Journal Home > Volume 17 , Issue 2

Spider silks are well known for their exceptional mechanical properties that are tougher than Kevlar and steel. However, the restricted production amounts from their native sources limit applications of spider silks. Over the decades, there have been significant interests in fabricating man-made silk fibers with comparable performance to natural silks, inspiring many efforts both for biosynthesizing recombinant spider silk proteins (spidroins) in amenable heterologous hosts and biomimetic spinning of artificial spider silks. These strategies provide promising routes to produce high-performance and functionally optimized fibers with diverse applications. Herein, we summarize the hosts that have been applied to produce recombinant spidroins. In addition, the fabrication and mechanical properties of recombinant spidroin fibers and their composite fibers are also introduced. Furthermore, we demonstrate the applications of recombinant spidroin-based fibers. Finally, facing the challenges in biosynthesis, scalable production, and hierarchical assembly of high-performance recombinant spidroins, we give a summary and perspective on future development.


menu
Abstract
Full text
Outline
About this article

Engineered spidroin-derived high-performance fibers for diverse applications

Show Author's information Dawen Qin1Jingjing Li2( )Huanrong Li1( )Hongjie Zhang2,3,4Kai Liu2,3,4( )
National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
Engineering Research Center of Advanced Rare Earth Materials, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
University of Science and Technology of China, Hefei 230026, China

Abstract

Spider silks are well known for their exceptional mechanical properties that are tougher than Kevlar and steel. However, the restricted production amounts from their native sources limit applications of spider silks. Over the decades, there have been significant interests in fabricating man-made silk fibers with comparable performance to natural silks, inspiring many efforts both for biosynthesizing recombinant spider silk proteins (spidroins) in amenable heterologous hosts and biomimetic spinning of artificial spider silks. These strategies provide promising routes to produce high-performance and functionally optimized fibers with diverse applications. Herein, we summarize the hosts that have been applied to produce recombinant spidroins. In addition, the fabrication and mechanical properties of recombinant spidroin fibers and their composite fibers are also introduced. Furthermore, we demonstrate the applications of recombinant spidroin-based fibers. Finally, facing the challenges in biosynthesis, scalable production, and hierarchical assembly of high-performance recombinant spidroins, we give a summary and perspective on future development.

Keywords: mechanical property, heterologous expression, spider silk, recombinant spidroin, fiber fabrication

References(114)

[1]

Zhang, J. R.; Sun, J.; Li, B.; Yang, C. J.; Shen, J. L.; Wang, N.; Gu, R.; Wang, D. G.; Chen, D.; Hu, H. G. et al. Robust biological fibers based on widely available proteins: Facile fabrication and suturing application. Small 2020, 16, 1907598.

[2]

Eisoldt, L.; Smith, A.; Scheibel, T. Decoding the secrets of spider silk. Mater. Today 2011, 14, 80–86.

[3]

Vollrath, F.; Knight, D. P. Liquid crystalline spinning of spider silk. Nature 2001, 410, 541–548.

[4]

DeFrancesco, L. Hanging on a thread. Nat. Biotechnol. 2017, 35, 496–499.

[5]

Yarger, J. L.; Cherry, B. R.; van der Vaart, A. Uncovering the structure–function relationship in spider silk. Nat. Rev. Mater. 2018, 3, 18008.

[6]

Tokareva, O.; Jacobsen, M.; Buehler, M.; Wong, J.; Kaplan, D. L. Structure–function–property–design interplay in biopolymers: Spider silk. Acta Biomater. 2014, 10, 1612–1626.

[7]

Li, J. T.; Li, S. T.; Huang, J. Y.; Khan, A. Q.; An, B. G.; Zhou, X.; Liu, Z. F.; Zhu, M. F. Spider silk-inspired artificial fibers. Adv. Sci. 2022, 9, 2103965.

[8]

Rising, A.; Johansson, J. Toward spinning artificial spider silk. Nat. Chem. Biol. 2015, 11, 309–315.

[9]

Wang, Q. J.; McArdle, P.; Wang, S. L.; Wilmington, R. L.; Xing, Z.; Greenwood, A.; Cotten, M. L.; Qazilbash, M. M.; Schniepp, H. C. Protein secondary structure in spider silk nanofibrils. Nat. Commun. 2022, 13, 4329.

[10]

Whittall, D. R.; Baker, K. V.; Breitling, R.; Takano, E. Host systems for the production of recombinant spider silk. Trends Biotechnol. 2021, 39, 560–573.

