Journal Home > Volume 16 , Issue 7

Activation of the local renin–angiotensin system (RAS) promotes cardiomyocyte apoptosis and cardiac remodeling after acute myocardial infarction (AMI). As an anti-RAS drug, the effect of Valsartan in the early stage of acute MI is limited by its low drug concentration in the heart and low dosage. Here, by exploiting the inherent nature of neutrophils migrating to the injured myocardium and the local low-pH microenvironment caused by ischemia and hypoxia after myocardial infarction, we designed nanocarrier (NSLP)-hybridized neutrophil membranes and pH-sensitive liposomes (SLPs) for the delivery of Valsartan (NSLP-Val). These functional nanocarriers could mimic neutrophils and are homed to the injured heart; they were also found to respond to a low-pH microenvironment. In the mouse model of MI, we found that NSLP-Val could target the infarct marginal zone and release Valsartan locally in the low-pH microenvironment without affecting hemodynamic stability. Further, locally released angiotensin receptor inhibitors reduced the infarct size and inflammatory response by inhibiting cardiomyocytes. Ultimately, NSLP-Val improved cardiac function and inhibited cardiac hypertrophy and fibrosis.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Early initiation of ARBs without blood pressure risk via neutrophil membrane-fused pH-sensitive liposomes to reduce cardiomyocyte apoptosis after acute myocardial infarction

Show Author's information Jinfeng Gao1,2,§Wusiman Yakufu1,2,§Hongbo Yang1,2,§Yanan Song1,2Qiaozi Wang1,2Qiyu Li1,2Haipeng Tan1,2Jing Chen1,2Dili Sun1,2Zhengmin Wang1,2Jinyan Zhang1,2Xueyi Weng1,2Juying Qian1,2Zhiqing Pang4Qibing Wang1,2( )Zheyong Huang1,2( )Junbo Ge1,2,3( )
Department of Cardiology, Zhongshan Hospital, Fudan University. Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
National Clinical Research Center for Interventional Medicine& Shanghai Clinical Research Center for Interventional Medicine, 180 Feng Lin Road, Shanghai 200032, China
Institute of Biomedical Sciences, Fudan University, Shanghai 200032, China
School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, 826 Zhangheng Road, Shanghai 200032, China

§ Jinfeng Gao, Wusiman Yakufu, and Hongbo Yang contributed equally to this work.

Abstract

Activation of the local renin–angiotensin system (RAS) promotes cardiomyocyte apoptosis and cardiac remodeling after acute myocardial infarction (AMI). As an anti-RAS drug, the effect of Valsartan in the early stage of acute MI is limited by its low drug concentration in the heart and low dosage. Here, by exploiting the inherent nature of neutrophils migrating to the injured myocardium and the local low-pH microenvironment caused by ischemia and hypoxia after myocardial infarction, we designed nanocarrier (NSLP)-hybridized neutrophil membranes and pH-sensitive liposomes (SLPs) for the delivery of Valsartan (NSLP-Val). These functional nanocarriers could mimic neutrophils and are homed to the injured heart; they were also found to respond to a low-pH microenvironment. In the mouse model of MI, we found that NSLP-Val could target the infarct marginal zone and release Valsartan locally in the low-pH microenvironment without affecting hemodynamic stability. Further, locally released angiotensin receptor inhibitors reduced the infarct size and inflammatory response by inhibiting cardiomyocytes. Ultimately, NSLP-Val improved cardiac function and inhibited cardiac hypertrophy and fibrosis.

Keywords: myocardial infarction, blood pressure, Valsartan, early initiation, cardiomyocyte apoptosis

References(43)

[1]

GBD 2013 Mortality and Causes of Death Collaborators. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: A systematic analysis for the global burden of disease study 2013. Lancet 2015, 385, 117–171.

[2]

Ziaeian, B.; Fonarow, G. C. Epidemiology and aetiology of heart failure. Nat. Rev. Cardiol. 2016, 13, 368–378.

[3]

Lang, C. C.; Struthers, A. D. Targeting the renin-angiotensin-aldosterone system in heart failure. Nat. Rev. Cardiol. 2013, 10, 125–134.

[4]

ISIS-4 (Fourth International Study of Infarct Survival) Collaborative Group. ISIS-4:. A randomised factorial trial assessing early oral captopril, oral mononitrate, and intravenous magnesium sulphate in 58 050 patients with suspected acute myocardial infarction. Lancet 1995, 345, 669–685.

