Journal Home > Volume 16 , Issue 8

There are significant differences in the extent of impurity incorporation on different crystallographic directions of GaN microstructures, and the impurity-related deep energy level behavior will have a significant impact on device performance. However, a comprehensive understanding of the effect of lateral growth on device performance has not been achieved due to the lack of comprehensive spatial distribution characterization of the optical behavior and impurity incorporation in GaN microstructures. We present a comprehensive study of the optical behavior and growth mechanism of self-assembled GaN microdisks using nanoscale spatially resolved cathodoluminescence (CL) mapping. We have found a clear growth orientation-dependent optical behavior of the lateral and vertical growth sectors of self-assembled GaN microcrystals. The lateral growth sector, i.e., the { 101¯1}-growth sector, forms six side facets of the microdisk and shows significant near-bandgap emission (NBE) and weak deep energy level luminescence. Cavity effect enhanced emission was found for the first time in such a truncated hexagonal Na-flux GaN microdisk system with an ultra-smooth surface (Ra < 0.7 nm) and low stress. The self-assembled microdisk shows significant ultraviolet (UV) lasing action (main lasing peak wavelength 370.9 nm, quality factor 1278, threshold 6 × 104 μJ/cm2) under pulsed optical pumping. We believe that the appearance of UV lasing action may be related to the light limitation on the six side facets of the lateral growth of the GaN microdisk, the high structural quality, the low content of deep energy level defects, the low surface roughness, and the low stress.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

The effect of lateral growth of self-assembled GaN microdisks on UV lasing action

Show Author's information Zhiwei Si1,2Zongliang Liu2,4( )Xiaoxuan Wang5Chunxiang Xu5Wei Lin6Xiaoxuan Luo6Feng Li6Xiaoming Dong2Shunan Zheng2Xiaodong Gao2Jianfeng Wang1,2,3,4( )Ke Xu1,2,3,4( )
School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, China
Suzhou Nanowin Science and Technology Co, Ltd., Suzhou 215123, China
Shenyang National Laboratory for Materials Science, Jiangsu Institute of Advanced Semiconductors, Suzhou 215123, China
State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an 710049, China

Abstract

There are significant differences in the extent of impurity incorporation on different crystallographic directions of GaN microstructures, and the impurity-related deep energy level behavior will have a significant impact on device performance. However, a comprehensive understanding of the effect of lateral growth on device performance has not been achieved due to the lack of comprehensive spatial distribution characterization of the optical behavior and impurity incorporation in GaN microstructures. We present a comprehensive study of the optical behavior and growth mechanism of self-assembled GaN microdisks using nanoscale spatially resolved cathodoluminescence (CL) mapping. We have found a clear growth orientation-dependent optical behavior of the lateral and vertical growth sectors of self-assembled GaN microcrystals. The lateral growth sector, i.e., the { 101¯1}-growth sector, forms six side facets of the microdisk and shows significant near-bandgap emission (NBE) and weak deep energy level luminescence. Cavity effect enhanced emission was found for the first time in such a truncated hexagonal Na-flux GaN microdisk system with an ultra-smooth surface (Ra < 0.7 nm) and low stress. The self-assembled microdisk shows significant ultraviolet (UV) lasing action (main lasing peak wavelength 370.9 nm, quality factor 1278, threshold 6 × 104 μJ/cm2) under pulsed optical pumping. We believe that the appearance of UV lasing action may be related to the light limitation on the six side facets of the lateral growth of the GaN microdisk, the high structural quality, the low content of deep energy level defects, the low surface roughness, and the low stress.

Keywords: lasing, homogeneous lateral epitaxy, spatially resolved cathodoluminescence, deep energy level, GaN microdisk

References(107)

[1]

Nakamura, S. The roles of structural imperfections in InGaN-based blue light-emitting diodes and laser diodes. Science 1998, 281, 956–961.

[2]

Fasol, G. Room-temperature blue gallium nitride laser diode. Science 1996, 272, 1751–1752.

[3]

Yang, S.; Song, H. F.; Peng, Y.; Zhao, L.; Tong, Y. Z.; Kang, F. Y.; Xu, M. S.; Sun, B.; Wang, X. Q. Reduced thermal boundary conductance in GaN-based electronic devices introduced by metal bonding layer. Nano Res. 2021, 14, 3616–3620.

[4]

Long, H.; Wei, Y.; Yu, T. J.; Wang, Z.; Jia, C. Y.; Yang, Z. J.; Zhang, G. Y.; Fan, S. S. Modulating lateral strain in GaN-based epitaxial layers by patterning sapphire substrates with aligned carbon nanotube films. Nano Res. 2012, 5, 646–653.

[5]

Iwinska, M.; Sochacki, T.; Amilusik, M.; Kempisty, P.; Lucznik, B.; Fijalkowski, M.; Litwin-Staszewska, E.; Smalc-Koziorowska, J.; Khapuridze, A.; Staszczak, G. et al. Homoepitaxial growth of HVPE-GaN doped with Si. J. Cryst. Growth 2016, 456, 91–96.