[11]

Li, Y. X.; Li, J. J.; Sun, J.; He, H. N.; Li, B.; Ma, C.; Liu, K.; Zhang, H. J. Bioinspired and mechanically strong fibers based on engineered non-spider chimeric proteins. Angew. Chem., Int. Ed. 2020, 59, 8148–8152.

[12]

Zhang, P.; Li, J. J.; Sun, J.; Li, Y. X.; Liu, K.; Wang, F.; Zhang, H. J.; Su, J. J. Bioengineered protein fibers with anti-freezing mechanical behaviors. Adv. Funct. Mater. 2022, 32, 2209006.

[13]

He, H. N.; Yang, C. J.; Wang, F.; Wei, Z.; Shen, J. L.; Chen, D.; Fan, C. H.; Zhang, H. J.; Liu, K. Mechanically strong globular-protein-based fibers obtained using a microfluidic spinning technique. Angew. Chem., Int. Ed. 2020, 59, 4344–4348.

[14]

Su, J. J.; Liu, B. M.; He, H. N.; Ma, C.; Wei, B.; Li, M.; Li, J. J.; Wang, F.; Sun, J.; Liu, K. et al. Engineering high strength and super-toughness of unfolded structural proteins and their extraordinary anti-adhesion performance for abdominal hernia repair. Adv. Mater. 2022, 34, 2200842.

[15]

Zhang, J.; Liu, Y.; Sun, J.; Gu, R.; Ma, C.; Liu, K. Biological fibers based on naturally sourced proteins: Mechanical investigation and applications. Mater. Today Adv. 2020, 8, 100095.

[16]

Sun, J.; Su, J. J.; Ma, C.; Göstl, R.; Herrmann, A.; Liu, K.; Zhang, H. J. Fabrication and mechanical properties of engineered protein-based adhesives and fibers. Adv. Mater. 2020, 32, 1906360.

[17]

Sun, J.; Han, J. Y.; Wang, F.; Liu, K.; Zhang, H. J. Bioengineered protein-based adhesives for biomedical applications. Chem.—Eur. J. 2022, 28, e202102902.

[18]

Pontrelli, S.; Chiu, T. Y.; Lan, E. I.; Chen, F. Y. H.; Chang, P. C.; Liao, J. C. Escherichia coli as a host for metabolic engineering. Metab. Eng. 2018, 50, 16–46.

[19]

Ma, C.; Sun, J.; Li, B.; Feng, Y.; Sun, Y.; Xiang, L.; Wu, B. H.; Xiao, L. L.; Liu, B. M.; Petrovskii, V. S. et al. Ultra-strong bio-glue from genetically engineered polypeptides. Nat. Commun. 2021, 12, 3613.

[20]

Candelas, G. C.; Arroyo, G.; Carrasco, C.; Dompenciel, R. Spider silkglands contain a tissue-specific alanine tRNA that accumulates in vitro in response to the stimulus for silk protein synthesis. Dev. Biol. 1990, 140, 215–220.

[21]

Cao, H.; Parveen, S.; Ding, D.; Xu, H. J.; Tan, T. W.; Liu, L. Metabolic engineering for recombinant major ampullate spidroin 2 (MaSp2) synthesis in Escherichia coli. Sci. Rep. 2017, 7, 11365.

[22]

Xia, X. X.; Qian, Z. G.; Ki, C. S.; Park, Y. H.; Kaplan, D. L.; Lee, S. Y. Native-sized recombinant spider silk protein produced in metabolically engineered Escherichia coli results in a strong fiber. Proc. Natl. Acad. Sci. USA 2010, 107, 14059–14063.

[23]

Yang, Y. X.; Qian, Z. G.; Zhong, J. J.; Xia, X. X. Hyper-production of large proteins of spider dragline silk MaSp2 by Escherichia coli via synthetic biology approach. Process Biochem. 2016, 51, 484–490.

[24]

Shah, N. H.; Muir, T. W. Inteins: Nature’s gift to protein chemists. Chem. Sci. 2014, 5, 446–461.

[25]

Bowen, C. H.; Dai, B.; Sargent, C. J.; Bai, W. Q.; Ladiwala, P.; Feng, H. B.; Huang, W. W.; Kaplan, D. L.; Galazka, J. M.; Zhang, F. Z. Recombinant spidroins fully replicate primary mechanical properties of natural spider silk. Biomacromolecules 2018, 19, 3853–3860.