[5]

Pfeffer, M. A.; McMurray, J. J. V.; Velazquez, E. J.; Rouleau, J. L.; Køber, L.; Maggioni, A. P.; Solomon, S. D.; Swedberg, K.; Van de Werf, F.; White, H. et al. Valsartan, captopril, or both in myocardial infarction complicated by heart failure, left ventricular dysfunction, or both. N. Eng. J. Med. 2003, 349, 1893–1906.

[6]

Chinese Cardiac Study Collaborative Group. Oral captopril versus placebo among 13 634 patients with suspected acute myocardial infarction: Interim report from the Chinese Cardiac Study (CCS-1). Lancet 1995, 345, 686–687.

[7]

Miller, L.; Birks, E.; Guglin, M.; Lamba, H.; Frazier, O. H. Use of ventricular assist devices and heart transplantation for advanced heart failure. Circ. Res. 2019, 124, 1658–1678.

[8]

Forrester, S. J.; Booz, G. W.; Sigmund, C. D.; Coffman, T. M.; Kawai, T.; Rizzo, V.; Scalia, R.; Eguchi, S. Angiotensin II signal transduction: An update on mechanisms of physiology and pathophysiology. Physiol. Rev. 2018, 98, 1627–1738.

[9]

Danser, A. H. J. Cardiac angiotensin II: Does it have a function. Am. J. Physiol. Heart Circ. Physiol. 2010, 299, H1304–H1306.

[10]

Oyamada, S.; Bianchi, C.; Takai, S.; Robich, M. P.; Clements, R. T.; Chu, L.; Sellke, F. W. Impact of acute myocardial ischemia reperfusion on the tissue and blood-borne renin-angiotensin system. Basic. Res. Cardiol. 2010, 105, 513–522.

[11]

Kumar, R.; Singh, V. P.; Baker, K. M. The intracellular renin-angiotensin system in the heart. Curr. Hypertens. Rep. 2009, 11, 104–110.

[12]

Te Riet, L.; van Esch, J. H. M.; Roks, A. J. M.; van den Meiracker, A. H.; Danser, A. H. J. Hypertension: Renin-angiotensin-aldosterone system alterations. Circ. Res. 2015, 116, 960–975.

[13]

Becari, C.; Silva, M. A. B.; Durand, M. T.; Prado, C. M.; Oliveira, E. B.; Ribeiro, M. S.; Salgado, H. C.; Salgado, M. C. O.; Tostes, R. C. Elastase-2, an angiotensin II-generating enzyme, contributes to increased angiotensin II in resistance arteries of mice with myocardial infarction. Br. J. Pharmacol. 2017, 174, 1104–1115.

[14]

Jin, D.; Takai, S.; Yamada, M.; Sakaguchi, M.; Yao, Y.; Miyazaki, M. Possible roles of cardiac chymase after myocardial infarction in hamster hearts. Jpn. J. Pharmacol. 2001, 86, 203–214.

[15]

Jin, D.; Takai, S.; Yamada, M.; Sakaguchi, M.; Kamoshita, K.; Ishida, K.; Sukenaga, Y.; Miyazaki, M. Impact of chymase inhibitor on cardiac function and survival after myocardial infarction. Cardiovasc. Res. 2003, 60, 413–420.

[16]

Sun, Y. Intracardiac renin-angiotensin system and myocardial repair/remodeling following infarction. J. Mol. Cell Cardiol. 2010, 48, 483–489.

[17]

Yamagishi, H.; Kim, S.; Nishikimi, T.; Takeuchi, K.; Takeda, T. Contribution of cardiac renin-angiotensin system to ventricular remodelling in myocardial-infarcted rats. J. Mol. Cell Cardiol. 1993, 25, 1369–1380.

[18]

Passier, R. C.; Smits, J. F.; Verluyten, M. J.; Daemen, M. J. Expression and localization of renin and angiotensinogen in rat heart after myocardial infarction. Am. J. Physiol. 1996, 271, H1040–H1048.

[19]

Chen, B. H.; Lu, D.; Fu, Y. J.; Zhang, J. W.; Huang, X. B.; Cao, S. P.; Xu, D. L.; Bin, J.; Kitakaze, M.; Huang, Q. B. et al. Olmesartan prevents cardiac rupture in mice with myocardial infarction by modulating growth differentiation factor 15 and p53. Br. J. Pharmacol. 2014, 171, 3741–3753.

[20]

Wu, B.; Lin, R.; Dai, R. Z.; Chen, C. B.; Wu, H. Y.; Hong, M. M. Valsartan attenuates oxidative stress and NF-κB activation and reduces myocardial apoptosis after ischemia and reperfusion. Eur. J. Pharmacol. 2013, 705, 140–147.

