Bull. Chem. Soc. Jpn. 1982, 55, 3059–3063.
Ray, K.; Ananthavel, S. P.; Waldeck, D. H.; Naaman, R. Asymmetric scattering of polarized electrons by organized organic films of chiral molecules. Science 1999, 283, 814–816.
Cherroret, N.; Chakravarty, A.; Kar, A. Temperature-dependent refractive index of semiconductors. J. Mater. Sci. 2008, 43, 1795–1801.
Bloom, B. P.; Graff, B. M.; Ghosh, S.; Beratan, D. N.; Waldeck, D. H. Chirality control of electron transfer in quantum dot assemblies. J. Am. Chem. Soc. 2017, 139, 9038–9043.