[26]

Johansson, J.; Rising, A. Doing what spiders cannot—A road map to supreme artificial silk fibers. ACS Nano 2021, 15, 1952–1959.

[27]

Hessa, T.; Kim, H.; Bihlmaier, K.; Lundin, C.; Boekel, J.; Andersson, H.; Nilsson, I.; White, S. H.; von Heijne, G. Recognition of transmembrane helices by the endoplasmic reticulum translocon. Nature 2005, 433, 377–381.

[28]

Hessa, T.; Meindl-Beinker, N. M.; Bernsel, A.; Kim, H.; Sato, Y.; Lerch-Bader, M.; Nilsson, I.; White, S. H.; von Heijne, G. Molecular code for transmembrane-helix recognition by the Sec61 translocon. Nature 2007, 450, 1026–1030.

[29]

Arndt, T.; Greco, G.; Schmuck, B.; Bunz, J.; Shilkova, O.; Francis, J.; Pugno, N. M.; Jaudzems, K.; Barth, A.; Johansson, J. et al. Engineered spider silk proteins for biomimetic spinning of fibers with toughness equal to dragline silks. Adv. Funct. Mater. 2022, 32, 2200986.

[30]

Schmuck, B.; Greco, G.; Barth, A.; Pugno, N. M.; Johansson, J.; Rising, A. High-yield production of a super-soluble miniature spidroin for biomimetic high-performance materials. Mater. Today 2021, 50, 16–23.

[31]

Cai, H.; Chen, G. F.; Yu, H. R.; Tang, Y.; Xiong, S. D.; Qi, X. M. One-step heating strategy for efficient solubilization of recombinant spider silk protein from inclusion bodies. BMC Biotechnol. 2020, 20, 37.

[32]

Singh, A.; Upadhyay, V.; Upadhyay, A. K.; Singh, S. M.; Panda, A. K. Protein recovery from inclusion bodies of Escherichia coli using mild solubilization process. Microb. Cell Fact. 2015, 14, 41.

[33]

Mergulhão, F. J. M.; Summers, D. K.; Monteiro, G. A. Recombinant protein secretion in Escherichia coli. Biotechnol. Adv. 2005, 23, 177–202.

[34]

Widmaier, D. M.; Tullman-Ercek, D.; Mirsky, E. A.; Hill, R.; Govindarajan, S.; Minshull, J.; Voigt, C. A. Engineering the Salmonella type III secretion system to export spider silk monomers. Mol. Syst. Biol. 2009, 5, 309.

[35]

Jin, Q.; Pan, F.; Hu, C. F.; Lee, S. Y.; Xia, X. X.; Qian, Z. G. Secretory production of spider silk proteins in metabolically engineered Corynebacterium glutamicum for spinning into tough fibers. Metab. Eng. 2022, 70, 102–114.

[36]

Foong, C. P.; Higuchi-Takeuchi, M.; Malay, A. D.; Oktaviani, N. A.; Thagun, C.; Numata, K. A marine photosynthetic microbial cell factory as a platform for spider silk production. Commun. Biol. 2020, 3, 357.

[37]

Çelik, E.; Çalık, P. Production of recombinant proteins by yeast cells. Biotechnol. Adv. 2012, 30, 1108–1118.

[38]

Sidoruk, K. V.; Davydova, L. I.; Kozlov, D. G.; Gubaidullin, D. G.; Glazunov, A. V.; Bogush, V. G.; Debabov, V. G. Fermentation optimization of a Saccharomyces cerevisiae strain producing 1F9 recombinant spidroin. Appl. Biochem. Microbiol. 2015, 51, 766–773.

[39]

Fahnestock, S. R.; Bedzyk, L. A. Production of synthetic spider dragline silk protein in Pichia pastoris. Appl. Microbiol. Biotechnol. 1997, 47, 33–39.

[40]

Jansson, R.; Lau, C. H.; Ishida, T.; Ramström, M.; Sandgren, M.; Hedhammar, M. Functionalized silk assembled from a recombinant spider silk fusion protein (Z-4RepCT) produced in the methylotrophic yeast Pichia pastoris. Biotechnol. J. 2016, 11, 687–699.

[41]

Lazaris, A.; Arcidiacono, S.; Huang, Y.; Zhou, J. F.; Duguay, F.; Chretien, N.; Welsh, E. A.; Soares, J. W.; Karatzas, C. N. Spider silk fibers spun from soluble recombinant silk produced in mammalian cells. Science 2002, 295, 472–476.

