Journal Home > Volume 16 , Issue 9

The rapid development of wearable electronic products brings challenges to corresponding power supplies. In this work, a thermally stable and stretchable ionogel-based triboelectric nanogenerator (SI-TENG) for biomechanical energy collection is proposed. The ionic conductivity of the ionogel increased to 0.53 S·m−1 through optimal regulation of the amount of amino-terminated hyperbranched polyamide (NH2-HBP), which also has high strain of 812%, excellent stretch recovery, and wide operating temperature range of −80 to 250 °C. The SI-TENG with this ionogel as electrode and silicone rubber both as the triboelectric layer and encapsulation layer exhibits high temperature stability, stretchability, and washability. By adding appropriate amount of nano SiO2 to triboelectric layer, the output performance is further improved by 93%. Operating in single-electrode mode at 1.5 Hz, the outputs of a SI-TENG with an area of 3 cm × 3 cm are 247 V, 11.7 μA, 78 nC, and 3.2 W·m−2, respectively. It was used as a self-charging power supply to charge a 22 μF capacitor to 1.6 V in 167 s with the palm patting and then to power the electronic calculator. Furthermore, the SI-TENG can also be used as a self-powered motion sensor to detect the amplitude and frequency of finger bending, human swallowing, nodding, and shaking of the head motion changes through the analysis of the output voltage.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Highly stretchable, conductive, and wide-operating temperature ionogel based wearable triboelectric nanogenerator

Show Author's information Qianqian Zhu1,§Weiqiang Liao2,§Cong Sun1,§Xuan Qin1Fangjia Zhang1Haifeng Ji1Yuqi Li2( )Zhen Wen1( )Xuhui Sun1( )
Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China

§ Qianqian Zhu, Weiqiang Liao, and Cong Sun contributed equally to this work.

Abstract

The rapid development of wearable electronic products brings challenges to corresponding power supplies. In this work, a thermally stable and stretchable ionogel-based triboelectric nanogenerator (SI-TENG) for biomechanical energy collection is proposed. The ionic conductivity of the ionogel increased to 0.53 S·m−1 through optimal regulation of the amount of amino-terminated hyperbranched polyamide (NH2-HBP), which also has high strain of 812%, excellent stretch recovery, and wide operating temperature range of −80 to 250 °C. The SI-TENG with this ionogel as electrode and silicone rubber both as the triboelectric layer and encapsulation layer exhibits high temperature stability, stretchability, and washability. By adding appropriate amount of nano SiO2 to triboelectric layer, the output performance is further improved by 93%. Operating in single-electrode mode at 1.5 Hz, the outputs of a SI-TENG with an area of 3 cm × 3 cm are 247 V, 11.7 μA, 78 nC, and 3.2 W·m−2, respectively. It was used as a self-charging power supply to charge a 22 μF capacitor to 1.6 V in 167 s with the palm patting and then to power the electronic calculator. Furthermore, the SI-TENG can also be used as a self-powered motion sensor to detect the amplitude and frequency of finger bending, human swallowing, nodding, and shaking of the head motion changes through the analysis of the output voltage.

Keywords: triboelectric nanogenerator, temperature stability, stretchable, ionogel, self-powered motion sensor

References(43)

[1]

Tee, B. C. K.; Wang, C.; Allen, R.; Bao, Z. N. An electrically and mechanically self-healing composite with pressure- and flexion-sensitive properties for electronic skin applications. Nat. Nanotechnol. 2012, 7, 825–832.

[2]

Gao, W.; Emaminejad, S.; Nyein, H. Y. Y.; Challa, S.; Chen, K.; Peck, A.; Fahad, H. M.; Ota, H.; Shiraki, H.; Kiriya, D. et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 2016, 529, 509–514.

[3]

Zhou, L. S.; Wanga, A.; Wu, S. C.; Sun, J.; Park, S.; Jackson, T. N. All-organic active matrix flexible display. Appl. Phys. Lett. 2006, 88, 083502.

[4]

Chortos, A.; Liu, J.; Bao, Z. A. Pursuing prosthetic electronic skin. Nat. Mater. 2016, 15, 937–950.

[5]

Lai, Y. C.; Deng, J. N.; Niu, S. M.; Peng, W. B.; Wu, C. S.; Liu, R. Y.; Wen, Z.; Wang, Z. L. Electric eel-skin-inspired mechanically durable and super-stretchable nanogenerator for deformable power source and fully autonomous conformable electronic-skin applications. Adv. Mater. 2016, 28, 10024–10032.

