Journal Home > Volume 16 , Issue 10

Electrochemical energy storage devices are pivotal in achieving “carbon neutrality” by enabling the storage of energy generated from renewable sources. To facilitate the development of these devices, it is important to gain insight into the underlying the single-/multi-electron transfer process. This can be achieved through in-time detection under operational conditions, but there are limited tools available for monitoring electron transfer under operando conditions. Electron paramagnetic resonance (EPR) is a powerful technique that can meet these expectations, as it is highly sensitive to unpaired electrons and can detect changes of paramagnetic centres. Despite the long history of in situ electrochemical EPR research, its potential has been surprisingly underutilized due to the need for strict operando cell design under special testing conditions. This review comprehensively summarizes recent efforts to understand energy storage mechanisms using in situ/operando EPR, with the aim of drawing researchers’ attention to this powerful technique. After introducing the fundamental principles of EPR, we describe the critical advances made in detecting batteries using operando EPR, along with the remaining challenges and opportunities for future development of this technology in batteries. We emphasize the need for strict operando cell design and the importance of designing experiments that closely mimic real-world conditions. We believe that this review will provide innovative solutions to solve tough problems that researchers may encounter during their battery research, and ultimately contribute to the development of more efficient and sustainable energy storage devices.


menu
Abstract
Full text
Outline
About this article

Developing in situ electron paramagnetic resonance characterization for understanding electron transfer of rechargeable batteries

Show Author's information Bin Wang1Wanli Wang1Kang Sun2Yujie Xu1Yi Sun1Qiang Li3( )Han Hu1( )Mingbo Wu1
State Key Lab of Heavy Oil Processing, Institute of New Energy, College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China
College of Physics, Qingdao University, Qingdao 266071, China

Abstract

Electrochemical energy storage devices are pivotal in achieving “carbon neutrality” by enabling the storage of energy generated from renewable sources. To facilitate the development of these devices, it is important to gain insight into the underlying the single-/multi-electron transfer process. This can be achieved through in-time detection under operational conditions, but there are limited tools available for monitoring electron transfer under operando conditions. Electron paramagnetic resonance (EPR) is a powerful technique that can meet these expectations, as it is highly sensitive to unpaired electrons and can detect changes of paramagnetic centres. Despite the long history of in situ electrochemical EPR research, its potential has been surprisingly underutilized due to the need for strict operando cell design under special testing conditions. This review comprehensively summarizes recent efforts to understand energy storage mechanisms using in situ/operando EPR, with the aim of drawing researchers’ attention to this powerful technique. After introducing the fundamental principles of EPR, we describe the critical advances made in detecting batteries using operando EPR, along with the remaining challenges and opportunities for future development of this technology in batteries. We emphasize the need for strict operando cell design and the importance of designing experiments that closely mimic real-world conditions. We believe that this review will provide innovative solutions to solve tough problems that researchers may encounter during their battery research, and ultimately contribute to the development of more efficient and sustainable energy storage devices.

Keywords: energy storage, in situ, battery, electron paramagnetic resonance

References(146)

[1]

Grey, C. P.; Tarascon, J. M. Sustainability and in situ monitoring in battery development. Nat. Mater. 2017, 16, 45–56.

[2]

Larcher, D.; Tarascon, J. M. Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 2015, 7, 19–29.

[3]

Nykvist, B.; Nilsson, M. Rapidly falling costs of battery packs for electric vehicles. Nat. Climate Change 2015, 5, 329–332.

[4]

Viswanathan, V. V.; Kintner-Meyer, M. Second use of transportation batteries: Maximizing the value of batteries for transportation and grid services. IEEE Trans. Veh. Technol. 2011, 60, 2963–2970.

[5]

Gu, M.; Parent, L. R.; Mehdi, B. L.; Unocic, R. R.; McDowell, M. T.; Sacci, R. L.; Xu, W.; Connell, J. G.; Xu, P. H.; Abellan, P. et al. Demonstration of an electrochemical liquid cell for operando transmission electron microscopy observation of the lithiation/delithiation behavior of Si nanowire battery anodes. Nano Lett. 2013, 13, 6106–6112.

[6]

Hess, M.; Sasaki, T.; Villevieille, C.; Novák, P. Combined operando X-ray diffraction-electrochemical impedance spectroscopy detecting solid solution reactions of LiFePO4 in batteries. Nat. Commun. 2015, 6, 8169.

[7]

Liu, D. X.; Wang, J. H.; Pan, K.; Qiu, J.; Canova, M.; Cao, L. R.; Co, A. C. In situ quantification and visualization of lithium transport with neutrons. Angew. Chem., Int. Ed. 2014, 53, 9498–9502.

[8]

Wang, J. J.; Chen-Wiegart, Y. C. K.; Wang, J. In situ three-dimensional synchrotron X-ray nanotomography of the (de)lithiation processes in tin anodes. Angew. Chem., Int. Ed. 2014, 53, 4460–4464.

[9]

Chandrashekar, S.; Trease, N. M.; Chang, H. J.; Du, L. S.; Grey, C. P.; Jerschow, A. 7Li MRI of Li batteries reveals location of microstructural lithium. Nat. Mater. 2012, 11, 311–315.

[10]

Li, Q.; Li, H. S.; Xia, Q. T.; Hu, Z. Q.; Zhu, Y.; Yan, S. S.; Ge, C.; Zhang, Q. H.; Wang, X. X.; Shang, X. T. et al. Extra storage capacity in transition metal oxide lithium-ion batteries revealed by in situ magnetometry. Nat. Mater. 2021, 20, 76–83.

[11]

Kasap, S.; Kaya, I. I.; Repp, S.; Erdem, E. Superbat: Battery-like supercapacitor utilized by graphene foam and zinc oxide (ZnO) electrodes induced by structural defects. Nanoscale Adv. 2019, 1, 2586–2597.