[42]

Ramezaniaghdam, M.; Nahdi, N. D.; Reski, R. Recombinant spider silk: Promises and bottlenecks. Front. Bioeng. Biotechnol. 2022, 10, 835637.

[43]

Huemmerich, D.; Scheibel, T.; Vollrath, F.; Cohen, S.; Gat, U.; Ittah, S. Novel assembly properties of recombinant spider dragline silk proteins. Curr. Biol. 2004, 14, 2070–2074.

[44]

Ittah, S.; Cohen, S.; Garty, S.; Cohn, D.; Gat, U. An essential role for the C-terminal domain of a dragline spider silk protein in directing fiber formation. Biomacromolecules 2006, 7, 1790–1795.

[45]

Lee, K. S.; Kim, B. Y.; Je, Y. H.; Woo, S. D.; Sohn, H. D.; Jin, B. R. Molecular cloning and expression of the C-terminus of spider flagelliform silk protein from Araneus ventricosus. J. Biosci. 2007, 32, 705–712.

[46]

Scheller, J.; Gührs, K. H.; Grosse, F.; Conrad, U. Production of spider silk proteins in tobacco and potato. Nat. Biotechnol. 2001, 19, 573–577.

[47]

Scheller, J.; Henggeler, D.; Viviani, A.; Conrad, U. Purification of spider silk-elastin from transgenic plants and application for human chondrocyte proliferation. Transgenic Res. 2004, 13, 51–57.

[48]

Heppner, R.; Weichert, N.; Schierhorn, A.; Conrad, U.; Pietzsch, M. Low-tech, pilot scale purification of a recombinant spider silk protein analog from tobacco leaves. Int. J. Mol. Sci. 2016, 17, 1687.

[49]

Hauptmann, V.; Weichert, N.; Menzel, M.; Knoch, D.; Paege, N.; Scheller, J.; Spohn, U.; Conrad, U.; Gils, M. Native-sized spider silk proteins synthesized in planta via intein-based multimerization. Transgenic Res. 2013, 22, 369–377.

[50]

Weichert, N.; Hauptmann, V.; Helmold, C.; Conrad, U. Seed-specific expression of spider silk protein multimers causes long-term stability. Front. Plant Sci. 2016, 7, 6.

[51]

Rozov, S. M.; Permyakova, N. V.; Sidorchuk, Y. V.; Deineko, E. V. Optimization of genome knock-in method: Search for the most efficient genome regions for transgene expression in plants. Int. J. Mol. Sci. 2022, 23, 4416.

[52]

Barr, L. A.; Fahnestock, S. R.; Yang, J. J. Production and purification of recombinant DP1B silk-like protein in plants. Mol. Breed. 2004, 13, 345–356.

[53]

Yang, J. J.; Barr, L. A.; Fahnestock, S. R.; Liu, Z. B. High yield recombinant silk-like protein production in transgenic plants through protein targeting. Transgenic Res. 2005, 14, 313–324.

[54]

Yang, W. T.; Lee, K. S.; Hur, Y. J.; Kim, B. Y.; Li, J. H.; Yu, S. B.; Jin, B. R.; Kim, D. H. Spider silk fibroin protein heterologously produced in rice seeds reduce diabetes and hypercholesterolemia in mice. Plants 2020, 9, 1282.

[55]

Miao, Y. G.; Zhang, Y. S.; Nakagaki, K.; Zhao, T. F.; Zhao, A. C.; Meng, Y.; Nakagaki, M.; Park, E. Y.; Maenaka, K. Expression of spider flagelliform silk protein in Bombyx mori cell line by a novel Bac-to-Bac/BmNPV baculovirus expression system. Appl. Microbiol. Biotechnol. 2006, 71, 192–199.

[56]

Miao, Y. G.; Zhao, A. C.; Zhang, Y. S.; Nakagaki, K.; Ment, Y.; Zhao, T. F.; Nakagaki, M. Silkworm, Bombyx mori larvae expressed the spider silk protein through a novel Bac-to-Bac/BmNPV baculovirus. J. Appl. Entomol. 2006, 130, 297–301.

[57]

Zhang, Y. S.; Hu, J. H.; Miao, Y. G.; Zhao, A. C.; Zhao, T. F.; Wu, D. Y.; Liang, L. F.; Miikura, A.; Shiomi, K. et al. Expression of EGFP-spider dragline silk fusion protein in BmN cells and larvae of silkworm showed the solubility is primary limit for dragline proteins yield. Mol. Biol. Rep. 2008, 35, 329–335.

