Journal Home > Volume 17 , Issue 1

The large size of lasers limits their applications in confined spaces, such as in biosensing and in vivo brain tissue imaging. In this regard, micron-sized lasers have been developed. They exhibit great potential for biological detecting, remote sensing, and depth tracking due to their small sizes, sensitive properties of their spectral fingerprints, and flexible positional modulation in the microenvironment. Lanthanide-based luminescent materials that possess long excited-state lifetime, narrow emission bandwidth, and upconversion behaviors are promising as gain mediums for novel microlasers. In addition, lanthanide-based microlasers could be generated under natural ambient conditions with pumped or continuous light sources, which significantly promotes the practical applications of microlasers. Recent progress in the design, synthesis, and biomedical applications of lanthanide-based microlasers has been outlined in this review. Lanthanide ions doped and upconverted lanthanide-based microlasers are highlighted, which exhibit advantageous structures, miniaturized dimensions, and high lasing performance. The applications of lanthanide-based microlasers are further discussed, the upconverted microlasers show great advantages for biological applications owing to their tunable excitation and emission characteristics and excellent environmental stability. Moreover, perspectives and challenges in the field of lanthanide-based microlasers are presented.


menu
Abstract
Full text
Outline
About this article

Lanthanide-based microlasers: Synthesis, structures, and biomedical applications

Show Author's information Qian Zhang1Yawei Liu2,3( )Kai Liu1,2,3( )Hongjie Zhang1,2,3
Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
Xiangfu Laboratory, Jiaxing 314102, China

Abstract

The large size of lasers limits their applications in confined spaces, such as in biosensing and in vivo brain tissue imaging. In this regard, micron-sized lasers have been developed. They exhibit great potential for biological detecting, remote sensing, and depth tracking due to their small sizes, sensitive properties of their spectral fingerprints, and flexible positional modulation in the microenvironment. Lanthanide-based luminescent materials that possess long excited-state lifetime, narrow emission bandwidth, and upconversion behaviors are promising as gain mediums for novel microlasers. In addition, lanthanide-based microlasers could be generated under natural ambient conditions with pumped or continuous light sources, which significantly promotes the practical applications of microlasers. Recent progress in the design, synthesis, and biomedical applications of lanthanide-based microlasers has been outlined in this review. Lanthanide ions doped and upconverted lanthanide-based microlasers are highlighted, which exhibit advantageous structures, miniaturized dimensions, and high lasing performance. The applications of lanthanide-based microlasers are further discussed, the upconverted microlasers show great advantages for biological applications owing to their tunable excitation and emission characteristics and excellent environmental stability. Moreover, perspectives and challenges in the field of lanthanide-based microlasers are presented.

Keywords: upconversion nanoparticles, biological applications, microlasers, lanthanide-based luminescent materials

References(114)

[1]

Miao, P.; Zhang, Z. F.; Sun, J. B.; Walasik, W.; Longhi, S.; Litchinitser, N. M.; Feng, L. Orbital angular momentum microlaser. Science 2016, 353, 464–467.

[2]

Zhang, P. J.; Ji, Q. X.; Cao, Q. T.; Wang, H. M.; Liu, W. J.; Gong, Q. H.; Xiao, Y. F. Single-mode characteristic of a supermode microcavity Raman laser. Proc. Natl. Acad. Sci. USA 2021, 118, e2101605118.

[3]

Wang, C. L.; Gong, C. Y.; Zhang, Y. F.; Qiao, Z.; Yuan, Z. Y.; Gong, Y.; Chang, G. E.; Tu, W. C.; Chen, Y. C. Programmable rainbow-colored optofluidic fiber laser encoded with topologically structured chiral droplets. ACS Nano 2021, 15, 11126–11136.

[4]

Papič, M.; Mur, U.; Zuhail, K. P.; Ravnik, M.; Muševič, I.; Humar, M. Topological liquid crystal superstructures as structured light lasers. Proc. Natl. Acad. Sci. USA 2021, 118, e2110839118.

[5]

Zhang, Z. F.; Zhao, H. Q.; Wu, S.; Wu, T. W.; Qiao, X. D.; Gao, Z. H.; Agarwal, R.; Longhi, S.; Litchinitser, N. M.; Ge, L. et al. Spin-orbit microlaser emitting in a four-dimensional Hilbert space. Nature 2022, 612, 246–251.

[6]

Duan, R.; Zhang, Z. T.; Xiao, L.; Zhao, X. X.; Thung, Y. T.; Ding, L.; Liu, Z.; Yang, J.; Ta, V. D.; Sun, H. D. Ultralow-threshold and high-quality whispering-gallery-mode lasing from colloidal core/hybrid-shell quantum wells. Adv. Mater. 2022, 34, 2108884.

[7]

Kim, Y.; Assali, S.; Burt, D.; Jung, Y.; Joo, H. J.; Chen, M.; Ikonic, Z.; Moutanabbir, O.; Nam, D. Enhanced GeSn microdisk lasers directly released on Si. Adv. Opt. Mater. 2022, 10, 2101213.