[12]

Sun, Y.; Zan, L.; Zhang, Y. X. Enhanced electrochemical performances of Li2MnO3 cathode materials via adjusting oxygen vacancies content for lithium-ion batteries. Appl. Surf. Sci. 2019, 483, 270–277.

[13]

Zhao, D. Y.; Zhu, Q. C.; Li, X. H.; Dun, M. H.; Wang, Y.; Huang, X. T. Oxygen vacancies of commercial V2O5 induced by mechanical force to enhance the diffusion of zinc ions in aqueous zinc battery. Batteries Supercaps 2022, 5, e202100341.

[14]

Shkrob, I. A.; Kropf, A. J.; Marin, T. W.; Li, Y.; Poluektov, O. G.; Niklas, J.; Abraham, D. P. Manganese in graphite anode and capacity fade in Li ion batteries. J. Phys. Chem. C 2014, 118, 24335–24348.

[15]

Lawton, J. S.; Aaron, D. S.; Tang, Z. J. Zawodzinski, T. A. Qualitative behavior of vanadium ions in Nafion membranes using electron spin resonance. J. Membr. Sci. 2013, 428, 38–45.

[16]

Wujcik, K. H.; Wang, D. R.; Raghunathan, A.; Drake, M.; Pascal, T. A.; Prendergast, D.; Balsara, N. P. Lithium polysulfide radical anions in ether-based solvents. J. Phys. Chem. C 2016, 120, 18403–18410.

[17]

Stich, T. A.; McAlpin, J. G.; Wall, R. M.; Rigsby, M. L.; Britt, R. D. Electron paramagnetic resonance characterization of dioxygen-bridged cobalt dimers with relevance to water oxidation. Inorg. Chem. 2016, 55, 12728–12736.

[18]

Huang, J. H.; Hu, S. Z.; Yuan, X. Z.; Xiang, Z. P.; Huang, M. B.; Wan, K.; Piao, J. H.; Fu, Z. Y.; Liang, Z. X. Radical stabilization of a tripyridinium-triazine molecule enables reversible storage of multiple electrons. Angew. Chem., Int. Ed. 2021, 60, 20921–20925.

[19]

Huang, J. H.; Shkrob, I. A.; Wang, P. Q.; Cheng, L.; Pan, B. F.; He, M. N.; Liao, C.; Zhang, Z. C.; Curtiss, L. A.; Zhang, L. 1, 4-Bis(trimethylsilyl)-2, 5-dimethoxybenzene:A novel redox shuttle additive for overcharge protection in lithium-ion batteries that doubles as a mechanistic chemical probe. J. Mater. Chem. A 2015, 3, 7332–7337.

[20]

Wang, W. X.; Cao, Z.; Elia, G. A.; Wu, Y. Q.; Wahyudi, W.; Abou-Hamad, E.; Emwas, A. H.; Cavallo, L.; Li, L. J.; Ming, J. Recognizing the mechanism of sulfurized polyacrylonitrile cathode materials for Li-S batteries and beyond in Al-S Batteries. ACS Energy Lett. 2018, 3, 2899–2907.

[21]

Li, G. P.; Zhang, B. J.; Wang, J. W.; Zhao, H. Y.; Ma, W. Q.; Xu, L. T.; Zhang, W. D.; Zhou, K.; Du, Y. P.; He, G. Electrochromic poly(chalcogenoviologen)s as anode materials for high-performance organic radical lithium-ion batteries. Angew. Chem., Int. Ed. 2019, 58, 8468–8473.

[22]

Liao, Y. X.; Li, C.; Lou, X. B.; Wang, P.; Yang, Q.; Shen, M.; Hu, B. W. Highly reversible lithium storage in cobalt 2, 5-dioxido-1, 4-benzenedicarboxylate metal–organic frameworks boosted by pseudocapacitance. J. Colloid Interface Sci. 2017, 506, 365–372.

[23]

Jiang, Q.; Xiong, P. X.; Liu, J. J.; Xie, Z.; Wang, Q. C.; Yang, X. Q.; Hu, E. Y.; Cao, Y.; Sun, J.; Xu, Y. H. et al. A Redox-active 2D metal–organic framework for efficient lithium storage with extraordinary high capacity. Angew. Chem., Int. Ed. 2020, 59, 5273–5277.

[24]

Zhou, T.; Jin, W. Z.; Xue, W. W.; Dai, B.; Feng, C.; Huang, X. Y.; Théato, P.; Li, Y. J. Radical polymer-grafted carbon nanotubes as high-performance cathode materials for lithium organic batteries with promoted n-/p-type redox reactions. J. Power Sources 2021, 483, 229136.

[25]

Lou, X. B.; Ning, Y. Q.; Li, C.; Hu, X. S.; Shen, M.; Hu, B. W. Bimetallic zeolite imidazolate framework for enhanced lithium storage boosted by the redox participation of nitrogen atoms. Sci. China Mater. 2018, 61, 1040–1048.

[26]

Linnell, S. F.; Kim, E. J.; Choi, Y. S.; Hirsbrunner, M.; Imada, S.; Pramanik, A.; Cuesta, A. F.; Miller, D. N.; Fusco, E.; Bode, B. E. et al. Enhanced oxygen redox reversibility and capacity retention of titanium-substituted Na4/7[Al1/7Ti1/7Mn5/7]O2 in sodium-ion batteries. J. Mater. Chem. A 2022, 10, 9941–9953.