[6]

Wang, S. H.; Xu, J.; Wang, W. C.; Wang, G. J. N.; Rastak, R.; Molina-Lopez, F.; Chung, J. W.; Niu, S. M.; Feig, V. R.; Lopez, J. et al. Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature 2018, 555, 83–88.

[7]

Zeng, W.; Shu, L.; Li, Q.; Chen, S.; Wang, F.; Tao, X. M. Fiber-based wearable electronics: A review of materials, fabrication, devices, and applications. Adv. Mater. 2014, 26, 5310–5336.

[8]

Wang, Z. L. Self-powered nanosensors and nanosystems. Adv. Mater. 2012, 24, 280–285.

[9]

Lai, Y. C.; Wu, H. M.; Lin, H. C.; Chang, C. L.; Chou, H. H.; Hsiao, Y. C.; Wu, Y. C. Entirely, intrinsically, and autonomously self-healable, highly transparent, and superstretchable triboelectric nanogenerator for personal power sources and self-powered electronic skins. Adv. Funct. Mater. 2019, 29, 1904626.

[10]

Zou, H. Y.; Zhang, Y.; Guo, L. T.; Wang, P. H.; He, X.; Dai, G. Z.; Zheng, H. W.; Chen, C. Y.; Wang, A. C.; Xu, C. et al. Quantifying the triboelectric series. Nat. Commun. 2019, 10, 1427.

[11]

Shi, J. H.; Chen, X. P.; Li, G. F.; Sun, N.; Jiang, H. X.; Bao, D. Q.; Xie, L. J.; Peng, M. F.; Liu, Y. N.; Wen, Z. et al. A liquid PEDOT: PSS electrode-based stretchable triboelectric nanogenerator for a portable self-charging power source. Nanoscale 2019, 11, 7513–7519.

[12]

Zhao, G. R.; Zhang, Y. W.; Shi, N.; Liu, Z. R.; Zhang, X. D.; Wu, M. Q.; Pan, C. F.; Liu, H. L.; Li, L. L.; Wang, Z. L. Transparent and stretchable triboelectric nanogenerator for self-powered tactile sensing. Nano Energy 2019, 59, 302–310.

[13]

Chen, Y. H.; Pu, X.; Liu, M. M.; Kuang, S. Y.; Zhang, P. P.; Hua, Q. L.; Cong, Z. F.; Guo, W. B.; Hu, W. G.; Wang, Z. L. Shape-adaptive, self-healable triboelectric nanogenerator with enhanced performances by soft solid–solid contact electrification. ACS Nano 2019, 13, 8936–8945.

[14]

Li, X. J.; Jiang, C. M.; Zhao, F. N.; Lan, L. Y.; Yao, Y.; Yu, Y. H.; Ping, J. F.; Ying, Y. B. Fully stretchable triboelectric nanogenerator for energy harvesting and self-powered sensing. Nano Energy 2019, 61, 78–85.

[15]

Chen, X. X.; Song, Y.; Chen, H. T.; Zhang, J. X.; Zhang, H. X. An ultrathin stretchable triboelectric nanogenerator with coplanar electrode for energy harvesting and gesture sensing. J. Mater. Chem. A 2017, 5, 12361–12368.

[16]

Bao, D. Q.; Wen, Z.; Shi, J. H.; Xie, L. J.; Jiang, H. X.; Jiang, J. X.; Yang, Y. Q.; Liao, W. Q.; Sun, X. H. An anti-freezing hydrogel based stretchable triboelectric nanogenerator for biomechanical energy harvesting at sub-zero temperature. J. Mater. Chem. A 2020, 8, 13787–13794.

[17]

Jing, X.; Li, H.; Mi, H. Y.; Feng, P. Y.; Tao, X. M.; Liu, Y. J.; Liu, C. T.; Shen, C. Y. Enhancing the performance of a stretchable and transparent triboelectric nanogenerator by optimizing the hydrogel ionic electrode property. ACS Appl. Mater. Interfaces 2020, 12, 23474–23483.

[18]

Guan, Q. B.; Lin, G. H.; Gong, Y. Z.; Wang, J. F.; Tan, W. Y.; Bao, D. Q.; Liu, Y. N.; You, Z. W.; Sun, X. H.; Wen, Z. et al. Highly efficient self-healable and dual responsive hydrogel-based deformable triboelectric nanogenerators for wearable electronics. J. Mater. Chem. A 2019, 7, 13948–13955.