[8]

Li, Q. G.; Rao, H.; Ma, X. Z.; Mei, H. J.; Zhao, Z. T.; Gong, W. P.; Camposeo, A.; Pisignano, D.; Yang, X. G. Unusual red light emission from nonmetallic Cu2Te microdisk for laser and SERS applications. Adv. Opt. Mater. 2022, 10, 2101976.

[9]

Su, J.; Goldberg, A. F. G.; Stoltz, B. M. Label-free detection of single nanoparticles and biological molecules using microtoroid optical resonators. Light Sci. Appl. 2016, 5, e16001.

[10]

Diez, I.; Krysa, A.; Luxmoore, I. J. Inverse design of whispering-gallery nanolasers with tailored beam shape and polarization. ACS Photonics 2023, 10, 968–976.

[11]

Fikouras, A. H.; Schubert, M.; Karl, M.; Kumar, J. D.; Powis, S. J.; Di Falco, A.; Gather, M. C. Non-obstructive intracellular nanolasers. Nat. Commun. 2018, 9, 4817.

[12]

Guo, Z. H.; Qin, Y. C.; Chen, P. Z.; Hu, J. L.; Zhou, Y.; Zhao, X. Y.; Liu, Z. R.; Fei, Y. Y.; Jiang, X. S.; Wu, X. Hyperboloid-drum microdisk laser biosensors for ultrasensitive detection of human IgG. Small 2020, 16, 2000239.

[13]

Kim, K. H.; Dannenberg, P. H.; Yan, H.; Cho, S.; Yun, S. H. Compact quantum-dot microbeads with sub-nanometer emission linewidth. Adv. Funct. Mater. 2021, 31, 2103413.

[14]

Yuan, Z. Y.; Tan, X. T.; Gong, X. R.; Gong, C. Y.; Cheng, X.; Feng, S. L.; Fan, X. D.; Chen, Y. C. Bioresponsive microlasers with tunable lasing wavelength. Nanoscale 2021, 13, 1608–1615.

[15]

Wang, Y. P.; Lang, M. C.; Lu, J. S.; Suo, M. Q.; Du, M. C.; Hou, Y. B.; Wang, X. H.; Wang, P. Demonstration of intracellular real-time molecular quantification via FRET-enhanced optical microcavity. Nat. Commun. 2022, 13, 6685.

[16]

Titze, V. M.; Caixeiro, S.; Di Falco, A.; Schubert, M.; Gather, M. C. Red-shifted excitation and two-photon pumping of biointegrated GaInP/AlGaInP quantum well microlasers. ACS Photonics 2022, 9, 952–960.

[17]

Sun, J.; Chen, J. S.; Liu, K.; Zeng, H. B. Mechanically strong proteinaceous fibers: Engineered fabrication by microfluidics. Engineering 2021, 7, 615–623.

[18]

Liu, H. T.; Zhang, H. L.; Dong, L.; Zhang, Y. J.; Pan, C. F. Growth of GaN micro/nanolaser arrays by chemical vapor deposition. Nanotechnology 2016, 27, 355201.

[19]

Peng, Y. Y.; Lu, J. F.; Peng, D. F.; Ma, W. D.; Li, F. T.; Chen, Q. S.; Wang, X. D.; Sun, J. L.; Liu, H. T.; Pan, C. F. Dynamically modulated GaN whispering gallery lasing mode for strain sensor. Adv. Funct. Mater. 2019, 29, 1905051.

[20]

Lu, Z. F.; Wang, L. J.; Zhang, Y.; Shu, S. L.; Tian, S. C.; Tong, C. Z.; Hou, G. Y.; Chai, X. L.; Xu, Y. Q.; Ni, H. Q. et al. High-power GaSb-based microstripe broad-area lasers. Appl. Phys. Express 2018, 11, 032702.

[21]

Di Stasio, F.; Polovitsyn, A.; Angeloni, I.; Moreels, I.; Krahne, R. Broadband amplified spontaneous emission and random lasing from wurtzite CdSe/CdS “giant-shell” nanocrystals. ACS Photonics 2016, 3, 2083–2088.

[22]

Rong, K. X.; Sun, C. W.; Shi, K. B.; Gong, Q. H.; Chen, J. J. Room-temperature planar lasers based on water-dripping microplates of colloidal quantum dots. ACS Photonics 2017, 4, 1776–1784.

[23]

Wang, Q.; Yan, Y. Z.; Qin, F. F.; Xu, C. X.; Liu, X. L.; Tan, P. H.; Shi, N. N.; Hu, S. P.; Li, L.; Zeng, Y. et al. A novel ultra-thin-walled ZnO microtube cavity supporting multiple optical modes for bluish-violet photoluminescence, low-threshold ultraviolet lasing and microfluidic photodegradation. NPG Asia Mater. 2017, 9, e442.