[27]

Song, B. H.; Tang, M. X.; Hu, E. Y.; Borkiewicz, O. J.; Wiaderek, K. M.; Zhang, Y. M.; Phillip, N. D.; Liu, X. M.; Shadike, Z.; Li, C. et al. Understanding the low-voltage hysteresis of anionic redox in Na2Mn3O7. Chem. Mater. 2019, 31, 3756–3765.

[28]

Gourier, D.; Tranchant, A.; Baffier, N.; Messina, R. EPR study of electrochemical lithium intercalation in V2O5 cathodes. Electrochim. Acta 1992, 37, 2755–2764.

[29]

Li, C.; Shen, M.; Lou, X. B.; Hu, B. W. Unraveling the redox couples of VIII/VIV mixed-valent Na3V2(PO4)2O1.6F1.4 cathode by parallel-mode EPR and in situ/ex situ NMR. J. Phys. Chem. C 2018, 122, 27224–27232.

[30]

Wang, J.; Lei, G.; He, T.; Cao, H. J.; Chen, P. Defect-rich potassium amide: A new solid-state potassium ion electrolyte. J. Energy Chem. 2022, 69, 555–560.

[31]

Li, C.; Hu, X. S.; Tong, W.; Yan, W. S.; Lou, X. B.; Shen, M.; Hu, B. W. Ultrathin manganese-based metal–organic framework nanosheets: Low-cost and energy-dense lithium storage anodes with the coexistence of metal and ligand redox activities. ACS Appl. Mater. Interfaces 2017, 9, 29829–29838.

[32]

Menachem, C.; Wang, Y.; Flowers, J.; Peled, E.; Greenbaum, S. G. Characterization of lithiated natural graphite before and after mild oxidation. J. Power Sources 1998, 76, 180–185.

[33]

Qiu, S.; Xiao, L. F.; Sushko, M. L.; Han, K. S.; Shao, Y. Y.; Yan, M. Y.; Liang, X. M.; Mai, L. Q.; Feng, J. W.; Cao, Y. L. et al. Manipulating adsorption-insertion mechanisms in nanostructured carbon materials for high-efficiency sodium ion storage. Adv. Energy Mater. 2017, 7, 1700403.

[34]

Wang, Z. H.; Feng, X.; Bai, Y.; Yang, H. Y.; Dong, R. Q.; Wang, X. R.; Xu, H. J.; Wang, Q. Y.; Li, H.; Gao, H. C. et al. Probing the energy storage mechanism of quasi-metallic Na in hard carbon for sodium-ion batteries. Adv. Energy Mater. 2021, 11, 2003854.

[35]

Li, Q.; Zhang, J.; Zhong, L. X.; Geng, F. S.; Tao, Y.; Geng, C. N.; Li, S. Z.; Hu, B. W.; Yang, Q. H. Unraveling the key atomic interactions in determining the varying Li/Na/K storage mechanism of hard carbon anodes. Adv. Energy Mater. 2022, 12, 2201734.

[36]

Zhecheva, E.; Stoyanova, R.; Jiménez-Mateos, J. M.; Alcántara, R.; Lavela, P.; Tirado, J. L. EPR study on petroleum cokes annealed at different temperatures and used in lithium and sodium batteries. Carbon 2002, 40, 2301–2306.

[37]

Hu, B.; Geng, F. S.; Shen, M.; Zhao, C.; Qiu, Q.; Lin, Y.; Chen, C. X.; Wen, W.; Zheng, S.; Hu, X. S. et al. A multifunctional manipulation to stabilize oxygen redox and phase transition in 4.6 V high-voltage LiCoO2 with SXAS and EPR studies. J. Power Sources 2021, 516, 230661.

[38]

Zhao, C.; Li, C.; Liu, H.; Qiu, Q.; Geng, F. S.; Shen, M.; Tong, W.; Li, J. X.; Hu, B. W. Coexistence of (O2)n and trapped molecular O2 as the oxidized species in P2-type sodium 3d layered oxide and stable interface enabled by highly fluorinated electrolyte. J. Am. Chem. Soc. 2021, 143, 18652–18664.

[39]

Liu, H.; Li, C.; Zhao, C.; Tong, W.; Hu, B. W. Coincident formation of trapped molecular O2 in oxygen-redox-active archetypical Li 3d oxide cathodes unveiled by EPR spectroscopy. Energy Storage Mater. 2022, 50, 55–62.

[40]

Zhu, Z.; Kushima, A.; Yin, Z. Y.; Qi, L.; Amine, K.; Lu, J.; Li, J. Anion-redox nanolithia cathodes for Li-ion batteries. Nat. Energy 2016, 1, 16111.

[41]

Sathiya, M.; Rousse, G.; Ramesha, K.; Laisa, C. P.; Vezin, H.; Sougrati, M. T.; Doublet, M. L.; Foix, D.; Gonbeau, D.; Walker, W. et al. Reversible anionic redox chemistry in high-capacity layered-oxide electrodes. Nat. Mater. 2013, 12, 827–835.

[42]
Risse, T.; Hollmann, D.; Brückner, A. Chapter 1: In situ electron paramagnetic resonance (EPR)—A unique tool for analysing structure and reaction behaviour of paramagnetic sites in model and real catalysts. In Catalysis: Volume 27. Spivey, J.; Dooley, K.; Han, Y. F. , Eds.; The Royal Society of Chemistry, 2015; pp 1–32.
DOI
[43]

den Hartog, S.; Neukermans, S.; Samanipour, M.; Ching, H. Y. V.; Breugelmans, T.; Hubin, A.; Ustarroz, J. Electrocatalysis under a magnetic lens: A combined electrochemistry and electron paramagnetic resonance review. Electrochim. Acta 2022, 407, 139704.