[6]

Hofmann, P.; Krupinski, M.; Habel, F.; Leibiger, G.; Weinert, B.; Eichler, S.; Mikolajick, T. Novel approach for n-type doping of HVPE gallium nitride with germanium. J. Cryst. Growth 2016, 450, 61–65.

[7]

Zvanut, M. E.; Dashdorj, J.; Freitas, J. A.; Glaser, E. R.; Willoughby, W. R.; Leach, J. H.; Udwary, K. Incorporation of Mg in free-standing HVPE GaN substrates. J. Electron. Mater. 2016, 45, 2692–2696.

[8]

Richter, E.; Gridneva, E.; Weyers, M.; Tränkle, G. Fe-doping in hydride vapor-phase epitaxy for semi-insulating gallium nitride. J. Cryst. Growth 2016, 456, 97–100.

[9]

Zhang, R.; Kuech, T. F. Photoluminescence of carbon in situ doped GaN grown by halide vapor phase epitaxy. Appl. Phys. Lett. 1998, 72, 1611–1613.

[10]

Iwinska, M.; Piotrzkowski, R.; Litwin-Staszewska, E.; Sochacki, T.; Amilusik, M.; Fijalkowski, M.; Lucznik, B.; Bockowski, M. Highly resistive C-doped hydride vapor phase epitaxy-GaN grown on ammonothermally crystallized GaN seeds. Appl. Phys. Express 2017, 10, 011003.

[11]

Waltereit, P.; Brandt, O.; Trampert, A.; Grahn, H. T.; Menniger, J.; Ramsteiner, M.; Reiche, M.; Ploog, K. H. Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes. Nature 2000, 406, 865–868.

[12]

Zhang, M.; Shi, J. J. Exciton states and optical transitions in InGaN/GaN quantum dot nanowire heterostructures: Strong built-in electric field and dielectric mismatch effects. J. Lumin. 2011, 131, 1908–1912.

[13]

Monemar, B. Fundamental energy gap of GaN from photoluminescence excitation spectra. Phys. Rev. B 1974, 10, 676–681.

[14]

Jiang, J. A.; Xu, H. Q.; Sheikhi, M.; Li, L.; Yang, Z. H.; Hoo, J.; Guo, S. P.; Zeng, Y. H.; Guo, W.; Ye, J. C. Omnidirectional whispering-gallery-mode lasing in GaN microdisk obtained by selective area growth on sapphire substrate. Opt. Express 2019, 27, 16195–16205.

[15]

Baek, H.; Lee, C. H.; Chung, K.; Yi, G. C. Epitaxial GaN microdisk lasers grown on graphene microdots. Nano Lett. 2013, 13, 2782–2785.

[16]

He, G.; Qin, F. F.; Xu, C. X.; Wang, C.; Xu, Y.; Cao, B.; Xu, K. Double-triangular whispering-gallery mode lasing from a hexagonal GaN microdisk grown on graphene. J. Mater. Sci. Technol. 2020, 53, 140–145.

[17]

Zong, H.; Yang, Y.; Ma, C.; Feng, X. H.; Wei, T. T.; Yang, W.; Li, J. C.; Li, J. Z.; You, L. P.; Zhang, J. et al. Flexibly and repeatedly modulating lasing wavelengths in a single core−shell semiconductor microrod. ACS Nano 2017, 11, 5808–5814.

[18]

Peng, Y. Y.; Lu, J. F.; Peng, D. F.; Ma, W. D.; Li, F. T.; Chen, Q. S.; Wang, X. D.; Sun, J. L.; Liu, H. T.; Pan, C. F. Dynamically modulated GaN whispering gallery lasing mode for strain sensor. Adv. Funct. Mater. 2019, 29, 1905051.

[19]

Wang, X. F.; Peng, W. B.; Yu, R. M.; Zou, H. Y.; Dai, Y. J.; Zi, Y. L.; Wu, C. S.; Li, S. T.; Wang, Z. L. Simultaneously enhancing light emission and suppressing efficiency droop in GaN microwire-based ultraviolet light-emitting diode by the piezo-phototronic effect. Nano Lett. 2017, 17, 3718–3724.

[20]

Jeong, J.; Jin, D. K.; Choi, J.; Jang, J.; Kang, B. K.; Wang, Q. X.; Park, W. I.; Jeong, M. S.; Bae, B. S.; Yang, W. S. et al. Transferable, flexible white light-emitting diodes of GaN p-n junction microcrystals fabricated by remote epitaxy. Nano Energy 2021, 86, 106075.

[21]
Ryu, J. E.; Park, S.; Park, Y.; Ryu, S. W.; Hwang, K.; Jang, H. W. Technological breakthroughs in chip fabrication, transfer, and color conversion for high-performance micro-LED displays. Adv. Mater., in press, https://doi.org/10.1002/adma.202204947.
[22]

Liu, T.; Li, D.; Hu, H.; Huang, X.; Zhao, Z. F.; Sha, W.; Jiang, C. Y.; Du, C. H.; Liu, M. M.; Pu, X. et al. Piezo-phototronic effect in InGaN/GaN semi-floating micro-disk LED arrays. Nano Energy 2020, 67, 104218.