[24]

Fetisova, M. V.; Kryzhanovskaya, N. V.; Reduto, I. V.; Moiseev, E. I.; Blokhin, S. A.; Kotlyar, K. P.; Scherbak, S. A.; Lipovskii, A. A.; Kornev, A. A.; Bukatin, A. S. et al. Room temperature lasing from microdisk laser in aqueous medium. J. Phys. Conf. Ser. 2018, 1124, 051007.

[25]

Humar, M.; Yun, S. H. Intracellular microlasers. Nat. Photonics 2015, 9, 572–576.

[26]

Huang, Q. L.; Xu, H. L.; Li, M. T.; Hou, Z. S.; Lv, C.; Zhan, X. P.; Li, H. L.; Xia, H.; Wang, H. Y.; Sun, H. B. Stretchable PEG-DA hydrogel-based whispering-gallery-mode microlaser with humidity responsiveness. J. Lightwave Technol. 2018, 36, 819–824.

[27]

Fan, Y. Q.; Zhang, C. H.; Du, Y. X.; Qiao, C.; Wang, K.; Hou, Y.; Yao, J. N.; Zhao, Y. S. A universal in situ cross-linking strategy enables orthogonal processing of full-color organic microlaser arrays. Adv. Funct. Mater. 2021, 31, 2103031.

[28]

Gong, X. R.; Qiao, Z.; Liao, Y. K.; Zhu, S.; Shi, L.; Kim, M.; Chen, Y. C. Enzyme-programmable microgel lasers for information encoding and anti-counterfeiting. Adv. Mater. 2022, 34, 2107809.

[29]

Liao, Q.; Jin, X.; Zhang, H. H.; Xu, Z. Z.; Yao, J. N.; Fu, H. B. An organic microlaser array based on a lateral microcavity of a single J-aggregation microbelt. Angew. Chem., Int. Ed. 2015, 54, 7037–7041.

[30]

Liu, D.; Wu, X. X.; Gao, C.; Li, C. G.; Zheng, Y. S.; Li, Y.; Xie, Z. Y.; Ji, D. Y.; Liu, X. F.; Zhang, X. T. et al. Integrating unexpected high charge-carrier mobility and low-threshold lasing action in an organic semiconductor. Angew. Chem., Int. Ed. 2022, 61, e202200791.

[31]

Zhou, B. E.; Jiang, M. M.; Dong, H. X.; Zheng, W. H.; Huang, Y. Z.; Han, J. Y.; Pan, A. L.; Zhang, L. High-temperature upconverted single-mode lasing in 3D fully inorganic perovskite microcubic cavity. ACS Photonics 2019, 6, 793–801.

[32]

Zhou, B. E.; Zhong, Y. C.; Jiang, M. M.; Zhang, J. H.; Dong, H. X.; Chen, L. Q.; Wu, H.; Xie, W.; Zhang, L. Linearly polarized lasing based on coupled perovskite microspheres. Nanoscale 2020, 12, 5805–5811.

[33]

Tian, X. Y.; Wang, L.; Li, W.; Lin, Q. Q.; Cao, Q. Whispering gallery mode lasing from perovskite polygonal microcavities via femtosecond laser direct writing. ACS Appl. Mater. Interfaces 2021, 13, 16952–16958.

[34]

Liu, G. D.; Liu, H.; Wang, J.; Jia, S. T.; Li, G. Z.; Li, Y. F.; Gao, Y. A.; Yang, H.; Wang, S. F.; Gong, Q. H. Single-mode lasing with spontaneous symmetry breaking from a perovskite microdisk dimer. ACS Photonics 2023, 10, 43–48.

[35]

Shang, Q. Y.; Zhang, S.; Liu, Z.; Chen, J.; Yang, P. F.; Li, C.; Li, W.; Zhang, Y. F.; Xiong, Q. H.; Liu, X. F. et al. Surface plasmon enhanced strong exciton–photon coupling in hybrid inorganic–organic perovskite nanowires. Nano Lett. 2018, 18, 3335–3343.

[36]

Klein-Kedem, N.; Cahen, D.; Hodes, G. Effects of light and electron beam irradiation on halide perovskites and their solar cells. Acc. Chem. Res. 2016, 49, 347–354.

[37]

Levy, E. S.; Tajon, C. A.; Bischof, T. S.; Iafrati, J.; Fernandez-Bravo, A.; Garfield, D. J.; Chamanzar, M.; Maharbiz, M. M.; Sohal, V. S.; Schuck, P. J. et al. Energy-looping nanoparticles: Harnessing excited-state absorption for deep-tissue imaging. ACS Nano 2016, 10, 8423–8433.

[38]

Sun, J.; Zhang, J. R.; Zhao, L.; Wan, S. K.; Wu, B. H.; Ma, C.; Li, J. J.; Wang, F.; Xing, X. W.; Chen, D. et al. Contribution of hydrogen-bond nanoarchitectonics to switchable photothermal-mechanical properties of bioinorganic fibers. CCS Chem. 2023, 5, 1242–1250.

