Journal Home > Volume 16 , Issue 12

The slot-die coating is recognized as the most compatible method for the roll-to-roll (R2R) processing of large-area flexible organic solar cells (OSCs). However, the photovoltaic performance of the large-area flexible all-polymer solar cells was significantly lagging behind that of polymer donors with small molecule non-fullerene acceptors devices. In this work, the 1 cm2 flexible device of an all-polymer system, PTQ10:PYF-T-o, fabricated by slot-die coating, achieves an excellent efficiency of 11.24% via controlling the coating temperatures. It is found that, compared with the donor, the crystallinity of PYF-T-o plays a crucial role in device performance. The all-polymer flexible devices show superior mechanical bending stability, maintaining an efficiency of over 95% of the initial value during a 1000-cycle bending test.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Slot-die coated large-area flexible all-polymer solar cells by non-halogenated solvent

Show Author's information Yi-Fan Shen1,2,3Jianqi Zhang1( )Chenyang Tian1,2Dingding Qiu1,2,3Zhixiang Wei1,2( )
CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
University of Chinese Academy of Sciences, Beijing 100049, China
Sino-Danish Center for Education and Research, Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

The slot-die coating is recognized as the most compatible method for the roll-to-roll (R2R) processing of large-area flexible organic solar cells (OSCs). However, the photovoltaic performance of the large-area flexible all-polymer solar cells was significantly lagging behind that of polymer donors with small molecule non-fullerene acceptors devices. In this work, the 1 cm2 flexible device of an all-polymer system, PTQ10:PYF-T-o, fabricated by slot-die coating, achieves an excellent efficiency of 11.24% via controlling the coating temperatures. It is found that, compared with the donor, the crystallinity of PYF-T-o plays a crucial role in device performance. The all-polymer flexible devices show superior mechanical bending stability, maintaining an efficiency of over 95% of the initial value during a 1000-cycle bending test.

Keywords: morphology control, organic solar cells, slot-die coating, non-halogenated solvent, flexible large-area devices

References(28)

[1]

Wang, G.; Melkonyan, F. S.; Facchetti, A.; Marks, T. J. All-polymer solar cells: Recent progress, challenges, and prospects. Angew. Chem., Int. Ed. 2019, 58, 4129–4142.

[2]

Zhang, C.; Ming, S. L.; Wu, H. B.; Wang, X. D.; Huang, H.; Xue, W. Y.; Xu, X. J.; Tang, Z.; Ma, W.; Bo, Z. S. High-efficiency ternary nonfullerene organic solar cells with record long-term thermal stability. J. Mater. Chem. A 2020, 8, 22907–22917.

[3]

Qi, Q. C.; Xian, K. H.; Ke, H. Z.; Wu, J. J.; Zhou, K. K.; Gao, M. Y.; Liu, J. W.; Li, S. M.; Zhao, W. C.; Chen, Z. et al. Improving the thermal stability of organic solar cells via crystallinity control. ACS Appl. Energy Mater. 2022, 5, 15656–15665.

[4]

Lee, J. W.; Sun, C.; Ma, B. S.; Kim, H. J.; Wang, C.; Ryu, J. M.; Lim, C.; Kim, T. S.; Kim, Y. H.; Kwon, S. K. et al. Efficient, thermally stable, and mechanically robust all-polymer solar cells consisting of the same benzodithiophene unit-based polymer acceptor and donor with high molecular compatibility. Adv. Energy Mater. 2021, 11, 2003367.

[5]

Zhou, D.; Wang, J. R.; Xu, Z. T.; Xu, H. T.; Quan, J. W.; Deng, J. W.; Li, Y. B.; Tong, Y. F.; Hu, B.; Chen, L. Recent advances of nonfullerene acceptors in organic solar cells. Nano Energy 2022, 103, 107802.

[6]

Wang, J. Y.; Xue, P. Y.; Jiang, Y. T.; Huo, Y.; Zhan, X. W. The principles, design and applications of fused-ring electron acceptors. Nat. Rev. Chem. 2022, 6, 614–634.