[21]

O'Gara, P. T.; Kushner, F. G.; Ascheim, D. D.; Casey, D. E. Jr.; Chung, M. K.; de Lemos, J. A.; Ettinger, S. M.; Fang, J. C.; Fesmire, F. M.; Franklin, B. A. et al. 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction: A report of the American college of cardiology foundation/American heart association task force on practice guidelines. Circulation 2013, 127, e362–e425.

[22]

Amsterdam, E. A.; Wenger, N. K.; Brindis, R. G.; Casey, D. E. Jr.; Ganiats, T. G.; Holmes, D. R. Jr.; Jaffe, A. S.; Jneid, H.; Kelly, R. F.; Kontos, M. C. et al. 2014 AHA/ACC Guideline for the Management of Patients with Non-ST-Elevation Acute Coronary Syndromes: A report of the American college of cardiology/American heart association task force on practice guidelines. J. Am. Coll. Cardiol. 2014, 64, e139–e228.

[23]

Collet, J. P.; Thiele, H.; Barbato, E.; Barthélémy, O.; Bauersachs, J.; Bhatt, D. L.; Dendale, P.; Dorobantu, M.; Edvardsen, T.; Folliguet, T. et al. 2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: The task force for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation of the European Society of Cardiology (ESC). Eur. Heart. J. 2021, 42, 1289–1367.

[24]

Ibanez, B.; James, S.; Agewall, S.; Antunes, M. J.; Bucciarelli-Ducci, C.; Bueno, H.; Caforio, A. L. P.; Crea, F.; Goudevenos, J. A.; Halvorsen, S. et al. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: The task force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European society of cardiology (ESC). Eur. Heart J. 2018, 39, 119–177.

[25]

Fang, R. H.; Kroll, A. V.; Gao, W. W.; Zhang, L. F. Cell membrane coating nanotechnology. Adv. Mater. 2018, 30, e1706759.

[26]

Chen, J.; Song, Y. N.; Wang, Q. Z.; Li, Q. Y.; Tan, H. P.; Gao, J. F.; Zhang, N.; Weng, X. Y.; Sun, D. L.; Yakufu, W. et al. Targeted neutrophil-mimetic liposomes promote cardiac repair by adsorbing proinflammatory cytokines and regulating the immune microenvironment. J. Nanobiotechnol. 2022, 20, 218.

[27]

Li, Q. Y.; Huang, Z. Y.; Wang, Q. Z.; Gao, J. F.; Chen, J.; Tan, H. P.; Li, S.; Wang, Z. M.; Weng, X. Y.; Yang, H. B. et al. Targeted immunomodulation therapy for cardiac repair by platelet membrane engineering extracellular vesicles via hitching peripheral monocytes. Biomaterials 2022, 284, 121529.

[28]

Tan, H. P.; Song, Y.; Chen, J.; Zhang, N.; Wang, Q. Z.; Li, Q. Y.; Gao, J. F.; Yang, H. B.; Dong, Z.; Weng, X. Y. et al. Platelet-like fusogenic liposome-mediated targeting delivery of miR-21 improves myocardial remodeling by reprogramming macrophages post myocardial ischemia-reperfusion injury. Adv. Sci. 2021, 8, e2100787.

[29]

Zhang, N.; Song, Y. N.; Huang, Z. Y.; Chen, J.; Tan, H. P.; Yang, H. B.; Fan, M. K.; Li, Q. Y.; Wang, Q. Z.; Gao, J. F. et al. Monocyte mimics improve mesenchymal stem cell-derived extracellular vesicle homing in a mouse MI/RI model. Biomaterials 2020, 255, 120168.

[30]

Wang, Q. Z.; Song, Y. N.; Chen, J.; Li, Q. Y.; Gao, J. F.; Tan, H. P.; Zhu, Y. F.; Wang, Z. M.; Li, M. H.; Yang, H. B. et al. Direct in vivo reprogramming with non-viral sequential targeting nanoparticles promotes cardiac regeneration. Biomaterials 2021, 276, 121028.

[31]

Gao, J. F.; Song, Y. N.; Wang, Q. Z.; Chen, J.; Li, Q. Y.; Tan, H. P.; Yakufu, W.; Zhang, N.; Li, S.; Zhang, J. Y. et al. Precisely co-delivery of protein and ROS scavenger with platesomes for enhanced endothelial barrier preservation against myocardial ischemia reperfusion injury. Chem. Eng. J. 2022, 446, 136960.

[32]

Mosca, T.; Forte, W. C. N. Comparative efficiency and impact on the activity of blood neutrophils isolated by percoll, ficoll and spontaneous sedimentation methods. Immunol. Invest. 2016, 45, 29–37.