[39]

Li, J. J.; Sun, Y.; Liang, Y. X.; Ma, J.; Li, B.; Ma, C.; Tanzi, R. E.; Zhang, H. J.; Liu, K.; Zhang, C. Extracellular elastin molecule modulates Alzheimer’s Aβ dynamics in vitro and in vivo by affecting microglial activities. CCS Chem. 2021, 3, 1830–1837.

[40]

Xu, Z. P.; Wu, M. R.; Ye, Q.; Chen, D.; Liu, K.; Bai, H. Spinning from nature: Engineered preparation and application of high-performance bio-based fibers. Engineering 2022, 14, 100–112.

[41]

Wang, S. D.; Zhang, H. L.; Li, B.; Chen, C. L.; Ren, T. T.; Huang, Y.; Liu, K.; Li, J. J.; Guo, W. Knockdown of a specific circular non-coding RNA significantly suppresses osteosarcoma progression. Engineering 2023, 21, 188–194.

[42]

Xu, X.; Lei, P. P.; Dong, L. L.; Liu, X. L.; Su, Y.; Song, S. Y.; Feng, J.; Zhang, H. J. Rational design of Nd3+-sensitized multifunctional nanoparticles with highly dominant red emission. Dalton Trans. 2016, 45, 8440–8446.

[43]

Lei, P. P.; An, R.; Zhai, X. S.; Yao, S.; Dong, L. L.; Xu, X.; Du, K. M.; Zhang, M. L.; Feng, J.; Zhang, H. J. Benefits of surfactant effects on quantum efficiency enhancement and temperature sensing behavior of NaBiF4 upconversion nanoparticles. J. Mater. Chem. C 2017, 5, 9659–9665.

[44]

Du, K. M.; Feng, J.; Gao, X.; Zhang, H. J. Nanocomposites based on lanthanide-doped upconversion nanoparticles: Diverse designs and applications. Light Sci. Appl. 2022, 11, 222.

[45]

Wei, Z.; Liu, Y. W.; Li, B.; Li, J. J.; Lu, S.; Xing, X. W.; Liu, K.; Wang, F.; Zhang, H. J. Rare-earth based materials: An effective toolbox for brain imaging, therapy, monitoring and neuromodulation. Light Sci. Appl. 2022, 11, 175.

[46]

Sun, J.; Li, B.; Wang, F.; Feng, J.; Ma, C.; Liu, K.; Zhang, H. J. Proteinaceous fibers with outstanding mechanical properties manipulated by supramolecular interactions. CCS Chem. 2021, 3, 1669–1677.

[47]

Sun, J.; Xiao, L. L.; Li, B.; Zhao, K. L.; Wang, Z. L.; Zhou, Y.; Ma, C.; Li, J. J.; Zhang, H. J.; Herrmann, A. et al. Genetically engineered polypeptide adhesive coacervates for surgical applications. Angew. Chem., Int. Ed. 2021, 60, 23687–23694.

[48]

Su, J. J.; Lu, S.; Wei, Z.; Li, B.; Li, J. J.; Sun, J.; Liu, K.; Zhang, H. J.; Wang, F. Biocompatible inorganic nanoagent for efficient synergistic tumor treatment with augmented antitumor immunity. Small 2022, 18, 2200897.

[49]

Chung, J. W.; Gerelkhuu, Z.; Oh, J. H.; Lee, Y. I. Recent advances in luminescence properties of lanthanide-doped up-conversion nanocrystals and applications for bio-imaging, drug delivery, and optosensing. Appl. Spectrosc. Rev. 2016, 51, 678–705.

[50]

Guo, H. H.; Song, X. R.; Lei, W.; He, C.; You, W. W.; Lin, Q. Z.; Zhou, S. Y.; Chen, X. Y.; Chen, Z. Direct detection of circulating tumor cells in whole blood using time-resolved luminescent lanthanide nanoprobes. Angew. Chem., Int. Ed. 2019, 58, 12195–12199.

[51]

Du, K. M.; Zhang, M. L.; Li, Y.; Li, H. W.; Liu, K.; Li, C. Y.; Feng, J.; Zhang, H. J. Embellishment of upconversion nanoparticles with ultrasmall perovskite quantum dots for full-color tunable, dual-modal luminescence anticounterfeiting. Adv. Opt. Mater. 2021, 9, 2100814.

[52]

Wang, X. N.; Li, T.; Liang, W. C.; Zhu, C. C.; Guo, L. D. Triple NIR light excited up-conversion luminescence in lanthanide-doped BaTiO3 phosphors for anti-counterfeiting. J. Am. Ceram. Soc. 2021, 104, 5826–5836.

[53]

Xu, J. T.; Gulzar, A.; Yang, P. P.; Bi, H. T.; Yang, D.; Gai, S. L.; He, F.; Lin, J.; Xing, B. G.; Jin, D. Y. Recent advances in near-infrared emitting lanthanide-doped nanoconstructs: Mechanism, design and application for bioimaging. Coord. Chem. Rev. 2019, 381, 104–134.