[44]
Li, X.; Deck, M.; Hu, Y. Y. Solid-state NMR and EPR characterization of transition-metal oxides for electrochemical energy storage. In Transition Metal Oxides for Electrochemical Energy Storage; Nanda, J.; Augustyn, V., Eds.; Wiley-VCH: Weinheim, 2022; pp 299–318.
DOI
[45]

Bonke, S. A.; Risse, T.; Schnegg, A.; Brückner, A. In situ electron paramagnetic resonance spectroscopy for catalysis. Nat. Rev. Methods Primers 2021, 1, 33.

[46]

Nguyen, H.; Clément, R. J. Rechargeable batteries from the perspective of the electron spin. ACS Energy Lett. 2020, 5, 3848–3859.

[47]
Brustolon, M.; Giamello, E. Electron Paramagnetic Resonance: A Practitioners Toolkit; Wiley: Hoboken, 2009.
DOI
[48]
Chechik, V.; Murphy, D. M. Electron Paramagnetic Resonance; The Royal Society of Chemistry: 2016.
DOI
[49]
Eaton, G. R.; Eaton, S. S.; Barr, D. P.; Weber, R. T. Quantitative EPR; Springer: Vienna, 2010.
DOI
[50]
Eaton, S. S.; Eaton, G. R. Electron paramagnetic resonance. In Analytical Instrumentation Handbook, 3rd ed.; Cazes, J. , Ed.; CRC Press: Boca Raton, 2004; pp 375–424.
DOI
[51]

Stoyanova, R.; Gorova, M.; Zhecheva, E. EPR monitoring of Mn4+ distribution in Li4Mn5O12 spinels. J. Phys. Chem. Solids 2000, 61, 615–620.

[52]

Zhecheva, E.; Stoyanova, R. Effect of allied and alien ions on the EPR spectrum of Mn4+-containing lithium-manganese spinel oxides. Solid State Commun. 2005, 135, 405–410.

[53]

van Vleck, J. H. The dipolar broadening of magnetic resonance lines in crystals. Phys. Rev. 1948, 74, 1168–1183.

[54]

Stoyanova, R.; Gorova, M.; Zhecheva, E. EPR of Mn4+ in spinels Li1+xMn2−xO4 with 0 ≤ x ≤ 0.1. J. Phys. Chem. Solids 2000, 61, 609–614.

[55]

Massarotti, V.; Capsoni, D.; Bini, M.; Azzoni, C. B.; Paleari, A. Stoichiometry of Li2MnO3 and LiMn2O4 coexisting phases: XRD and EPR characterization. J. Solid State Chem. 1997, 128, 80–86.

[56]

Zhecheva, E.; Stoyanova, R.; Gorova, M.; Lavela, P.; Tirado, J. L. Co/Mn distribution and electrochemical intercalation of Li into Li[Mn2−yCoy]O4 spinels, 0 < y ≤ 1. Solid State Ionics 2001, 140, 19–33.

[57]

Zhecheva, E.; Stoyanova, R.; Alcántara, R.; Tirado, J. L. Electron paramagnetic resonance and solid-state NMR study of cation distribution in LiGayCo1−yO2 and effects on the electrochemical oxidation. J. Phys. Chem. B 2003, 107, 4290–4295.

[58]

Shinova, E.; Stoyanova, R.; Zhecheva, E.; Ortiz, G. F.; Lavela, P.; Tirado, J. L. Cationic distribution and electrochemical performance of LiCo1/3Ni1/3Mn1/3O2 electrodes for lithium-ion batteries. Solid State Ionics 2008, 179, 2198–2208.

[59]

Mladenov, M.; Stoyanova, R.; Zhecheva, E.; Vassilev, S. Effect of Mg doping and MgO-surface modification on the cycling stability of LiCoO2 electrodes. Electrochem. Commun. 2001, 3, 410–416.

[60]

Takada, T.; Hayakawa, H.; Akiba, E. Preparation and crystal structure refinement of Li4Mn5O12 by the rietveld method. J. Solid State Chem. 1995, 115, 420–426.

[61]

Strobel, P.; Lambert-Andron, B. Crystallographic and magnetic structure of Li2MnO3. J. Solid State Chem. 1988, 75, 90–98.

[62]

Masquelier, C.; Tabuchi, M.; Ado, K.; Kanno, R.; Kobayashi, Y.; Maki, Y.; Nakamura, O.; Goodenough, J. B. Chemical and magnetic characterization of spinel materials in the LiMn2O4-Li2Mn4O9-Li4Mn5O12 system. J. Solid State Chem. 1996, 123, 255–266.

[63]

Moriya, T. Nuclear magnetic relaxation in antiferromagnetics. Prog. Theor. Phys. 1956, 16, 23–44.

[64]

Stoyanova, R.; Zhecheva, E.; Friebel, C. Ni3+-Ni2+ segregation in LixNi2−xO2 solid solutions (0.6 ≤ x <1). Solid State Ionics 1994, 73, 1–7.

[65]

Willett, R. D.; Wong, R. J. Experimental evidence for phonon modulation of antisymmetric exchange from the temperature dependence of EPR linewidths in (RNH3)2CuX4 salts. J. Magn. Reson. 1981, 42, 446–452.

[66]

Sun, R. H.; Jakes, P.; Eurich, S.; van Holt, D.; Yang, S.; Homberger, M.; Simon, U.; Kungl, H.; Eichel, R. A. Secondary-phase formation in spinel-type LiMn2O4-cathode materials for lithium-ion batteries: Quantifying trace amounts of Li2MnO3 by electron paramagnetic resonance spectroscopy. Appl. Magn. Reson. 2018, 49, 415–427.

[67]

Sun, R. H.; Jakes, P.; Taranenko, S.; Kungl, H.; Eichel, R. A. Monitoring the reaction between lithium manganese spinel and Li2MnO3 during heat treatment using electron paramagnetic resonance (EPR) spectroscopy. Solid State Ionics 2018, 325, 201–208.