[7]

Wang, J. Y.; Zhan, X. W. From perylene diimide polymers to fused-ring electron acceptors: A 15-year exploration journey of nonfullerene acceptors. Chin. J. Chem. 2022, 40, 1592–1607.

[8]

Moore, J. R.; Albert-Seifried, S.; Rao, A.; Massip, S.; Watts, B.; Morgan, D. J.; Friend, R. H.; McNeill, C. R.; Sirringhaus, H. Polymer blend solar cells based on a high-mobility naphthalenediimide-based polymer acceptor: Device physics, photophysics and morphology. Adv. Energy Mater. 2011, 1, 230–240.

[9]

Fabiano, S.; Chen, Z.; Vahedi, S.; Facchetti, A.; Pignataro, B.; Loi, M. A. Role of photoactive layer morphology in high fill factor all-polymer bulk heterojunction solar cells. J. Mater. Chem. 2011, 21, 5891–5896.

[10]

Kim, T.; Kim, J. H.; Kang, T. E.; Lee, C.; Kang, H.; Shin, M.; Wang, C.; Ma, B. W.; Jeong, U.; Kim, T. S. et al. Flexible, highly efficient all-polymer solar cells. Nat. Commun. 2015, 6, 8547.

[11]

Zhang, M.; Bai, Y.; Sun, C. K.; Xue, L. W.; Wang, H. Q.; Zhang, Z. G. Perylene-diimide derived organic photovoltaic materials. Sci. China Chem. 2021, 65, 462–485.

[12]

Li, M. Y.; Yin, H.; Sun, G. Y. PDI derivatives with functional active position as non-fullerene small molecule acceptors in organic solar cells: From different core linker to various conformation. Appl. Mater. Today 2020, 21, 100799.

[13]

Miao, J. H.; Wang, Y. H.; Liu, J.; Wang, L. X. Organoboron molecules and polymers for organic solar cell applications. Chem. Soc. Rev. 2022, 51, 153–187.

[14]

Carlé, J. E.; Helgesen, M.; Hagemann, O.; Hösel, M.; Heckler, I. M.; Bundgaard, E.; Gevorgyan, S. A.; Søndergaard, R. R.; Jørgensen, M.; García-Valverde, R. et al. Overcoming the scaling lag for polymer solar cells. Joule 2017, 1, 274–289.

[15]

Zhang, Z. G.; Yang, Y. K.; Yao, J.; Xue, L. W.; Chen, S. S.; Li, X. J.; Morrison, W.; Yang, C.; Li, Y. F. Constructing a strongly absorbing low-bandgap polymer acceptor for high-performance all-polymer solar cells. Angew. Chem., Int. Ed. 2017, 56, 13503–13507.

[16]

Park, S.; Park, S. H.; Jin, H.; Yoon, S.; Ahn, H.; Shin, S.; Kwak, K.; Nah, S.; Shin, E. Y.; Noh, J. H. et al. Important role of alloyed polymer acceptor for high efficiency and stable large-area organic photovoltaics. Nano Energy 2022, 98, 107187.

[17]

Fu, J. H.; Fong, P. W. K.; Liu, H.; Huang, C. S.; Lu, X. H.; Lu, S. R.; Abdelsamie, M.; Kodalle, T.; Sutter-Fella, C. M.; Yang, Y. et al. 19.31% binary organic solar cell and low non-radiative recombination enabled by non-monotonic intermediate state transition. Nat. Commun 2023, 14, 1760.

[18]
Sun, R.; Wang, T.; Fan, Q. P.; Wu, M. J.; Yang, X. R.; Wu, X. H.; Yu, Y.; Xia, X. X.; Cui, F. Z.; Wan, J. et al. 18.2%-efficient ternary all-polymer organic solar cells with improved stability enabled by a chlorinated guest polymer acceptor. Joule 2023, 7, 221–237.
DOI
[19]

Wang, G. D.; Adil, M. A.; Zhang, J. Q.; Wei, Z. X. Large-area organic solar cells: Material requirements, modular designs, and printing methods. Adv. Mater. 2019, 31, 1805089.