[54]

Liu, Y. W.; Zhao, K. L.; Ren, Y. B.; Wan, S. K.; Yang, C. J.; Li, J. J.; Wang, F.; Chen, C. Y.; Su, J. J.; Chen, D. et al. Highly plasticized lanthanide luminescence for information storage and encryption applications. Adv. Sci. (Weinh.) 2022, 9, 2105108.

[55]

Fan, Y.; Wang, P. Y.; Lu, Y. Q.; Wang, R.; Zhou, L.; Zheng, X. L.; Li, X. M.; Piper, J. A.; Zhang, F. Lifetime-engineered NIR-II nanoparticles unlock multiplexed in vivo imaging. Nat. Nanotechnol. 2018, 13, 941–946.

[56]

Zhang, H. X.; Fan, Y.; Pei, P.; Sun, C. X.; Lu, L. F.; Zhang, F. Tm3+-sensitized NIR-II fluorescent nanocrystals for in vivo information storage and decoding. Angew. Chem., Int. Ed. 2019, 58, 10153–10157.

[57]

Zhong, Y. T.; Ma, Z. R.; Wang, F. F.; Wang, X.; Yang, Y. J.; Liu, Y. L.; Zhao, X.; Li, J. C.; Du, H. T.; Zhang, M. X. et al. In vivo molecular imaging for immunotherapy using ultra-bright near-infrared-IIb rare-earth nanoparticles. Nat. Biotechnol. 2019, 17, 1322–1331.

[58]

Zhu, H.; Chen, X.; Jin, L. M.; Wang, Q. J.; Wang, F.; Yu, S. F. Amplified spontaneous emission and lasing from lanthanide-doped up-conversion nanocrystals. ACS Nano 2013, 7, 11420–11426.

[59]

Jin, L. M.; Yang, X. L.; Yu, S.; Zheng, P. R.; Chen, X.; Xiao, S. M.; Song, Q. H. Ultralow-threshold wideband-tunable single-mode ultraviolet lasing from lanthanide-doped upconversion nanomaterials. J. Am. Ceram. Soc. 2022, 105, 5764–5773.

[60]

Wang, T.; Yu, H.; Siu, C. K.; Qiu, J. B.; Xu, X. H.; Yu, S. F. White-light whispering-gallery-mode lasing from lanthanide-doped upconversion NaYF4 hexagonal microrods. ACS Photonics 2017, 4, 1539–1543.

[61]

Wang, Z.; Fang, Z. W.; Liu, Z. X.; Chu, W.; Zhou, Y.; Zhang, J. H.; Wu, R. B.; Wang, M.; Lu, T.; Cheng, Y. On-chip tunable microdisk laser fabricated on Er3+-doped lithium niobate on insulator. Opt. Lett. 2021, 46, 380–383.

[62]

Guo, Y. H.; Li, Z. Y.; An, N.; Guo, Y. Z.; Wang, Y. C.; Yuan, Y. S.; Zhang, H.; Tan, T.; Wu, C. H.; Peng, B. et al. A monolithic graphene-functionalized microlaser for multispecies gas detection. Adv. Mater. 2022, 34, 2207777.

[63]

Fernandez-Bravo, A.; Wang, D. Q.; Barnard, E. S.; Teitelboim, A.; Tajon, C.; Guan, J.; Schatz, G. C.; Cohen, B. E.; Chan, E. M.; Schuck, P. J. et al. Ultralow-threshold, continuous-wave upconverting lasing from subwavelength plasmons. Nat. Mater. 2019, 18, 1172–1176.

[64]

Liu, Y. J.; Lu, Y. Q.; Yang, X. S.; Zheng, X. L.; Wen, S. H.; Wang, F.; Vidal, X.; Zhao, J. B.; Liu, D. M.; Zhou, Z. G. et al. Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy. Nature 2017, 543, 229–233.

[65]

Ding, X.; Liu, J. H.; Liu, D. P.; Li, J. Q.; Wang, F.; Li, L. J.; Wang, Y. H.; Song, S. Y.; Zhang, H. J. Multifunctional core/satellite polydopamine@Nd3+-sensitized upconversion nanocomposite: A single 808 nm near-infrared light-triggered theranostic platform for in vivo imaging-guided photothermal therapy. Nano Res. 2017, 10, 3434–3446.

[66]

All, A. H.; Zeng, X.; Teh, D. B. L.; Yi, Z. G.; Prasad, A.; Ishizuka, T.; Thakor, N.; Hiromu, Y.; Liu, X. G. Expanding the toolbox of upconversion nanoparticles for in vivo optogenetics and neuromodulation. Adv. Mater. 2019, 31, 1803474.

[67]

Zhang, Y. X.; Huang, P.; Wang, D.; Chen, J. C.; Liu, W. Z.; Hu, P.; Huang, M. D.; Chen, X. Y.; Chen, Z. Near-infrared-triggered antibacterial and antifungal photodynamic therapy based on lanthanide-doped upconversion nanoparticles. Nanoscale 2018, 10, 15485–15495.