[68]

Mallick, M.; Vitta, S. Magnetic behavior of Ni substituted LiCoO2-magnetization and electron paramagnetic resonance studies. Mater. Chem. Phys. 2017, 198, 266–274.

[69]

Moorhead-Rosenberg, Z.; Shin, D. W.; Chemelewski, K. R.; Goodenough, J. B.; Manthiram, A. Quantitative determination of Mn3+ content in LiMn1.5Ni0.5O4 spinel cathodes by magnetic measurements. Appl. Phys. Lett. 2012, 100, 213909.

[70]

Nakamura, T.; Yamada, Y.; Tabuchi, M. Magnetic and electrochemical studies on Ni2+-substituted Li-Mn spinel oxides. J. Appl. Phys. 2005, 98, 093905.

[71]

Niemöller, A.; Jakes, P.; Eichel, R. A.; Granwehr, J. In operando EPR investigation of redox mechanisms in LiCoO2. Chem. Phys. Lett. 2019, 716, 231–236.

[72]

Takamatsu, D.; Orikasa, Y.; Mori, S.; Nakatsutsumi, T.; Yamamoto, K.; Koyama, Y.; Minato, T.; Hirano, T.; Tanida, H.; Arai, H. et al. Effect of an electrolyte additive of vinylene carbonate on the electronic structure at the surface of a lithium cobalt oxide electrode under battery operating conditions. J. Phys. Chem. C 2015, 119, 9791–9797.

[73]

van Zee, R. J.; Hamrick, Y. M.; Li, S.; Weltner, W. Jr. Cobalt, rhodium, and iridium dioxide molecules and Walsh-type rules. J. Phys. Chem. 1992, 96, 7247–7251.

[74]

Mizokawa, T.; Wakisaka, Y.; Sudayama, T.; Iwai, C.; Miyoshi, K.; Takeuchi, J.; Wadati, H.; Hawthorn, D. G.; Regier, T. Z.; Sawatzky, G. A. Role of oxygen holes in LixCoO2 revealed by soft X-ray spectroscopy. Phys. Rev. Lett. 2013, 111, 056404.

[75]

Mizushima, K.; Jones, P. C.; Wiseman, P. J.; Goodenough, J. B. LixCoO2 (0 ≤ x < 1): A new cathode material for batteries of high energy density. Solid State Ionics 1981, 3–4, 171–174.

[76]

McCalla, E.; Abakumov, A. M.; Saubanère, M.; Foix, D.; Berg, E. J.; Rousse, G.; Doublet, M. L.; Gonbeau, D.; Novák, P.; van Tendeloo, G. et al. Visualization of O-O peroxo-like dimers in high-capacity layered oxides for Li-ion batteries. Science 2015, 350, 1516–1521.

[77]

Koga, H.; Croguennec, L.; Ménétrier, M.; Douhil, K.; Belin, S.; Bourgeois, L.; Suard, E.; Weill, F.; Delmas, C. Reversible oxygen participation to the redox processes revealed for Li1.20Mn0.54Co0.13Ni0.13O2. J. Electrochem. Soc. 2013, 160, A786–A792.

[78]

Sathiya, M.; Leriche, J. B.; Salager, E.; Gourier, D.; Tarascon, J. M.; Vezin, H. Electron paramagnetic resonance imaging for real-time monitoring of Li-ion batteries. Nat. Commun. 2015, 6, 6276.

[79]

Wang, J. Y.; Yang, M. C.; Zhao, C.; Hu, B.; Lou, X. B.; Geng, F. S.; Tong, W.; Hu, B. W.; Li, C. Unveiling the benefits of potassium doping on the structural integrity of Li-Mn-rich layered oxides during prolonged cycling by dual-mode EPR spectroscopy. Phys. Chem. Chem. Phys. 2019, 21, 24017–24025.

[80]

Niemöller, A.; Jakes, P.; Eurich, S.; Paulus, A.; Kungl, H.; Eichel, R. A.; Granwehr, J. Monitoring local redox processes in LiNi0.5Mn1.5O4 battery cathode material by in operando EPR spectroscopy. J. Chem. Phys. 2018, 148, 014705.

[81]

Geng, F. S.; Yang, Q.; Li, C.; Hu, B.; Zhao, C.; Shen, M.; Hu, B. W. Operando EPR and EPR imaging study on a NaCrO2 cathode:Electronic property and structural degradation with Cr dissolution. J. Phys. Chem. Lett. 2021, 12, 781–786.

[82]

Tang, M. X.; Dalzini, A.; Li, X.; Feng, X. Y.; Chien, P. H.; Song, L. K.; Hu, Y. Y. Operando EPR for simultaneous monitoring of anionic and cationic redox processes in Li-rich metal oxide cathodes. J. Phys. Chem. Lett. 2017, 8, 4009–4016.

[83]

Liang, Y. L.; Jing, Y.; Gheytani, S.; Lee, K. Y.; Liu, P.; Facchetti, A.; Yao, Y. Universal quinone electrodes for long cycle life aqueous rechargeable batteries. Nat. Mater. 2017, 16, 841–848.

[84]

Tang, M. X.; Bui, N. N.; Zheng, J.; Song, L. K.; Hu, Y. Y. Real-time monitoring of the lithiation process in organic electrode 7,7,8,8-tetracyanoquinodimethane by in situ EPR. J. Energy Chem. 2021, 60, 9–15.

[85]

Kulikov, I.; Panjwani, N. A.; Vereshchagin, A. A.; Spallek, D.; Lukianov, D. A.; Alekseeva, E. V.; Levin, O. V.; Behrends, J. Spins at work: Probing charging and discharging of organic radical batteries by electron paramagnetic resonance spectroscopy. Energy Environ. Sci. 2022, 15, 3275–3290.