[19]

Ding, Y.; Zhang, J. J.; Chang, L.; Zhang, X. Q.; Liu, H. L.; Jiang, L. Preparation of high-performance ionogels with excellent transparency, good mechanical strength, and high conductivity. Adv. Mater. 2017, 29, 1704253.

[20]

Chen, S. P.; Zhang, N. X.; Zhang, B. H.; Zhang, B.; Song, J. Multifunctional self-healing ionogels from supramolecular assembly: Smart conductive and remarkable lubricating materials. ACS Appl. Mater. Interfaces 2018, 10, 44706–44715.

[21]

Kamio, E.; Yasui, T.; Iida, Y.; Gong, J. P.; Matsuyama, H. Inorganic/organic double-network gels containing ionic liquids. Adv. Mater. 2017, 29, 1704118.

[22]

Cao, Y.; Morrissey, T. G.; Acome, E.; Allec, S. I.; Wong, B. M.; Keplinger, C.; Wang, C. A transparent, self-healing, highly stretchable ionic conductor. Adv. Mater. 2017, 29, 1605099.

[23]

Gao, Y. Y.; Guo, J. J.; Chen, J.; Yang, G. X.; Shi, L.; Lu, S. Y.; Wu, H.; Mao, H.; Da, X. Y.; Gao, G. X. et al. Highly conductive organic-ionogels with excellent hydrophobicity and flame resistance. Chem. Eng. J. 2022, 427, 131057.

[24]

Gao, Y. Y.; Shi, L.; Lu, S. Y.; Zhu, T. X.; Da, X. Y.; Li, Y. H.; Bu, H. T.; Gao, G. X.; Ding, S. J. Highly stretchable organogel ionic conductors with extreme-temperature tolerance. Chem. Mater. 2019, 31, 3257–3264.

[25]

Chen, X. P.; Liu, Y. N.; Sun, Y.; Zhao, T. S.; Zhao, C.; Khattab, T. A.; Lim, E. G.; Sun, X. H.; Wen, Z. Electron trapping & blocking effect enabled by MXene/TiO2 intermediate layer for charge regulation of triboelectric nanogenerators. Nano Energy 2022, 98, 107236.

[26]

Chikh, L.; Arnaud, X.; Guillermain, C.; Tessier, M.; Fradet, A. Cyclizations in hyperbranched aliphatic polyesters and polyamides. Macromol. Symp. 2003, 199, 209–222.

[27]

Ren, L. F.; Zhao, G. H.; Qiang, T. T.; Wang, X. C.; Wang, N. Synthesis of amino-terminated hyperbranched polymers and their application in microfiber synthetic leather base dyeing. Text. Res. J. 2013, 83, 381–395.

[28]

Lei, H.; Cao, K. L.; Chen, Y. F.; Liang, Z. Q.; Wen, Z.; Jiang, L.; Sun, X. H. 3D-printed endoplasmic reticulum rGO microstructure based self-powered triboelectric pressure sensor. Chem. Eng. J. 2022, 445, 136821.

[29]

Wang, A. L.; Xu, H.; Zhou, Q.; Liu, X.; Li, Z. Y.; Gao, R.; Wu, N.; Guo, Y. G.; Li, H. Y.; Zhang, L. Y. A new all-solid-state hyperbranched star polymer electrolyte for lithium ion batteries: Synthesis and electrochemical properties. Electrochim. Acta 2016, 212, 372–379.

[30]

Lim, H. R.; Kim, H. S.; Qazi, R.; Kwon, Y. T.; Jeong, J. W.; Yeo, W. H. Advanced soft materials, sensor integrations, and applications of wearable flexible hybrid electronics in healthcare, energy, and environment. Adv. Mater. 2020, 32, 1901924.

[31]

Niu, L.; Miao, X. H.; Li, Y. T.; Xie, X. K.; Wen, Z.; Jiang, G. M. Surface morphology analysis of knit structure-based triboelectric nanogenerator for enhancing the transfer charge. Nanoscale Res. Lett. 2020, 15, 1–12.

[32]

Bai, Y. K.; Zhang, J. W.; Wen, D. D.; Yuan, B.; Gong, P. W.; Liu, J. M.; Chen, X. Fabrication of remote controllable devices with multistage responsiveness based on a NIR light-induced shape memory ionomer containing various bridge ions. J. Mater. Chem. A 2019, 7, 20723–20732.