[68]

Chen, S.; Weitemier, A. Z.; Zeng, X.; He, L. M.; Wang, X. Y.; Tao, Y. Q.; Huang, A. J. Y.; Hashimotodani, Y.; Kano, M.; Iwasaki, H. et al. Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics. Science 2018, 359, 679–684.

[69]

Zhao, X. Y.; He, S. P.; Li, B.; Liu, B.; Shi, Y. J.; Cong, W.; Gao, F.; Li, J. J.; Wang, F.; Liu, K. et al. DUCNP@Mn-MOF/FOE as a highly selective and bioavailable drug delivery system for synergistic combination cancer therapy. Nano Lett. 2023, 23, 863–871.

[70]

Gao, X.; Feng, J.; Song, S. Y.; Liu, K.; Du, K. M.; Zhou, Y. F.; Lv, K. H.; Zhang, H. J. Tumor-targeted biocatalyst with self-accelerated cascade reactions for enhanced synergistic starvation and photodynamic therapy. Nano Today 2022, 43, 101433.

[71]

Liu, B.; Gu, X. Q.; Sun, Q. N.; Jiang, S. J.; Sun, J.; Liu, K.; Wang, F.; Wei, Y. Injectable in situ induced robust hydrogel for photothermal therapy and bone fracture repair. Adv. Funct. Mater. 2021, 31, 2010779.

[72]

Liu, B.; Sun, J.; Zhu, J. J.; Li, B.; Ma, C.; Gu, X. Q.; Liu, K.; Zhang, H. J.; Wang, F.; Su, J. J. et al. Injectable and NIR-responsive DNA-inorganic hybrid hydrogels with outstanding photothermal therapy. Adv. Mater. 2020, 32, 2004460.

[73]

Shao, B. Q.; Wan, S. K.; Yang, C. J.; Shen, J. L.; Li, Y. W.; You, H. P.; Chen, D.; Fan, C. H.; Liu, K.; Zhang, H. J. Engineered anisotropic fluids of rare-earth nanomaterials. Angew. Chem., Int. Ed. 2020, 59, 18213–18217.

[74]

Zhao, K. L.; Sun, J.; Wang, F.; Song, A. Y.; Liu, K.; Zhang, H. J. Lanthanide-based photothermal materials: Fabrication and biomedical applications. ACS Appl. Bio Mater. 2020, 3, 3975–3986.

[75]

Wen, S. H.; Zhou, J. J.; Schuck, P. J.; Suh, Y. D.; Schmidt, T. W.; Jin, D. Y. Future and challenges for hybrid upconversion nanosystems. Nat. Photonics 2019, 13, 828–838.

[76]

Liu, D. M.; Xu, X. X.; Du, Y.; Qin, X.; Zhang, Y. H.; Ma, C. S.; Wen, S. H.; Ren, W.; Goldys, E. M.; Piper, J. A. et al. Three-dimensional controlled growth of monodisperse sub-50 nm heterogeneous nanocrystals. Nat. Commun. 2016, 7, 10254.

[77]

Shang, Y. F.; Chen, T.; Ma, T. H.; Hao, S. W.; Lv, W. Q.; Jia, D. C.; Yang, C. H. Advanced lanthanide doped upconversion nanomaterials for lasing emission. J. Rare Earths 2022, 40, 687–695.

[78]

Kippenberg, T. J.; Kalkman, J.; Polman, A.; Vahala, K. J. Demonstration of an erbium-doped microdisk laser on a silicon chip. Phys. Rev. A 2006, 74, 051802.

[79]

Polman, A.; Min, B.; Kalkman, J.; Kippenberg, T. J.; Vahala, K. J. Ultralow-threshold erbium-implanted toroidal microlaser on silicon. Appl. Phys. Lett. 2004, 84, 1037–1039.

[80]

Bekker, C. J.; Baker, C. G.; Bowen, W. P. Optically tunable photoluminescence and up-conversion lasing on a chip. Phys. Rev. Appl. 2021, 15, 034022.

[81]

Yang, L.; Carmon, T.; Min, B.; Spillane, S. M.; Vahala, K. J. Erbium-doped and Raman microlasers on a silicon chip fabricated by the sol–gel process. Appl. Phys. Lett. 2005, 86, 091114.

[82]

Hsu, H. S.; Cai, C.; Armani, A. M. Ultra-low-threshold Er:Yb sol–gel microlaser on silicon. Opt. Express 2009, 17, 23265–23271.

[83]

Fan, H. B.; Hua, S. Y.; Jiang, X. S.; Xiao, M. Demonstration of an erbium-doped microsphere laser on a silicon chip. Laser Phys. Lett. 2013, 10, 105809.

[84]

Ding, Y.; Fan, H. B.; Zhang, X.; Jiang, X. S.; Xiao, M. Ultralow-threshold neodymium-doped microsphere lasers on a silicon chip. Opt. Commun. 2017, 395, 51–54.

