Journal Home > Volume 16 , Issue 8

The chirality-induced spin selectivity (CISS) has been found in the antiferromagnetic and paramagnetic chiral inorganic materials with unpaired electrons, while rarely reported in the spin-paired diamagnetic inorganic materials with spin-pairing energy. Here, we report the CISS in the spin-paired diamagnetic BiOBr endowed with three levels of chiral mesostructures. Chiral mesostructured BiOBr films (CMBFs) were fabricated through a sugar alcohol-induced hydrothermal route. The antipodal CMBFs exhibited chirality-dependent, magnetic field-independent magnetic circular dichroism (MCD) signals, which indicates the existence of spin selectivity. The spin selectivity of CMBFs was speculated to be the result of the competing effect between the externally applied magnetic field and the effective magnetic field arisen from the spin electron motions in chiral potential. The chirality-induced effective magnetic field acts on the magnetic moment of electrons, potentially overcoming the spin-pairing energy and producing opposite energy changes for spin-down and spin-up electrons.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Spin selectivity of chiral mesostructured diamagnetic BiOBr films

Show Author's information Kun Ding1,2,§Jing Ai3,§Hao Chen3Zhibei Qu4Peizhao Liu2Lu Han3Shunai Che2,3Yingying Duan3( )
Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China
School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Matrix Composite, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China

§ Kun Ding and Jing Ai contributed equally to this work.

Abstract

The chirality-induced spin selectivity (CISS) has been found in the antiferromagnetic and paramagnetic chiral inorganic materials with unpaired electrons, while rarely reported in the spin-paired diamagnetic inorganic materials with spin-pairing energy. Here, we report the CISS in the spin-paired diamagnetic BiOBr endowed with three levels of chiral mesostructures. Chiral mesostructured BiOBr films (CMBFs) were fabricated through a sugar alcohol-induced hydrothermal route. The antipodal CMBFs exhibited chirality-dependent, magnetic field-independent magnetic circular dichroism (MCD) signals, which indicates the existence of spin selectivity. The spin selectivity of CMBFs was speculated to be the result of the competing effect between the externally applied magnetic field and the effective magnetic field arisen from the spin electron motions in chiral potential. The chirality-induced effective magnetic field acts on the magnetic moment of electrons, potentially overcoming the spin-pairing energy and producing opposite energy changes for spin-down and spin-up electrons.

Keywords: chiral mesostructures, diamagnetic material, chiral-induced spin selectivity (CISS), magnetic circular dichroism (MCD)

References(36)

[1]

Brandt, J. R.; Salerno, F.; Fuchter, M. J. The added value of small-molecule chirality in technological applications. Nat. Rev. Chem. 2017, 1, 0045.

[2]

Kim, Y. H.; Zhai, Y. X.; Lu, H. P.; Pan, X.; Xiao, C. X.; Gaulding, E. A.; Harvey, S. P.; Berry, J. J.; Vardeny, Z. V.; Luther, J. M. et al. Chiral-induced spin selectivity enables a room-temperature spin light-emitting diode. Science 2021, 371, 1129–1133.

[3]

Metzger, T. S.; Mishra, S.; Bloom, B. P.; Goren, N.; Neubauer, A.; Shmul, G.; Wei, J. M.; Yochelis, S.; Tassinari, F.; Fontanesi, C. et al. The electron spin as a chiral reagent. Angew. Chem., Int. Ed. 2020, 59, 1653–1658.

[4]

Naaman, R.; Paltiel, Y.; Waldeck, D. H. Chiral induced spin selectivity and its implications for biological functions. Annu. Rev. Biophys. 2022, 51, 99–114.

[5]

Naaman, R.; Waldeck, D. H. Spintronics and chirality: Spin selectivity in electron transport through chiral molecules. Annu. Rev. Phys. Chem. 2015, 66, 263–281.

[6]

Göhler, B.; Hamelbeck, V.; Markus, T. Z.; Kettner, M.; Hanne, G. F.; Vager, Z.; Naaman, R.; Zacharias, H. Spin selectivity in electron transmission through self-assembled monolayers of double-stranded DNA. Science 2011, 331, 894–897.

[7]

Wolf, Y.; Liu, Y. Z.; Xiao, J. W.; Park, N.; Yan, B. H. Unusual spin polarization in the chirality-induced spin selectivity. ACS Nano 2022, 16, 18601–18607.