[86]

Bai, Y. F.; Wang, Z.; Qin, N.; Ma, D. T.; Fu, W. B.; Lu, Z. G.; Pan, X. B. Two-step redox in polyimide: Witness by in situ electron paramagnetic resonance in lithium-ion batteries. Angew. Chem. Int., Ed. 2023, 62, e202303162.

[87]

Guy, S. C.; Edwards, P. P. Observation of conduction-electron spin resonance in small particles of rubidium. Chem. Phys. Lett. 1982, 86, 150–155.

[88]

Feher, G.; Kip, A. F. Electron spin resonance absorption in metals. I. Experimental. Phys. Rev. 1955, 98, 337–348.

[89]

Dyson, F. J. Electron spin resonance absorption in metals. II. Theory of electron diffusion and the skin effect. Phys. Rev. 1955, 98, 349–359.

[90]

Pifer, J. H.; Magno, R. Conduction-electron spin resonance in a lithium film. Phys. Rev. B 1971, 3, 663–673.

[91]

Edmonds, R. N.; Harrison, M. R.; Edwards, P. P. Chapter 9. Conduction electron spin resonance in metallic systems. Annu. Rep. Prog. Chem. Sect. C: Phys. Chem. 1985, 82, 265–308.

[92]

Niemöller, A.; Jakes, P.; Eichel, R. A.; Granwehr, J. EPR imaging of metallic lithium and its application to dendrite localisation in battery separators. Sci. Rep. 2018, 8, 14331.

[93]

Cherkasov, F. G.; Kharakhash’yan, E. G.; Medvedev, L. I.; Novosjelov, N. I.; Talanov, Y. I. Observation of intrinsic spin-lattice relaxation of conduction electrons in metallic lithium. Phys. Lett. A 1977, 63, 339–341.

[94]

Dutoit, C. E.; Tang, M. X.; Gourier, D.; Tarascon, J. M.; Vezin, H.; Salager, E. Monitoring metallic sub-micrometric lithium structures in Li-ion batteries by in situ electron paramagnetic resonance correlated spectroscopy and imaging. Nat. Commun. 2021, 12, 1410.

[95]

Montes, J. M.; Cuevas, F. G.; Cintas, J. Porosity effect on the electrical conductivity of sintered powder compacts. Appl. Phys. A 2008, 92, 375–380.

[96]

Li, Z. Q.; Huang, X. L.; Kong, L.; Qin, N.; Wang, Z. Y.; Yin, L. H.; Li, Y. Z.; Gan, Q. M.; Liao, K. M.; Gu, S. et al. Gradient nano-recipes to guide lithium deposition in a tunable reservoir for anode-free batteries. Energy Storage Mater. 2022, 45, 40–47.

[97]

Wandt, J.; Marino, C.; Gasteiger, H. A.; Jakes, P.; Eichel, R. A.; Granwehr, J. Operando electron paramagnetic resonance spectroscopy-formation of mossy lithium on lithium anodes during charge–discharge cycling. Energy Environ. Sci. 2015, 8, 1358–1367.

[98]

Palomares, V.; Goñi, A.; Iturrondobeitia, A.; Lezama, L.; de Meatza, I.; Bengoechea, M.; Rojo, T. Structural, magnetic and electrochemical study of a new active phase obtained by oxidation of a LiFePO4/C composite. J. Mater. Chem. 2012, 22, 4735–4743.

[99]

Aurbach, D.; Zinigrad, E.; Cohen, Y.; Teller, H. A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions. Solid State Ionics 2002, 148, 405–416.

[100]

Mogi, R.; Inaba, M.; Jeong, S. K.; Iriyama, Y.; Abe, T.; Ogumi, Z. Effects of some organic additives on lithium deposition in propylene carbonate. J. Electrochem. Soc. 2002, 149, A1578–A1583.

[101]

Cresce, A. V.; Russell, S. M.; Baker, D. R.; Gaskell, K. J.; Xu, K. In situ and quantitative characterization of solid electrolyte interphases. Nano Lett. 2014, 14, 1405–1412.

[102]

Geng, F. S.; Yang, Q.; Li, C.; Shen, M.; Chen, Q.; Hu, B. W. Mapping the distribution and the microstructural dimensions of metallic lithium deposits in an anode-free battery by in situ EPR imaging. Chem. Mater. 2021, 33, 8223–8234.

[103]

Szczuka, C.; Ackermann, J.; Schleker, P. P. M.; Jakes, P.; Eichel, R. A.; Granwehr, J. Transient morphology of lithium anodes in batteries monitored by in operando pulse electron paramagnetic resonance. Commun. Mater. 2021, 2, 20.

[104]

Ingram, D. J. E.; Bennett, J. E. Paramagnetic resonance in activated carbon. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1954, 45, 545–547.

[105]

Zhou, X. R.; Zhuang, L.; Lu, J. T. Deducing the density of electronic states at the fermi level for lithiated carbons using combined electrochemical and electron spin resonance measurements. J. Phys. Chem. B 2003, 107, 7783–7787.

[106]

Matsumura, Y.; Wang, S.; Nakagawa, Y.; Yamaguchi, C. An electron-spin resonance study of lithium charged carbon electrodes. Synth. Met. 1997, 85, 1411–1412.

[107]

Alcántara, R.; Ortiz, G. F.; Lavela, P.; Tirado, J. L.; Stoyanova, R.; Zhecheva, E. EPR, NMR, and electrochemical studies of surface-modified carbon microbeads. Chem. Mater. 2006, 18, 2293–2301.