[85]

Zhu, S.; Wang, W. Y.; Jiang, B.; Ren, L. H.; Shi, L.; Zhang, X. L. Flexible manipulation of lasing modes in an erbium-doped microcavity via an add-drop configuration. ACS Photonics 2021, 8, 3069–3077.

[86]

Fernandez-Bravo, A.; Yao, K. Y.; Barnard, E. S.; Borys, N. J.; Levy, E. S.; Tian, B. N.; Tajon, C. A.; Moretti, L.; Altoe, M. V.; Aloni, S. et al. Continuous-wave upconverting nanoparticle microlasers. Nat. Nanotechnol. 2018, 13, 572–577.

[87]

Liu, Y. W.; Teitelboim, A.; Fernandez-Bravo, A.; Yao, K. Y.; Altoe, M. V. P.; Aloni, S.; Zhang, C. H.; Cohen, B. E.; Schuck, P. J.; Chan, E. M. Controlled assembly of upconverting nanoparticles for low-threshold microlasers and their imaging in scattering media. ACS Nano 2020, 14, 1508–1519.

[88]

Shang, Y. F.; Zhou, J. J.; Cai, Y. J.; Wang, F.; Fernandez-Bravo, A.; Yang, C. H.; Jiang, L.; Jin, D. Y. Low threshold lasing emissions from a single upconversion nanocrystal. Nat. Commun. 2020, 11, 6156.

[89]

Haider, G.; Lin, H. I.; Yadav, K.; Shen, K. C.; Liao, Y. M.; Hu, H. W.; Roy, P. K.; Bera, K. P.; Lin, K. H.; Lee, H. M. et al. A highly-efficient single segment white random laser. ACS Nano 2018, 12, 11847–11859.

[90]

Zhu, S.; Shi, L.; Xiao, B. W.; Zhang, X. L.; Fan, X. D. All-optical tunable microlaser based on an ultrahigh-Q erbium-doped hybrid microbottle cavity. ACS Photonics 2018, 5, 3794–3800.

[91]

Ouyang, T. C.; Kang, S. L.; Zhang, Z. S.; Yang, D. D.; Huang, X. J.; Pan, Q. W.; Gan, J. L.; Qiu, J. R.; Dong, G. P. Microlaser output from rare-earth ion-doped nanocrystal-in-glass microcavities. Adv. Opt. Mater. 2019, 7, 1900197.

[92]

Ngara, Z. S.; Okada, D.; Oki, O.; Yamamoto, Y. Energy transfer-assisted whispering gallery mode lasing in conjugated polymer/europium hybrid microsphere resonators. Chem. Asian J. 2019, 14, 1637–1641.

[93]

Yang, Y.; Lei, F. C.; Kasumie, S.; Xu, L. H.; Ward, J. M.; Yang, L.; Nic Chormaic, S. Tunable erbium-doped microbubble laser fabricated by sol–gel coating. Opt. Express 2017, 25, 1308–1313.

[94]

Ward, J. M.; Yang, Y.; Nic Chormaic, S. Glass-on-glass fabrication of bottle-shaped tunable microlasers and their applications. Sci. Rep. 2016, 6, 25152.

[95]

Elliott, G. R.; Murugan, G. S.; Wilkinson, J. S.; Zervas, M. N.; Hewak, D. W. Chalcogenide glass microsphere laser. Opt. Express 2010, 18, 26720–26727.

[96]

Deng, Y.; Jain, R. K.; Hossein-Zadeh, M. Demonstration of a cw room temperature mid-IR microlaser. Opt. Lett. 2014, 39, 4458–4461.

[97]

Wang, P. F.; Yi, Y. T.; Wang, X.; Li, A. Z.; Jia, S. J.; Fan, Y. X.; Brambilla, G.; Wang, S. B.; Zhao, H. Y. Tm3+-doped fluorotellurite glass microsphere resonator laser at 2.3 μm. Opt. Lett. 2020, 45, 3553–3556.

[98]

Li, A. Z.; Dong, Y. K.; Wang, S. B.; Jia, S. J.; Brambilla, G.; Wang, P. F. Infrared-laser and upconversion luminescence in Ho3+-Yb3+ codoped tellurite glass microsphere. J. Lumin. 2020, 218, 116826.

[99]

Jiang, B.; Zhu, S.; Wang, W. Y.; Li, J.; Dong, C. H.; Shi, L.; Zhang, X. L. Room-temperature continuous-wave upconversion white microlaser using a rare-earth-doped microcavity. ACS Photonics 2022, 9, 2956–2962.

[100]

Jin, L. M.; Liu, Z.; Zhang, Y. Q.; Wu, Y. K.; Liu, Y. L.; Deng, H. C.; Song, Q. H.; Xiao, S. M. Lanthanide-doped nanocrystals in high-Q microtoroids for stable on-chip white-light lasers. Photonics Res. 2022, 10, 1594–1601.