[33]

Zhang, L. M.; He, Y.; Cheng, S. B.; Sheng, H.; Dai, K. R.; Zheng, W. J.; Wang, M. X.; Chen, Z. S.; Chen, Y. M.; Suo, Z. G. Self-healing, adhesive, and highly stretchable ionogel as a strain sensor for extremely large deformation. Small 2019, 15, 1804651.

[34]

Li, R. J.; Fang, Z.; Wang, C.; Zhu, X. L.; Fu, X. L.; Fu, J. J.; Yan, W. W.; Yang, Y. Six-armed and dicationic polymeric ionic liquid for highly stretchable, nonflammable, and notch-insensitive intrinsic selfhealing solid-state polymer electrolyte for flexible and safe lithium batteries. Chem. Eng. J. 2022, 430, 132706.

[35]

Huang, J. F.; Luo, H. M.; Liang, C. D.; Sun, I. W.; Baker, G. A.; Dai, S. Hydrophobic brønsted acid–base ionic liquids based on PAMAM dendrimers with high proton conductivity and blue photoluminescence. J. Am. Chem. Soc. 2005, 127, 12784–12785.

[36]

Chen, H.; Liu, Y. L.; Ren, B. P.; Zhang, Y. X.; Ma, J.; Xu, L. J.; Chen, Q.; Zheng, J. Super bulk and interfacial toughness of physically crosslinked double-network hydrogels. Adv. Funct. Mater. 2017, 27, 1703086.

[37]

Zhang, Z.; Gao, Z. L.; Wang, Y. T.; Guo, L. X.; Yin, C. H.; Zhang, X. L.; Hao, J. C.; Zhang, G. M.; Chen, L. S. Eco-friendly, self-healing hydrogels for adhesive and elastic strain sensors, circuit repairing, and flexible electronic devices. Macromolecules 2019, 52, 2531–2541.

[38]

Hong, X. Y.; Tyson, J. C.; Middlecoff, J. S.; Collard, D. M. Synthesis and oxidative polymerization of semifluoroalkyl-substituted thiophenes. Macromolecules 1999, 32, 4232–4239.

[39]

Qu, M. N.; Liu, S. S.; He, J. M.; Feng, J.; Yao, Y. L.; Hou, L. G.; Ma, X. R.; Liu, X. R. Fabrication of recyclable superhydrophobic materials with self-cleaning and mechanically durable properties on various substrates by quartz sand and polyvinylchloride. RSC Adv. 2016, 6, 79238–79244.

[40]

Günther, P.; Xia, Z. F. Transport of detrapped charges in thermally wet grown SiO2 electrets. J. Appl. Phys. 1993, 74, 7269–7274.

[41]

Shao, Y.; Feng, C. P.; Deng, B. W.; Yin, B.; Yang, M. B. Facile method to enhance output performance of bacterial cellulose nanofiber based triboelectric nanogenerator by controlling micro-nano structure and dielectric constant. Nano Energy 2019, 62, 620–627.

[42]

Sun, L. J.; Chen, S.; Guo, Y. F.; Song, J. C.; Zhang, L. Z.; Xiao, L. J.; Guan, Q. B.; You, Z. W. Ionogel-based, highly stretchable, transparent, durable triboelectric nanogenerators for energy harvesting and motion sensing over a wide temperature range. Nano Energy 2019, 63, 103847.

[43]

Zhang, P. P.; Chen, Y. H.; Guo, Z. H.; Guo, W. B.; Pu, X.; Wang, Z. L. Stretchable, transparent, and thermally stable triboelectric nanogenerators based on solvent-free ion-conducting elastomer electrodes. Adv. Funct. Mater. 2020, 30, 1909252.

Video
12274_2023_5851_MOESM2_ESM.avi
12274_2023_5851_MOESM3_ESM.avi
12274_2023_5851_MOESM4_ESM.avi
File
12274_2023_5851_MOESM1_ESM.pdf (672.2 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 21 November 2022
Revised: 01 May 2023
Accepted: 18 May 2023
Published: 05 July 2023
Issue date: September 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by the National Key Research and Development Program from Ministry of Science and Technology of China (No. 2021YFB3200300), the National Natural Science Foundation of China (No. 62174115), and the Suzhou Science and Technology Development Planning Project: Key Industrial Technology Innovation (No. SYG202009). This work was also supported by the Collaborative Innovation Center of Suzhou Nano Science & Technology, the 111 Project and Joint International Research Laboratory of Carbon-Based Functional Materials and Devices.

Return