[58]

Wen, H. X.; Lan, X. Q.; Zhang, Y. Q.; Zhao, T. F.; Wang, Y. J.; Kajiura, Z.; Nakagaki, M. Transgenic silkworms (Bombyx mori) produce recombinant spider dragline silk in cocoons. Mol. Biol. Rep. 2010, 37, 1815–1821.

[59]

Teulé, F.; Miao, Y. G.; Sohn, B. H.; Kim, Y. S.; Hull, J. J.; Fraser, M. J. Jr.; Lewis, R. V. ; Jarvis, D. L. Silkworms transformed with chimeric silkworm/spider silk genes spin composite silk fibers with improved mechanical properties. Proc. Natl. Acad. Sci. USA 2012, 109, 923–928.

[60]

Zhang, X. L.; Xia, L. J.; Day, B. A.; Harris, T. I.; Oliveira, P.; Knittel, C.; Licon, A. L.; Gong, C. L.; Dion, G.; Lewis, R. V. et al. CRISPR/Cas9 initiated transgenic silkworms as a natural spinner of spider silk. Biomacromolecules 2019, 20, 2252–2264.

[61]

Xu, J.; Dong, Q. L.; Yu, Y.; Niu, B. L.; Ji, D. F.; Li, M. W.; Huang, Y. P.; Chen, X.; Tan, A. J. Mass spider silk production through targeted gene replacement in Bombyx mori. Proc. Natl. Acad. Sci. USA 2018, 115, 8757–8762.

[62]

Liu, Y. Y.; Ren, Y. B.; Li, J. J.; Wang, F.; Wang, F.; Ma, C.; Chen, D.; Jiang, X. Y.; Fan, C. H.; Zhang, H. J. et al. In vivo processing of digital information molecularly with targeted specificity and robust reliability. Sci. Adv. 2022, 08, eabo7415.

[63]

Xu, H. T.; Fan, B. L.; Yu, S. Y.; Huang, Y. H.; Zhao, Z. H.; Lian, Z. X.; Dai, Y. P.; Wang, L. L.; Liu, Z. L.; Fei, J. et al. Construct synthetic gene encoding artificial spider dragline silk protein and its expression in milk of transgenic mice. Anim. Biotechnol. 2007, 18, 1–12.

[64]

Jones, J. A.; Harris, T. I.; Tucker, C. L.; Berg, K. R.; Christy, S. Y.; Day, B. A.; Gaztambide, D. A.; Needham, N. J. C.; Ruben, A. L.; Oliveira, P. F. et al. More than just fibers: An aqueous method for the production of innovative recombinant spider silk protein materials. Biomacromolecules 2015, 16, 1418–1425.

[65]

Li, H.; Chen, S. N.; Piao, S. H.; An, T. Z.; Wang, C. S. Production of artificial synthetic spidroin gene 4S-transgenic cloned sheep embryos using somatic cell nuclear transfer. Anim. Biotechnol. 2021, 32, 616–626.

[66]

Kuwana, Y.; Sezutsu, H.; Nakajima, K. I.; Tamada, Y.; Kojima, K. High-toughness silk produced by a transgenic silkworm expressing spider (Araneus ventricosus) dragline silk protein. PLoS One 2014, 9, e105325.

[67]

Hagn, F.; Eisoldt, L.; Hardy, J. G.; Vendrely, C.; Coles, M.; Scheibel, T.; Kessler, H. A conserved spider silk domain acts as a molecular switch that controls fibre assembly. Nature 2010, 465, 239–242.

[68]

Hagn, F.; Thamm, C.; Scheibel, T.; Kessler, H. pH-dependent dimerization and salt-dependent stabilization of the N-terminal domain of spider dragline silk-implications for fiber formation. Angew. Chem., Int. Ed. 2011, 50, 310–313.

[69]

Heim, M.; Keerl, D.; Scheibel, T. Spider silk: From soluble protein to extraordinary fiber. Angew. Chem., Int. Ed. 2009, 48, 3584–3596.

[70]

Dunderdale, G. J.; Davidson, S. J.; Ryan, A. J.; Mykhaylyk, O. O. Flow-induced crystallisation of polymers from aqueous solution. Nat. Commun. 2020, 11, 3372.

[71]

Li, J. H.; Ma, C.; Zhang, H. J.; Liu, K. Engineering mechanical strong biomaterials inspired by structural building blocks in nature. Chem. Res. Chin. Univ. 2023, 39, 92–106.