[108]

Zhuang, L.; Lu, J. T.; Ai, X. P.; Yang, H. X. In-situ ESR study on electrochemical lithium intercalation into petroleum coke. J. Electroanal. Chem. 1995, 397, 315–319.

[109]

Wandt, J.; Jakes, P.; Granwehr, J.; Eichel, R. A.; Gasteiger, H. A. Quantitative and time-resolved detection of lithium plating on graphite anodes in lithium ion batteries. Mater. Today 2018, 21, 231–240.

[110]

Basu, S.; Zeller, C.; Flanders, P. J.; Fuerst, C. D.; Johnson, W. D.; Fischer, J. E. Synthesis and properties of lithium-graphite intercalation compounds. Mater. Sci. Eng. 1979, 38, 275–283.

[111]

Tsuzuku, T. Anisotropic electrical conduction in relation to the stacking disorder in graphite. Carbon 1979, 17, 293–299.

[112]

Wang, B.; Le Fevre, L. W.; Brookfield, A.; McInnes, E. J. L.; Dryfe, R. A. W. Resolution of lithium deposition versus intercalation of graphite anodes in lithium ion batteries: An in situ electron paramagnetic resonance study. Angew. Chem., Int. Ed. 2021, 60, 21860–21867.

[113]

An, S. J.; Li, J. L.; Daniel, C.; Mohanty, D.; Nagpure, S.; Wood III, D. L. The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling. Carbon 2016, 105, 52–76.

[114]

Lorie Lopez, J. L.; Grandinetti, P. J.; Co, A. C. Enhancing the real-time detection of phase changes in lithium-graphite intercalated compounds through derivative operando (dOp) NMR cyclic voltammetry. J. Mater. Chem. A 2018, 6, 231–243.

[115]

Sole, C.; Drewett, N. E.; Hardwick, L. J. In situ Raman study of lithium-ion intercalation into microcrystalline graphite. Faraday Discuss. 2014, 172, 223–237.

[116]

Liu, Q. Q.; Petibon, R.; Du, C. Y.; Dahn, J. R. Effects of electrolyte additives and solvents on unwanted lithium plating in lithium-ion cells. J. Electrochem. Soc. 2017, 164, A1173–A1183.

[117]

Zhang, Z. Y.; Smith, K.; Jervis, R.; Shearing, P. R.; Miller, T. S.; Brett, D. J. L. Operando electrochemical atomic force microscopy of solid-electrolyte interphase formation on graphite anodes:The evolution of SEI morphology and mechanical properties. ACS Appl. Mater. Interfaces 2020, 12, 35132–35141.

[118]

Wandt, J.; Jakes, P.; Granwehr, J.; Gasteiger, H. A.; Eichel, R. A. Singlet oxygen formation during the charging process of an aprotic lithium-oxygen battery. Angew. Chem. Int. Ed. 2016, 55, 6892–6895.

[119]

Lin, Y.; Yang, Q.; Geng, F. S.; Feng, H.; Chen, M. D.; Hu, B. W. Suppressing singlet oxygen formation during the charge process of Li-O2 batteries with a Co3O4 solid catalyst revealed by operando electron paramagnetic resonance. J. Phys. Chem. Lett. 2021, 12, 10346–10352.

[120]

Hassoun, J.; Croce, F.; Armand, M.; Scrosati, B. Investigation of the O2 electrochemistry in a polymer electrolyte solid-state cell. Angew. Chem., Int. Ed. 2011, 50, 2999–3002.

[121]

Adam, W.; Kazakov, D. V.; Kazakov, V. P. Singlet-oxygen chemiluminescence in peroxide reactions. Chem. Rev. 2005, 105, 3371–3387.

[122]

Lu, Y. C.; Gasteiger, H. A.; Parent, M. C.; Chiloyan, V.; Shao-Horn, Y. The influence of catalysts on discharge and charge voltages of rechargeable Li-oxygen batteries. Electrochem. Solid-State Lett. 2010, 13, A69–A72.

[123]

Rosenthal, I.; Krishna, C. M.; Yang, G. C.; Kondo, T.; Riesz, P. A new approach for EPR detection of hydroxyl radicals by reaction with sterically hindered cyclic amines and oxygen. FEBS Lett. 1987, 222, 75–78.

[124]

Reinen, D.; Lindner, G. G. The nature of the chalcogen colour centres in ultramarine-type solids. Chem. Soc. Rev. 1999, 28, 75–84.

[125]

Wang, Q.; Zheng, J. M.; Walter, E.; Pan, H. L.; Lv, D. P.; Zuo, P. J.; Chen, H. H.; Deng, Z. D.; Liaw, B. Y.; Yu, X. Q. et al. Direct observation of sulfur radicals as reaction media in lithium sulfur batteries. J. Electrochem. Soc. 2015, 162, A474–A478.

[126]

Pan, M. G.; Lu, Y.; Lu, S. Y.; Yu, B.; Wei, J.; Liu, Y. Z.; Jin, Z. The dual role of bridging phenylene in an extended bipyridine system for high-voltage and stable two-electron storage in redox flow batteries. ACS Appl. Mater. Interfaces 2021, 13, 44174–44183.

[127]

Jones, A. E.; Ejigu, A.; Wang, B.; Adams, R. W.; Bissett, M. A.; Dryfe, R. A. W. Quinone voltammetry for redox-flow battery applications. J. Electroanal. Chem. 2022, 920, 116572.

[128]

Zhao, E. W.; Jónsson, E.; Jethwa, R. B.; Hey, D.; Lyu, D.; Brookfield, A.; Klusener, P. A. A.; Collison, D.; Grey, C. P. Coupled in situ NMR and EPR studies reveal the electron transfer rate and electrolyte decomposition in redox flow batteries. J. Am. Chem. Soc. 2021, 143, 1885–1895.