[33]

Ackers-Johnson, M.; Li, P. Y.; Holmes, A. P.; O'Brien, S. M.; Pavlovic, D.; Foo, R. S. A simplified, Langendorff-free method for concomitant isolation of viable cardiac myocytes and nonmyocytes from the adult mouse heart. Circ. Res. 2016, 119, 909–920.

[34]

De Mello, W. C.; Danser, A. H. Angiotensin II and the heart: On the intracrine renin-angiotensin system. Hypertension 2000, 35, 1183–1188.

[35]

van Kats, J. P.; Danser, A. H.; van Meegen, J. R.; Sassen, L. M.; Verdouw, P. D.; Schalekamp, M. A. Angiotensin production by the heart: A quantitative study in pigs with the use of radiolabeled angiotensin infusions. Circulation 1998, 98, 73–81.

[36]

Paul, M.; Poyan Mehr, A.; Kreutz, R. Physiology of local renin-angiotensin systems. Physiol. Rev. 2006, 86, 747–803.

[37]

Huang, C. Y.; Kuo, W. W.; Yeh, Y. L.; Ho, T. J.; Lin, J. Y.; Lin, D. Y.; Chu, C. H.; Tsai, F. J.; Tsai, C. H.; Huang, C. Y. ANG II promotes IGF-IIR expression and cardiomyocyte apoptosis by inhibiting HSF1 via JNK activation and SIRT1 degradation. Cell Death Differ. 2014, 21, 1262–1274.

[38]

Williams, B.; Mancia, G.; Spiering, W.; Agabiti Rosei, E.; Azizi, M.; Burnier, M.; Clement, D. L.; Coca, A.; de Simone, G.; Dominiczak, A. et al. 2018 ESC/ESH guidelines for the management of arterial hypertension: The Task Force for the management of arterial hypertension of the European society of cardiology (ESC) and the European society of hypertension (ESH). Eur. Heart J. 2018, 39, 3021–3104.

[39]

Yan, G. X.; Kléber, A. G. Changes in extracellular and intracellular pH in ischemic rabbit papillary muscle. Circ. Res. 1992, 71, 460–470.

[40]

Kahlon, T.; Carlisle, S.; Otero Mostacero, D.; Williams, N.; Trainor, P.; DeFilippis, A. P. Angiotensinogen: More than its downstream products: Evidence from population studies and novel therapeutics. JACC Heart Fail. 2022, 10, 699–713.

[41]

Torrado, J.; Cain, C.; Mauro, A. G.; Romeo, F.; Ockaili, R.; Chau, V. Q.; Nestler, J. A.; Devarakonda, T.; Ghosh, S.; Das, A. et al. Sacubitril/valsartan averts adverse post-infarction ventricular remodeling and preserves systolic function in rabbits. J. Am. Coll. Cardiol. 2018, 72, 2342–2356.

[42]

Ishii, M.; Kaikita, K.; Sato, K.; Sueta, D.; Fujisue, K.; Arima, Y.; Oimatsu, Y.; Mitsuse, T.; Onoue, Y.; Araki, S. et al. Cardioprotective Effects of LCZ696 (Sacubitril/valsartan) after experimental acute myocardial infarction. JACC Basic Transl. Sci. 2017, 2, 655–668.

[43]

Levine, G. N.; Bates, E. R.; Blankenship, J. C.; Bailey, S. R.; Bittl, J. A.; Cercek, B.; Chambers, C. E.; Ellis, S. G.; Guyton, R. A.; Hollenberg, S. M. et al. 2015 ACC/AHA/SCAI focused update on primary percutaneous coronary intervention for patients with ST-elevation myocardial infarction:An update of the 2011 ACCF/AHA/SCAI guideline for percutaneous coronary intervention and the 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction. J. Am. Coll. Cardiol. 2016, 67, 1235–1250.

File
12274_2023_5846_MOESM1_ESM.pdf (361.4 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 10 March 2023
Revised: 16 May 2023
Accepted: 18 May 2023
Published: 17 June 2023
Issue date: July 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

The authors thank the Shiyanjia Lab (www.shiyanjia.com) for TEM measurements. The authors are grateful to Ms. Xiao Guo at the Joint Live Small Animal Imaging Laboratory of Fudan University Shanghai Medical College-PerkinElmer Company, for her technical support with the use of the in vivo imaging system. This work was financially supported by the National Key Research and Development Program of China (No. 2016YFC1301200), the National Natural Science Foundation of China (Nos. 82070281, 81870269, and 82170524), and Shanghai Clinical Research Center for Interventional Medicine (No. 19MC1910300).

Return