Journal Home > Volume 16 , Issue 12

The generation of chirality in supramolecular structures from achiral building blocks has remained a challenge for a long time. In this study, we present a vortex-assisted chiral supramolecular polymerization from a series of achiral C3-symmetric monomers, where the mechanism of symmetry-breaking is systematically investigated. By increasing the supersaturation, at the early stage of nucleation and growth, highly ordered assemblies can be generated as the initial chiral nuclei. Meanwhile, chiral assemblies from high supersaturation are hard to interwind into clusters, where clusters as nuclei are not conducive to being fractured by sheer force of vortex fluid. Therefore, it is concluded that chiral assemblies in the nucleation stage possess low energy barrier, so that chiral nuclei could be fractured and replicated by the vortex. By enlarging the initial chiral bias, the major chiral nuclei can evolute into the final chiral polymers.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Controlling assembly-induced symmetry-breaking by tuning the vortex-responsive nanostructures

Show Author's information Chengxi Li1,2,§Kang Huang1,2,§Chen Xiao1Yonghong Shi1,2Pengfei Duan1,2( )
CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
University of Chinese Academy of Sciences, Beijing 100049, China

§ Chengxi Li and Kang Huang contributed equally to this work.

Abstract

The generation of chirality in supramolecular structures from achiral building blocks has remained a challenge for a long time. In this study, we present a vortex-assisted chiral supramolecular polymerization from a series of achiral C3-symmetric monomers, where the mechanism of symmetry-breaking is systematically investigated. By increasing the supersaturation, at the early stage of nucleation and growth, highly ordered assemblies can be generated as the initial chiral nuclei. Meanwhile, chiral assemblies from high supersaturation are hard to interwind into clusters, where clusters as nuclei are not conducive to being fractured by sheer force of vortex fluid. Therefore, it is concluded that chiral assemblies in the nucleation stage possess low energy barrier, so that chiral nuclei could be fractured and replicated by the vortex. By enlarging the initial chiral bias, the major chiral nuclei can evolute into the final chiral polymers.

Keywords: assembly, chirality, supramolecular polymer, symmetry-breaking, vortex

References(43)

[1]

Hegstrom, R. A.; Kondepudi, D. K. The handedness of the universe. Sci. Am. 1990, 262, 108–115.

[2]

Liu, M. H.; Zhang, L.; Wang, T. Y. Supramolecular chirality in self-assembled systems. Chem. Rev. 2015, 115, 7304–7397.

[3]

Zhu, Y.; Xu, Y. Y.; Zou, G.; Zhang, Q. J. Chirality transfer and modulation in LB films derived from the diacetylene/melamine hydrogen-bonded complex. Chirality 2015, 27, 492–499.

[4]

Li, Y.; Yao, K.; Chen, Y. H.; Quan, Y. W.; Cheng, Y. X. Full-color and white circularly polarized luminescence promoted by liquid crystal self-assembly containing chiral naphthalimide dyes. Adv. Opt. Mater. 2021, 9, 2100961.

[5]

San Jose, B. A.; Yan, J. L.; Akagi, K. Dynamic switching of the circularly polarized luminescence of disubstituted polyacetylene by selective transmission through a thermotropic chiral nematic liquid crystal. Angew. Chem., Int. Ed. 2014, 53, 10641–10644.

[6]

Jones, C. D.; Simmons, H. T. D.; Horner, K. E.; Liu, K. Q.; Thompson, R. L.; Steed, J. W. Braiding, branching and chiral amplification of nanofibres in supramolecular gels. Nat. Chem. 2019, 11, 375–381.

[7]

Liu, G. F.; Yao, L. F.; Fu, K.; Zheng, S. Y.; Yang, G. B.; Zhao, Y. L. Photocyclization-induced emission enhancement and circularly polarized luminescence inversion of achiral emitters in co-assembled gels. Small Struct. 2022, 3, 2200209.

[8]

Wang, W.; Zhang, Y. K.; Tang, B.; Hou, H. P.; Tang, S. S.; Luo, A. Q. Chiral hydrogen-bonded organic frameworks used as a chiral stationary phase for chiral separation in gas chromatography. J. Chromatogr. A 2022, 1675, 463150.

[9]

Luo, X. F.; Deng, J. P.; Yang, W. T. Helix-sense-selective polymerization of achiral substituted acetylenes in chiral micelles. Angew. Chem., Int. Ed. 2011, 50, 4909–4912.

[10]

Sahoo, D.; Imam, M. R.; Peterca, M.; Partridge, B. E.; Wilson, D. A.; Zeng, X. B.; Ungar, G.; Heiney, P. A.; Percec, V. Hierarchical self-organization of chiral columns from chiral supramolecular spheres. J. Am. Chem. Soc. 2018, 140, 13478–13487.