[129]

Zhao, E. W.; Liu, T.; Jónsson, E.; Lee, J.; Temprano, I.; Jethwa, R. B.; Wang, A. Q.; Smith, H.; Carretero-González, J.; Song, Q. L. et al. In situ NMR metrology reveals reaction mechanisms in redox flow batteries. Nature 2020, 579, 224–228.

[130]

Jing, Y.; Zhao, E. W.; Goulet, M. A.; Bahari, M.; Fell, E. M.; Jin, S. J.; Davoodi, A.; Jónsson, E.; Wu, M.; Grey, C. P. et al. In situ electrochemical recomposition of decomposed redox-active species in aqueous organic flow batteries. Nat. Chem. 2022, 14, 1103–1109.

[131]

Winter, M.; Brodd, R. J. What are batteries, fuel cells, and supercapacitors. Chem. Rev. 2004, 104, 4245–4270.

[132]

Forse, A. C.; Merlet, C.; Griffin, J. M.; Grey, C. P. New perspectives on the charging mechanisms of supercapacitors. J. Am. Chem. Soc. 2016, 138, 5731–5744.

[133]

Griffin, J. M.; Forse, A. C.; Tsai, W. Y.; Taberna, P. L.; Simon, P.; Grey, C. P. In situ NMR and electrochemical quartz crystal microbalance techniques reveal the structure of the electrical double layer in supercapacitors. Nat. Mater. 2015, 14, 812–819.

[134]

Forse, A. C.; Griffin, J. M.; Merlet, C.; Carretero-Gonzalez, J.; Raji, A. R. O.; Trease, N. M.; Grey, C. P. Direct observation of ion dynamics in supercapacitor electrodes using in situ diffusion NMR spectroscopy. Nat. Energy 2017, 2, 16216.

[135]

Levi, M. D.; Salitra, G.; Levy, N.; Aurbach, D.; Maier, J. Application of a quartz-crystal microbalance to measure ionic fluxes in microporous carbons for energy storage. Nat. Mater. 2009, 8, 872–875.

[136]

Forse, A. C.; Griffin, J. M.; Presser, V.; Gogotsi, Y.; Grey, C. P. Ring current effects: Factors affecting the NMR chemical shift of molecules adsorbed on porous carbons. J. Phys. Chem. C 2014, 118, 7508–7514.

[137]

Wang, B.; Fielding, A. J.; Dryfe, R. A. W. In situ electrochemical electron paramagnetic resonance spectroscopy as a tool to probe electrical double layer capacitance. Chem. Commun. 2018, 54, 3827–3830.

[138]

Wang, B.; Fielding, A. J.; Dryfe, R. A. W. Electron paramagnetic resonance as a structural tool to study graphene oxide: Potential dependence of the EPR response. J. Phys. Chem. C 2019, 123, 22556–22563.

[139]

Cao, J. Y.; Wang, B.; He, P.; Vallés, C.; Peng, Y. D.; Derby, B.; Dryfe, R. A. W.; Kinloch, I. A. High-power energy storage from carbon electrodes using highly acidic electrolytes. J. Phys. Chem. C 2020, 124, 20701–20711.

[140]

Wang, B.; Likodimos, V.; Fielding, A. J.; Dryfe, R. A. W. In situ electron paramagnetic resonance spectroelectrochemical study of graphene-based supercapacitors: Comparison between chemically reduced graphene oxide and nitrogen-doped reduced graphene oxide. Carbon 2020, 160, 236–246.

[141]

Sterby, M.; Emanuelsson, R.; Mamedov, F.; Strømme, M.; Sjödin, M. Investigating electron transport in a PEDOT/Quinone conducting redox polymer with in situ methods. Electrochim. Acta 2019, 308, 277–284.

[142]

Kastening, B.; Hahn, M.; Rabanus, B.; Heins, M.; Zum Felde, U. Electronic properties and double layer of activated carbon. Electrochim. Acta 1997, 42, 2789–2799.

[143]

Panchenko, A.; Dilger, H.; Möller, E.; Sixt, T.; Roduner, E. In situ EPR investigation of polymer electrolyte membrane degradation in fuel cell applications. J. Power Sources 2004, 127, 325–330.

[144]

Pecher, O.; Carretero-González, J.; Griffith, K. J.; Grey, C. P. Materials’ methods: NMR in battery research. Chem. Mater. 2017, 29, 213–242.

[145]

Murdock, B. E.; Armstrong, C. G.; Smith, D. E.; Tapia-Ruiz, N.; Toghill, K. E. Misreported non-aqueous reference potentials: The battery research endemic. Joule 2022, 6, 928–934.

[146]

Salager, E.; Sarou-Kanian, V.; Sathiya, M.; Tang, M. X.; Leriche, J. B.; Melin, P.; Wang, Z. L.; Vezin, H.; Bessada, C.; Deschamps, M. et al. Solid-state NMR of the family of positive electrode materials Li2Ru1−ySnyO3 for lithium-ion batteries. Chem. Mater. 2014, 26, 7009–7019.

Publication history
Copyright
Acknowledgements

Publication history

Received: 14 March 2023
Revised: 08 May 2023
Accepted: 19 May 2023
Published: 03 July 2023
Issue date: October 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

The authors acknowledge the financial support from the National Natural Science Foundation of China (Nos. 22179145, 21975287, and 22138013), Taishan Scholars Program of Shandong Province (No. tsqn20221117), the startup support grant from China University of Petroleum (East China) (No. 27RA2204027), Shandong Provincial Natural Science Foundation (No. ZR2020ZD08), Shandong Province Postdoctoral Innovative Talent Support Program (No. SDBX2022034), and Qingdao Postdoctoral Innovation Project (No. QDBSH20220202003).

Return