[8]

Inui, A.; Aoki, R.; Nishiue, Y.; Shiota, K.; Kousaka, Y.; Shishido, H.; Hirobe, D.; Suda, M.; Ohe, J. I.; Kishine, J. I. et al. Chirality-induced spin-polarized state of a chiral crystal CrNb3S6. Phys. Rev. Lett. 2020, 124, 166602.

[9]

Gao, X. Y.; Vaidya, S.; Li, K. J.; Ju, P.; Jiang, B. Y.; Xu, Z. J.; Allcca, A. E. L.; Shen, K. H.; Taniguchi, T.; Watanabe, K. et al. Nuclear spin polarization and control in hexagonal boron nitride. Nat. Mater. 2022, 21, 1024–1028.

[10]

Möllers, P. V.; Wei, J. M.; Salamon, S.; Bartsch, M.; Wende, H.; Waldeck, D. H.; Zacharias, H. Spin-polarized photoemission from chiral CuO catalyst thin films. ACS Nano 2022, 16, 12145–12155.

[11]

Lu, H. P.; Vardeny, Z. V.; Beard, M. C. Control of light, spin and charge with chiral metal halide semiconductors. Nat. Rev. Chem. 2022, 6, 470–485.

[12]

Qian, Q.; Ren, H. Y.; Zhou, J. Y.; Wan, Z.; Zhou, J. X.; Yan, X. X.; Cai, J.; Wang, P. Q.; Li, B. L.; Sofer, Z. et al. Chiral molecular intercalation superlattices. Nature 2022, 606, 902–908.

[13]

Torres-Cavanillas, R.; Escorcia-Ariza, G.; Brotons-Alcázar, I.; Sanchis-Gual, R.; Mondal, P. C.; Rosaleny, L. E.; Giménez-Santamarina, S.; Sessolo, M.; Galbiati, M.; Tatay, S. et al. Reinforced room-temperature spin filtering in chiral paramagnetic metallopeptides. J. Am. Chem. Soc. 2020, 142, 17572–17580.

[14]

Naaman, R.; Waldeck, D. H. Chiral-induced spin selectivity effect. J. Phys. Chem. Lett. 2012, 3, 2178–2187.

[15]

Waldeck, D. H.; Naaman, R.; Paltiel, Y. The spin selectivity effect in chiral materials. APL Mater. 2021, 9, 040902.

[16]

Bai, T.; Ai, J.; Liao, L. Y.; Luo, J. W.; Song, C.; Duan, Y. Y.; Han, L.; Che, S. N. Chiral mesostructured NiO films with spin polarisation. Angew. Chem., Int. Ed. 2021, 60, 9421–9426.

[17]

Bai, T.; Ai, J.; Duan, Y. Y.; Han, L.; Che, S. N. Spin selectivity of chiral mesostructured iron oxides with different magnetisms. Small 2022, 18, 2104509.

[18]

Bai, T.; Ai, J.; Ma, J.; Duan, Y. Y.; Han, L.; Jiang, J. G.; Che, S. N. Resistance-chiral anisotropy of chiral mesostructured half-metallic Fe3O4 films. Angew. Chem., Int. Ed. 2021, 60, 20036–20041.

[19]

Liu, Z. X.; Ai, J.; Bai, T.; Fang, Y. X.; Ding, K.; Duan, Y. Y.; Han, L.; Che, S. N. Photomagnetic-chiral anisotropy of chiral nanostructured gold films. Chem 2022, 8, 186–196.

[20]

Mishra, D.; Markus, T. Z.; Naaman, R.; Kettner, M.; Göhler, B.; Zacharias, H.; Friedman, N.; Sheves, M.; Fontanesi, C. Spin-dependent electron transmission through bacteriorhodopsin embedded in purple membrane. Pro. Natl. Acad. Sci. USA 2013, 110, 14872–14876.

[21]

Kettner, M.; Maslyuk, V. V.; Nürenberg, D.; Seibel, J.; Gutierrez, R.; Cuniberti, G.; Ernst, K. H.; Zacharias, H. Chirality-dependent electron spin filtering by molecular monolayers of helicenes. J. Phys. Chem. Lett. 2018, 9, 2025–2030.

[22]

Ganose, A. M.; Cuff, M.; Butler, K. T.; Walsh, A.; Scanlon, D. O. Interplay of orbital and relativistic effects in bismuth oxyhalides: BiOF, BiOCl, BiOBr, and BiOI. Chem. Mater. 2016, 28, 1980–1984.