[11]

An, S. G.; Hao, A. Y.; Xing, P. Y. Halogen bonding mediated hierarchical supramolecular chirality. ACS Nano 2021, 15, 15306–15315.

[12]

Mason, M. L.; Lalisse, R. F.; Finnegan, T. J.; Hadad, C. M.; Modarelli, D. A.; Parquette, J. R. pH-controlled chiral packing and self-assembly of a coumarin tetrapeptide. Langmuir 2019, 35, 12460–12468.

[13]

Cheng, X. X.; Miao, T. F.; Yin, L.; Ji, Y. J.; Li, Y. J.; Zhang, Z. B.; Zhang, W.; Zhu, X. L. In situ controlled construction of a hierarchical supramolecular chiral liquid-crystalline polymer assembly. Angew. Chem. , Int. Ed. 2020, 59, 9669–9677.

[14]

Yang, F.; Yue, B. B.; Zhu, L. L. Light-triggered modulation of supramolecular chirality. Chem.—Eur. J. 2023, 29, e202203794.

[15]

Lee, S.; Kim, K. Y.; Jung, S. H.; Lee, J. H.; Yamada, M.; Sethy, R.; Kawai, T.; Jung, J. H. Finely controlled circularly polarized luminescence of a mechano-responsive supramolecular polymer. Angew. Chem., Int. Ed. 2019, 58, 18878–18882.

[16]

Hashimoto, Y.; Nakashima, T.; Kuno, J.; Yamada, M.; Kawai, T. Dynamic modulation of circularly polarized luminescence in photoresponsive assemblies. ChemNanoMat 2018, 4, 815–820.

[17]

Ślęczkowski, M. L.; Mabesoone, M. F. J.; Ślęczkowski, P.; Palmans, A. R. A.; Meijer, E. W. Competition between chiral solvents and chiral monomers in the helical bias of supramolecular polymers. Nat. Chem. 2021, 13, 200–207.

[18]

Yao, L. F.; Fu, K.; Wang, X. J.; He, M. L.; Zhang, W. N.; Liu, P. Y.; He, Y. P.; Liu, G. F. Metallophilic interaction-mediated hierarchical assembly and temporal-controlled dynamic chirality inversion of metal–organic supramolecular polymers. ACS Nano 2023, 17, 2159–2169.

[19]

Wang, S.; Jiang, H. J.; Zhang, L.; Jiang, J.; Liu, M. H. Enantioselective activity of hemin in supramolecular gels formed by co-assembly with a chiral gelator. ChemPlusChem 2018, 83, 1038–1043.

[20]

Liu, G. F.; Zhao, Y. L. Switching between phosphorescence and fluorescence controlled by chiral self-assembly. Adv. Sci. 2017, 4, 1700021.

[21]

Dou, X. Q.; Mehwish, N.; Zhao, C. L.; Liu, J. Y.; Xing, C.; Feng, C. L. Supramolecular hydrogels with tunable chirality for promising biomedical applications. Acc. Chem. Res. 2020, 53, 852–862.

[22]

Jiang, H. J.; Liu, R.; Wang, L.; Wang, X. Y.; Zhang, M. M.; Lin, S. S.; Cao, Z. P.; Wu, F.; Liu, Y. B.; Liu, J. Y. Chiral-selective antigen-presentation by supramolecular chiral polymer micelles. Adv. Mater. 2023, 35, 2208157.

[23]

Ji, W.; Liu, G. F.; Li, Z. J.; Feng, C. L. Influence of C–H···O hydrogen bonds on macroscopic properties of supramolecular assembly. ACS Appl. Mater. Interfaces 2016, 8, 5188–5195.

[24]

Yue, B. B.; Yin, L. Y.; Zhao, W. D.; Jia, X. Y.; Zhu, M. J.; Wu, B.; Wu, S.; Zhu, L. L. Chirality transfer in coassembled organogels enabling wide-range naked-eye enantiodifferentiation. ACS Nano 2019, 13, 12438–12444.

[25]

Imai, Y.; Nakano, Y.; Kawai, T.; Yuasa, J. A smart sensing method for object identification using circularly polarized luminescence from coordination-driven self-assembly. Angew. Chem., Int. Ed. 2018, 57, 8973–8978.

[26]

Ribó, J. M.; Crusats, J.; Sagués, F.; Claret, J.; Rubires, R. Chiral sign induction by vortices during the formation of mesophases in stirred solutions. Science 2001, 292, 2063–2066.

[27]

Hamba, F.; Niimura, K.; Kitagawa, Y.; Ishii, K. Helicity transfer in rotary evaporator flow. Phys. Fluids 2014, 26, 017101.