[101]

Moon, B. S.; Lee, T. K.; Jeon, W. C.; Kwak, S. K.; Kim, Y. J.; Kim, D. H. Continuous-wave upconversion lasing with a sub-10 W·cm−2 threshold enabled by atomic disorder in the host matrix. Nat. Commun. 2021, 12, 4437.

[102]

Jin, L. M.; Wu, Y. K.; Wang, Y. J.; Liu, S.; Zhang, Y. Q.; Li, Z. Y.; Chen, X.; Zhang, W. F.; Xiao, S. M.; Song, Q. H. Mass-manufactural lanthanide-based ultraviolet B microlasers. Adv. Mater. 2019, 31, 1807079.

[103]

Chen, X.; Jin, L. M.; Kong, W.; Sun, T. Y.; Zhang, W. F.; Liu, X. H.; Fan, J.; Yu, S. F.; Wang, F. Confining energy migration in upconversion nanoparticles towards deep ultraviolet lasing. Nat. Commun. 2016, 7, 10304.

[104]

Sun, T. Y.; Chen, B.; Guo, Y.; Zhu, Q.; Zhao, J. X.; Li, Y. H.; Chen, X.; Wu, Y. K.; Gao, Y. B.; Jin, L. M. et al. Ultralarge anti-Stokes lasing through tandem upconversion. Nat. Commun. 2022, 13, 1032.

[105]

Jin, L. M.; Chen, X.; Wu, Y. K.; Ai, X. Z.; Yang, X. L.; Xiao, S. M.; Song, Q. H. Dual-wavelength switchable single-mode lasing from a lanthanide-doped resonator. Nat. Commun. 2022, 13, 1727.

[106]

Du, Y. Y.; Wang, Y. F.; Deng, Z. Q.; Chen, X.; Yang, X. Q.; Sun, T. Y.; Zhang, X.; Zhu, G. Y.; Yu, S. F.; Wang, F. Blue-pumped deep ultraviolet lasing from lanthanide-doped Lu6O5F8 upconversion nanocrystals. Adv. Opt. Mater. 2019, 8, 1900968.

[107]

Wang, Y. Y.; Xu, C. X.; Jiang, M. M.; Li, J. T.; Dai, J.; Lu, J. F.; Li, P. L. Lasing mode regulation and single-mode realization in ZnO whispering gallery microcavities by the Vernier effect. Nanoscale 2016, 8, 16631–16639.

[108]

Liu, W. L.; Li, M.; Guzzon, R. S.; Norberg, E. J.; Parker, J. S.; Lu, M. Z.; Coldren, L. A.; Yao, J. P. An integrated parity-time symmetric wavelength-tunable single-mode microring laser. Nat. Commun. 2017, 8, 15389.

[109]

Yang, X. F.; Lyu, Z. Y.; Dong, H.; Sun, L. D.; Yan, C. H. Lanthanide upconverted microlasing: Microlasing spanning full visible spectrum to near-infrared under low power, CW pumping. Small 2021, 17, 2103140.

[110]

Li, K. R.; Stockman, M. I.; Bergman, D. J. Self-similar chain of metal nanospheres as an efficient nanolens. Phys. Rev. Lett. 2003, 91, 227402.

[111]

Chen, X.; Jin, L. M.; Sun, T. Y.; Kong, W.; Yu, S. F.; Wang, F. Energy migration upconversion in Ce(III)-doped heterogeneous core–shell–shell nanoparticles. Small 2017, 13, 1701479.

[112]

Wan, S. K.; Cheng, W. H.; Li, J. J.; Wang, F.; Xing, X. W.; Sun, J.; Zhang, H. J.; Liu, K. Biological composite fibers with extraordinary mechanical strength and toughness mediated by multiple intermolecular interacting networks. Nano Res. 2022, 15, 9192–9198.

[113]

Li, Y. X.; Sun, J.; Li, J. J.; Liu, K.; Zhang, H. J. Engineered protein nanodrug as an emerging therapeutic tool. Nano Res. 2022, 15, 5161–5172.

[114]
Zhou, W.; Zhang, C. H.; Ren, A.; Dong, H. Y.; Yao, J. N.; Zhao, Y. S. Responsive liquid-crystal microlaser arrays with tactile perception. Adv. Opt. Mater., in press, https://doi.org/10.1002/adom.202202879.
Publication history
Copyright
Acknowledgements

Publication history

Received: 29 March 2023
Revised: 18 May 2023
Accepted: 21 May 2023
Published: 24 July 2023
Issue date: January 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 22020102003, 22207104, and 22125701), the National Key R&D Program of China (Nos. 2022YFF071000 and 2021YFF0701800), Natural Science Foundation of Jilin Province (No. 20230101102JC), China Postdoctoral Science Foundation (Nos. 2020M681055 and 2022T150634), and Young Elite Scientists Sponsorship Program by CAST (Nos. 2021-2023QNRC and YESS20210067).

Return