[20]

Zhu, L.; Zhong, W. K.; Qiu, C. Q.; Lyu, B.; Zhou, Z. C.; Zhang, M.; Song, J. N.; Xu, J. Q.; Wang, J.; Ali, J. et al. Aggregation-induced multilength scaled morphology enabling 11.76% efficiency in all-polymer solar cells using printing fabrication. Adv. Mater. 2019, 31, 1902899.

[21]

Wu, B. H.; Kong, Y. X.; Zhu, Q. L.; Zhang, S.; Lin, B. J.; Zhao, H.; Xue, J. W.; Seibt, S.; Zhou, K.; Li, Y. X. et al. Limiting phase separation via halogen-free solvent slot-die processing enables highly efficient and eco-friendly all-polymer solar cells. J. Mater. Chem. A 2023, 11, 3028–3037.

[22]

Yu, H.; Pan, M. G.; Sun, R.; Agunawela, I.; Zhang, J. Q.; Li, Y. H.; Qi, Z. Y.; Han, H.; Zou, X. H.; Zhou, W. T. et al. Regio-regular polymer acceptors enabled by determined fluorination on end groups for all-polymer solar cells with 15.2% efficiency. Angew. Chem., Int. Ed. 2021, 60, 10137–10146.

[23]

Yu, H.; Qi, Z. Y.; Yu, J. W.; Xiao, Y. Q.; Sun, R.; Luo, Z. H.; Cheung, A. M. H.; Zhang, J. Q.; Sun, H. L.; Zhou, W. T. et al. Fluorinated end group enables high-performance all-polymer solar cells with near-infrared absorption and enhanced device efficiency over 14%. Adv. Energy Mater. 2021, 11, 2003171.

[24]

Shen, Y. F.; Zhang, H.; Zhang, J. Q.; Tian, C. Y.; Shi, Y. N.; Qiu, D. D.; Zhang, Z. Q.; Lu, K.; Wei, Z. X. In situ absorption characterization guided slot-die-coated high-performance large-area flexible organic solar cells and modules. Adv. Mater. 2023, 35, 2209030.

[25]

Wang, G. D.; Zhang, J. Q.; Yang, C.; Wang, Y. H.; Xing, Y.; Adil, M. A.; Yang, Y.; Tian, L. J.; Su, M.; Shang, W. Q. et al. Synergistic optimization enables large-area flexible organic solar cells to maintain over 98% PCE of the small-area rigid devices. Adv. Mater. 2020, 32, 2005153.

[26]

Sun, C. K.; Pan, F.; Bin, H.; Zhang, J. Q.; Xue, L. W.; Qiu, B. B.; Wei, Z. X.; Zhang, Z. G.; Li, Y. F. A low cost and high performance polymer donor material for polymer solar cells. Nat. Commun. 2018, 9, 743.

[27]

Sun, C. K.; Pan, F.; Chen, S. S.; Wang, R.; Sun, R.; Shang, Z. Y.; Qiu, B. B.; Min, J.; Lv, M. L.; Meng, L. et al. Achieving fast charge separation and low nonradiative recombination loss by rational fluorination for high-efficiency polymer solar cells. Adv. Mater. 2019, 31, 1905480.

[28]

Li, Y. W.; Xu, G. Y.; Cui, C. H.; Li, Y. F. Flexible and semitransparent organic solar cells. Adv. Energy Mater. 2018, 8, 1701791.

File
12274_2023_5861_MOESM1_ESM.pdf (420.9 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 29 April 2023
Revised: 16 May 2023
Accepted: 19 May 2023
Published: 01 July 2023
Issue date: December 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (NSFC) (Nos. 52073068, 22135001, and 21721002) and the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB36000000).

Return