[28]

Rubires, R.; Farrera, J. A.; Ribó, J. M. Stirring effects on the spontaneous formation of chirality in the homoassociation of diprotonated meso-tetraphenylsulfonato porphyrins. 3.0.CO;2-I">Chem.—Eur. J. 2001, 7, 436–446.

[29]

Huang, J. C.; Xiao, H.; Chen, Z. X.; Zheng, W. X.; Huang, C. C.; Wu, S. T.; Xie, Z. H.; Zhuang, N. F. Static retention of dynamic chiral arrangements for achiral shear thinning metal–organic colloids. Chem.—Eur. J. 2021, 27, 14017–14024.

[30]

Tsuda, A.; Alam, A.; Harada, T.; Yamaguchi, T.; Ishii, N.; Aida, T. Spectroscopic visualization of vortex flows using dye-containing nanofibers. Angew. Chem., Int. Ed. 2007, 46, 8198–8202.

[31]

Tsuda, A. Hydrodynamic helical orientations of nanofibers in a vortex. Symmetry 2014, 6, 383–395.

[32]

Sanada, K.; Washio, A.; Nishihata, K.; Yagishita, F.; Yoshida, Y.; Mino, T.; Suzuki, S.; Kasashima, Y.; Sakamoto, M. Chiral symmetry breaking of racemic 3-phenylsuccinimides via crystallization-induced dynamic deracemization. Cryst. Growth Des. 2021, 21, 6051–6055.

[33]

Viedma, C. Chiral symmetry breaking during crystallization: Complete chiral purity induced by nonlinear autocatalysis and recycling. Phys. Rev. Lett. 2005, 94, 065504.

[34]

Sögütoglu, L. C.; Steendam, R. R. E.; Meekes, H.; Vlieg, E.; Rutjes, F. P. J. T. Viedma ripening: A reliable crystallisation method to reach single chirality. Chem. Soc. Rev. 2015, 44, 6723–6732.

[35]

Sang, Y. T.; Yang, D.; Duan, P. F.; Liu, M. H. Towards homochiral supramolecular entities from achiral molecules by vortex mixing-accompanied self-assembly. Chem. Sci. 2019, 10, 2718–2724.

[36]

Blanco, C.; Crusats, J.; El-Hachemi, Z.; Moyano, A.; Veintemillas-Verdaguer, S.; Hochberg, D.; Ribó, J. M. The Viedma deracemization of racemic conglomerate mixtures as a paradigm of spontaneous mirror symmetry breaking in aggregation and polymerization. ChemPhysChem 2013, 14, 3982–3993.

[37]

Wu, B. H.; Liu, L.; Zhou, L.; Magana, J. R.; Hendrix, M. M. R. M.; Wang, J. H.; Li, C. D.; Ding, P.; Wang, Y. M.; Guo, X. H. et al. Complex supramolecular fiber formed by coordination-induced self-assembly of benzene-1,3,5-tricarboxamide (BTA). J. Colloid Interface Sci. 2022, 608, 1297–1307.

[38]

Engelen, W.; Wijnands, S. P. W.; Merkx, M. Accelerating DNA-based computing on a supramolecular polymer. J. Am. Chem. Soc. 2018, 140, 9758–9767.

[39]

Bochicchio, D.; Pavan, G. M. From cooperative self-assembly to water-soluble supramolecular polymers using coarse-grained simulations. ACS Nano 2017, 11, 1000–1011.

[40]

Smulders, M. M. J.; Schenning, A. P. H. J.; Meijer, E. W. Insight into the mechanisms of cooperative self-assembly: The “sergeants-and-soldiers” principle of chiral and achiral C3-symmetrical discotic triamides. J. Am. Chem. Soc. 2008, 130, 606–611.

[41]

Gao, P.; Zhan, C. L.; Liu, M. H. Controlled synthesis of double- and multiwall silver nanotubes with template organogel from a bolaamphiphile. Langmuir 2006, 22, 775–779.

[42]

Barata, P. A.; Serrano, M. L. Salting-out precipitation of potassium dihydrogen phosphate (KDP): IV. Characterisation of the final product. J. Cryst. Growth 1998, 194, 109–118.

[43]

Raymer, D. M.; Smith, D. E. Spontaneous knotting of an agitated string. Proc. Natl. Acad. Sci. USA 2007, 104, 16432–16437.

File
12274_2023_5850_MOESM1_ESM.pdf (2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 20 April 2023
Revised: 14 May 2023
Accepted: 21 May 2023
Published: 01 July 2023
Issue date: December 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 52173159 and 92256304), the Beijing Municipal Science and Technology Commission (No. JQ21003), and the National Key R&D Program of the Ministry of Science and Technology of the People’s Republic of China (No. 2021YFA1200303). Numerical computations were performed on Hefei advanced computing center.

Return