[72]

Xu, Z. P.; Wu, M. R.; Ye, Q.; Chen, D.; Liu, K.; Bai, H. Spinning from nature: Engineered preparation and application of high-performance bio-based fibers. Engineering 2022, 14, 100–112.

[73]

Sun, J.; Chen, J. S.; Liu, K.; Zeng, H. J. Mechanically strong proteinaceous fibers: Engineered fabrication by microfluidics. Engineering 2021, 7, 615–623.

[74]

Heidebrecht, A.; Eisoldt, L.; Diehl, J.; Schmidt, A.; Geffers, M.; Lang, G.; Scheibel, T. Biomimetic fibers made of recombinant spidroins with the same toughness as natural spider silk. Adv. Mater. 2015, 27, 2189–2194.

[75]

Saric, M.; Eisoldt, L.; Döring, V.; Scheibel, T. Interplay of different major ampullate spidroins during assembly and implications for fiber mechanics. Adv. Mater. 2021, 33, 2006499.

[76]

Fan, T. T.; Qin, R. Q.; Zhang, Y.; Wang, J. X.; Fan, J. S.; Bai, X. L.; Yuan, W. S.; Huang, W. D.; Shi, S.; Su, X. C. et al. Critical role of minor eggcase silk component in promoting spidroin chain alignment and strong fiber formation. Proc. Natl. Acad. Sci. USA 2021, 118, e2100496118.

[77]

Xu, L. L.; Lefèvre, T.; Orrell, K. E.; Meng, Q.; Auger, M.; Liu, X. Q.; Rainey, J. K. Structural and mechanical roles for the C-terminal nonrepetitive domain become apparent in recombinant spider aciniform silk. Biomacromolecules 2017, 18, 3678–3686.

[78]

Lin, Z.; Deng, Q. Q.; Liu, X. Y.; Yang, D. W. Engineered large spider eggcase silk protein for strong artificial fibers. Adv. Mater. 2013, 25, 1216–1220.

[79]

Li, X.; Qi, X. M.; Cai, Y. M.; Sun, Y.; Wen, R.; Zhang, R.; Johansson, J.; Meng, Q.; Chen, G. F. Customized flagelliform spidroins form spider silk-like fibers at pH 8.0 with outstanding tensile strength. ACS Biomater. Sci. Eng. 2022, 8, 119–127.

[80]

Li, X.; Mi, J. P.; Wen, R.; Zhang, J.; Cai, Y. M.; Meng, Q.; Lin, Y. Wet-spinning synthetic fibers from aggregate glue: Aggregate spidroin 1 (AgSp1). ACS Appl. Bio Mater. 2020, 3, 5957–5965.

[81]

Wen, R.; Wang, K. K.; Meng, Q. Characterization of the second type of aciniform spidroin (AcSp2) provides new insight into design for spidroin-based biomaterials. Acta Biomater. 2020, 115, 210–219.

[82]

Peng, Q. F.; Zhang, Y. P.; Lu, L.; Shao, H. L.; Qin, K. K.; Hu, X. C.; Xia, X. X. Recombinant spider silk from aqueous solutions via a bio-inspired microfluidic chip. Sci. Rep. 2016, 6, 36473.

[83]

Andersson, M.; Jia, Q. P.; Abella, A.; Lee, X. Y.; Landreh, M.; Purhonen, P.; Hebert, H.; Tenje, M.; Robinson, C. V.; Meng, Q. et al. Biomimetic spinning of artificial spider silk from a chimeric minispidroin. Nat. Chem. Biol. 2017, 13, 262–264.

[84]

Zhao, L.; Li, J. J.; Zhang, L. L.; Gu, X. Q.; Wei, W.; Sun, J.; Wang, F.; Chen, C. Y.; Zhao, Y. L.; Zhang, H. J. et al. Biosynthetic protein and nanocellulose composite fibers with extraordinary mechanical performance. Nano Today 2022, 44, 101485.

[85]

Wan, S. K.; Cheng, W. H.; Li, J. J.; Wang, F.; Xing, X. W.; Sun, J.; Zhang, H. J.; Liu, K. Biological composite fibers with extraordinary mechanical strength and toughness mediated by multiple intermolecular interacting networks. Nano Res. 2022, 15, 9192–9198.

[86]

Sun, J.; Li, B.; Wang, F.; Feng, J.; Ma, C.; Liu, K.; Zhang, H. J. Proteinaceous fibers with outstanding mechanical properties manipulated by supramolecular interactions. CCS Chem. 2020, 3, 1669–1677.