[23]

Li, T.; Zhang, X. C.; Zhang, C. M.; Li, R.; Liu, J. X.; Lv, R.; Zhang, H.; Han, P. D.; Fan, C. M.; Zheng, Z. F. Theoretical insights into photo-induced electron transfer at BiOX (X = F, Cl, Br, I) (001) surfaces and interfaces. Phys. Chem. Chem. Phys. 2019, 21, 868–875.

[24]

Kato, T. The essential role of vibronic interactions in electron pairing in the micro- and macroscopic sized materials. Chem. Phys. 2010, 376, 84–93.

[25]

König, E.; Kremer, S. Exact spin-pairing energies at the crossovers in octahedral d4, d5, d6, and d7 transition metal complexes. Theor. Chim. Acta 1971, 23, 12–20.

[26]

Ding, K.; Ai, J.; Duan, Y. Y.; Han, L.; Qu, Z. B.; Che, S. N. Mechanism of diastereoisomer-induced chirality of BiOBr. Chem. Sci. 2022, 13, 2450–2455.

[27]

Ding, K.; Ai, J.; Deng, Q. Z.; Huang, B.; Zhou, C.; Duan, T. W.; Duan, Y. Y.; Han, L.; Jiang, J. J.; Che, S. N. Chiral mesostructured BiOBr films with circularly polarized colour response. Angew. Chem., Int. Ed. 2021, 60, 19024–19029.

[28]

Gaidamauskas, E.; Norkus, E.; Vaičiūnienė, J.; Crans, D. C.; Vuorinen, T.; Jačiauskienė, J.; Baltrūnas, G. Evidence of two-step deprotonation of D-mannitol in aqueous solution. Carbohydr. Res. 2005, 340, 1553–1556.

[29]

Odenthal, P.; Talmadge, W.; Gundlach, N.; Wang, R. Z.; Zhang, C.; Sun, D. L.; Yu, Z. G.; Valy Vardeny, Z.; Li, Y. S. Spin-polarized exciton quantum beating in hybrid organic-inorganic perovskites. Nat. Phys. 2017, 13, 894–899.

[30]
Stephens, P. J. Magnetic circular dichroism. In Advances in Chemical Physics. Prigogine, I.; Rice, S. A. , Eds.; John Wiley & Sons, Inc. : Hoboken, 1976; pp 197–264.
[31]

Nagao, K.; Tsunenori, N.; Masahiro, H. Near-infrared magnetic circular dichroism studies on iron(III) horse heart cytochrome c. Bull. Chem. Soc. Japan 1981, 54, 919–920.

[32]

Yin, P. H.; Tan, Y.; Fang, H. B.; Hegde, M.; Radovanovic, P. V. Plasmon-induced carrier polarization in semiconductor nanocrystals. Nat. Nanotechnol. 2018, 13, 463–467.

[33]

Takao, Y.;Tsunenori, N.;Nagao, K.; Masahiro, H. Origins and spin dependence of near infrared magnetic circular dichroism of iron(III) hemoproteins. Bull. Chem. Soc. Jpn. 1982, 55, 3059–3063.

[34]

Ray, K.; Ananthavel, S. P.; Waldeck, D. H.; Naaman, R. Asymmetric scattering of polarized electrons by organized organic films of chiral molecules. Science 1999, 283, 814–816.

[35]

Cherroret, N.; Chakravarty, A.; Kar, A. Temperature-dependent refractive index of semiconductors. J. Mater. Sci. 2008, 43, 1795–1801.

[36]

Bloom, B. P.; Graff, B. M.; Ghosh, S.; Beratan, D. N.; Waldeck, D. H. Chirality control of electron transfer in quantum dot assemblies. J. Am. Chem. Soc. 2017, 139, 9038–9043.

File
12274_2023_5866_MOESM1_ESM.pdf (2.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 11 January 2023
Revised: 24 May 2023
Accepted: 24 May 2023
Published: 15 July 2023
Issue date: August 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by the National Key R&D Program of China (No. 2021YFA1200300), the National Natural Science Foundation of China (Nos. 21931008, 21975184, 21873072, and 21922304,), and the scientific foundation of the Shanghai Municipal Science and Technology Commission (Nos. 19JC1410300).

Return