[87]

Sun, J.; Zhang, J. R.; Zhao, L.; Wan, S. K.; Wu, B. H.; Ma, C.; Li, J. J.; Wang, F.; Xing, X. W.; Chen, D. et al. Contribution of hydrogen-bond nanoarchitectonics to switchable photothermal-mechanical properties of bioinorganic fibers. CCS Chem. 2022, 5, 1242–1250.

[88]

Zhu, H. N.; Sun, Y.; Yi, T.; Wang, S. Y.; Mi, J. P.; Meng, Q. Tough synthetic spider-silk fibers obtained by titanium dioxide incorporation and formaldehyde cross-linking in a simple wet-spinning process. Biochimie 2020, 175, 77–84.

[89]

Tang, X. L.; Ye, X. G.; Wang, X. X.; Zhao, S.; Wu, M. Y.; Ruan, J. H.; Zhong, B. X. High mechanical property silk produced by transgenic silkworms expressing the spidroins PySp1 and ASG1. Sci. Rep. 2021, 11, 20980.

[90]

Mittal, N.; Jansson, R.; Widhe, M.; Benselfelt, T.; Håkansson, K. M. O.; Lundell, F.; Hedhammar, M.; Söderberg, L. D. Ultrastrong and bioactive nanostructured bio-based composites. ACS Nano 2017, 11, 5148–5159.

[91]

Mohammadi, P.; Aranko, A. S.; Landowski, C. P.; Ikkala, O.; Jaudzems, K.; Wagermaier, W.; Linder, M. B. Biomimetic composites with enhanced toughening using silk-inspired triblock proteins and aligned nanocellulose reinforcements. Sci. Adv. 2019, 5, eaaw2541.

[92]

Hu, C. F.; Qian, Z. G.; Peng, Q. F.; Zhang, Y. P.; Xia, X. X. Unconventional spidroin assemblies in aqueous dope for spinning into tough synthetic fibers. ACS Biomater. Sci. Eng. 2021, 7, 3608–3617.

[93]

Du, N.; Ye, F. F.; Sun, J.; Liu, K. Stimuli-responsive natural proteins and their applications. ChemBioChem 2022, 23, e202100416.

[94]

Li, Y. X.; Sun, J.; Li, J. J.; Liu, K.; Zhang, H. J. Engineered protein nanodrug as an emerging therapeutic tool. Nano Res. 2022, 15, 5161–5172.

[95]

Hakimi, O.; Knight, D. P.; Vollrath, F.; Vadgama, P. Spider and mulberry silkworm silks as compatible biomaterials. Compos. B. Eng. 2007, 38, 324–337.

[96]

Chen, L. F.; Huang, Y. L.; Yang, R. F.; Xiao, J.; Gao, J. J.; Zhang, D. B.; Cao, D. W.; Ke, X. Preparation of controlled degradation of insulin-like growth factor 1/spider silk protein nanofibrous membrane and its effect on endothelial progenitor cell viability. Bioengineered 2021, 12, 8031–8042.

[97]

Lian, J.; Ju, G. Q.; Cai, X. Y.; Cai, Y. C.; Li, C.; Ma, S. X.; Cao, Y. Nanofibrous membrane dressings loaded with sodium hydrogen sulfide/endothelial progenitor cells promote wound healing. Front. Bioeng. Biotechnol. 2021, 9, 657549.

[98]

Safonova, L.; Bobrova, M.; Efimov, A.; Davydova, L.; Tenchurin, T.; Bogush, V.; Agapova, O.; Agapov, I. Silk fibroin/spidroin electrospun scaffolds for full-thickness skin wound healing in rats. Pharmaceutics 2021, 13, 1704.

[99]

Zhao, L.; Chen, D. L.; Yao, Q. H.; Li, M. Studies on the use of recombinant spider silk protein/polyvinyl alcohol electrospinning membrane as wound dressing. Int. J. Nanomedicine 2017, 12, 8103–8114.

[100]

Zhou, Y. Z.; Shen, Q. C.; Lin, Y.; Xu, S. Y.; Meng, Q. Evaluation of the potential of chimeric spidroins/poly(L-lactic-co-ε-caprolactone) (PLCL) nanofibrous scaffolds for tissue engineering. Mater. Sci. Eng. C 2020, 111, 110752.

[101]

Yang, L.; Hedhammar, M.; Blom, T.; Leifer, K.; Johansson, J.; Habibovic, P.; van Blitterswijk, C. A. Biomimetic calcium phosphate coatings on recombinant spider silk fibres. Biomed. Mater. 2010, 5, 045002.

[102]
Zhou, Y. S.; Liu, K.; Zhang, H. J. Biomimetic mineralization: From microscopic to macroscopic materials and their biomedical applications. ACS Appl. Bio. Mater., in press, https://doi.org/10.1021/acsabm.3c00109.
[103]

Xiang, P.; Wang, S. S.; He, M.; Han, Y. H.; Zhou, Z. H.; Chen, D. L.; Li, M.; Ma, L. Q. The in vitro and in vivo biocompatibility evaluation of electrospun recombinant spider silk protein/PCL/gelatin for small caliber vascular tissue engineering scaffolds. Colloids Surf. B: Biointerf. 2018, 163, 19–28.

[104]

Yu, Q. Z.; Sun, C. J. A three-dimensional multiporous fibrous scaffold fabricated with regenerated spider silk protein/poly(L-lactic acid) for tissue engineering. J. Biomed. Mater. Res. A 2015, 103, 721–729.

[105]

Zhang, H.; Wang, K. F.; Xing, Y. M.; Yu, Q. Z. Lysine-doped polypyrrole/spider silk protein/poly(L-lactic) acid containing nerve growth factor composite fibers for neural application. Mater. Sci. Eng. C 2015, 56, 564–573.

[106]

Hansson, M. L.; Chatterjee, U.; Francis, J.; Arndt, T.; Broman, C.; Johansson, J.; Sköld, M. K.; Rising, A. Artificial spider silk supports and guides neurite extension in vitro. FASEB J. 2021, 35, e21896.

[107]

Harvey, D.; Bardelang, P.; Goodacre, S. L.; Cockayne, A.; Thomas, N. R. Antibiotic spider silk: Site-specific functionalization of recombinant spider silk using “click” chemistry. Adv. Mater. 2017, 29, 1604245.

[108]

Qiao, X.; Qian, Z. G.; Li, J. J.; Sun, H. J.; Han, Y.; Xia, X. X.; Zhou, J.; Wang, C. L.; Wang, Y.; Wang, C. Y. Synthetic engineering of spider silk fiber as implantable optical waveguides for low-loss light guiding. ACS Appl. Mater. Interfaces 2017, 9, 14665–14676.

[109]

Lang, G.; Grill, C.; Scheibel, T. Site-specific functionalization of recombinant spider silk Janus fibers. Angew. Chem., Int. Ed. 2022, 61, e202115232.

[110]

Müller, F.; Zainuddin, S.; Scheibel, T. Roll-to-roll production of spider silk nanofiber nonwoven meshes using centrifugal electrospinning for filtration applications. Molecules 2020, 25, 5540.

[111]

Cheng, J. Y.; Hu, C. F.; Gan, C. Y.; Xia, X. X.; Qian, Z. G. Functionalization and reinforcement of recombinant spider dragline silk fibers by confined nanoparticle formation. ACS Biomater. Sci. Eng. 2022, 8, 3299–3309.

[112]

Yuan, Y. H.; Yu, Q. H.; Wen, J.; Li, C. Y.; Guo, Z. H.; Wang, X. L.; Wang, N. Ultrafast and highly selective uranium extraction from seawater by hydrogel-like spidroin-based protein fiber. Angew. Chem., Int. Ed. 2019, 58, 11785–11790.

[113]

Venkatesan, H.; Chen, J. M.; Liu, H. Y.; Kim, Y.; Na, S.; Liu, W.; Hu, J. L. Artificial spider silk is smart like natural one: Having humidity-sensitive shape memory with superior recovery stress. Mater. Chem. Front. 2019, 3, 2472–2482.

[114]

Shehata, N.; Kandas, I.; Hassounah, I.; Sobolčiak, P.; Krupa, I.; Mrlik, M.; Popelka, A.; Steadman, J.; Lewis, R. Piezoresponse, mechanical, and electrical characteristics of synthetic spider silk nanofibers. Nanomaterials 2018, 8, 585.

Publication history
Copyright
Acknowledgements

Publication history

Received: 04 April 2023
Revised: 18 May 2023
Accepted: 21 May 2023
Published: 29 June 2023
Issue date: February 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by the National Key R&D Program of China (No. 2022YFA0913200), the National Natural Science Foundation of China (Nos. 22107097, 22020102003, 22125701, 22175053, and 21771050), and the Youth Innovation Promotion Association of CAS (No. 2021226).

Return