[23]

Journot, T.; Bouchiat, V.; Gayral, B.; Dijon, J.; Hyot, B. Self-assembled UV photodetector made by direct epitaxial GaN growth on graphene. ACS Appl. Mater. Interfaces 2018, 10, 18857–18862.

[24]

Choi, S.; Song, H. G.; Cho, S.; Cho, Y. H. Orthogonally polarized, dual-wavelength quantum wire network emitters embedded in single microrod. Nano Lett. 2019, 19, 8454–8460.

[25]

Hua, Q. L.; Sun, J. L.; Liu, H. T.; Cui, X.; Ji, K. Y.; Guo, W. B.; Pan, C. F.; Hu, W. G.; Wang, Z. L. Flexible GaN microwire-based piezotronic sensory memory device. Nano Energy 2020, 78, 105312.

[26]

Chang, A. S.; Li, B. J.; Wang, S. Z.; Frisone, S.; Goldman, R. S.; Han, J.; Lauhon, L. J. Unveiling the influence of selective-area-regrowth interfaces on local electronic properties of GaN p-n junctions for efficient power devices. Nano Energy 2022, 102, 107689.

[27]

Van Treeck, D.; Calabrese, G.; Goertz, J. J. W.; Kaganer, V. M.; Brandt, O.; Fernández-Garrido, S.; Geelhaar, L. Self-assembled formation of long, thin, and uncoalesced GaN nanowires on crystalline TiN films. Nano Res. 2018, 11, 565–576.

[28]

Schuster, F.; Furtmayr, F.; Zamani, R.; Magén, C.; Morante, J. R.; Arbiol, J.; Garrido, J. A.; Stutzmann, M. Self-assembled GaN nanowires on diamond. Nano Lett. 2012, 12, 2199–2204.

[29]

Fernández-Garrido, S.; Kaganer, V. M.; Sabelfeld, K. K.; Gotschke, T.; Grandal, J.; Calleja, E.; Geelhaar, L.; Brandt, O. Self-regulated radius of spontaneously formed GaN nanowires in molecular beam epitaxy. Nano Lett. 2013, 13, 3274–3280.

[30]

Hetzl, M.; Kraut, M.; Hoffmann, T.; Stutzmann, M. Polarity control of heteroepitaxial GaN nanowires on diamond. Nano Lett. 2017, 17, 3582–3590.

[31]

Beeler, M.; Hille, P.; Schörmann, J.; Teubert, J.; De La Mata, M.; Arbiol, J.; Eickhoff, M.; Monroy, E. Intraband absorption in self-assembled Ge-doped GaN/AlN nanowire heterostructures. Nano Lett. 2014, 14, 1665–1673.

[32]

Minj, A.; Cros, A.; Garro, N.; Colchero, J.; Auzelle, T.; Daudin, B. Assessment of polarity in GaN self-assembled nanowires by electrical force microscopy. Nano Lett. 2015, 15, 6770–6776.

[33]

Lo, I.; Hsieh, C. H.; Hsu, Y. C.; Pang, W. Y.; Chou, M. C. Self-assembled GaN hexagonal micropyramid and microdisk. Appl. Phys. Lett. 2009, 94, 062105.

[34]

Lo, I.; Wang, Y. C.; Hsu, Y. C.; Shih, C. H.; Pang, W. Y.; You, S. T.; Hu, C. H.; Chou, M. M. C.; Hsu, G. Z. L. Electrical contact for wurtzite GaN microdisks. Appl. Phys. Lett. 2014, 105, 082101.

[35]

Wang, P.; Wang, X. Q.; Wang, T.; Tan, C. S.; Sheng, B. W.; Sun, X. X.; Li, M.; Rong, X.; Zheng, X. T.; Chen, Z. Y. et al. Lattice-symmetry-driven epitaxy of hierarchical GaN nanotripods. Adv. Funct. Mater. 2017, 27, 1604854.

[36]

Chen, L.; Sheng, B. W.; Sheng, S. S.; Wang, P.; Sun, X. X.; Li, D.; Wang, T.; Tao, R. C.; Liu, S. F.; Chen, Z. Y. et al. Room temperature triggered single photon emission from self-assembled GaN/AlN quantum dot in nanowire. Adv. Funct. Mater. 2022, 32, 2208340.

[37]

Liu, B. D.; Liu, Q. Y.; Yang, W. J.; Li, J.; Labbé, C.; Portier, X.; Zhang, X. L.; Yao, J. L. Homoepitaxial growth of high-quality GaN nanoarrays for enhanced UV luminescence. CrystEngComm 2022, 24, 2472–2478.

[38]

Li, H.; Chin, A. H.; Sunkara, M. K. Direction-dependent homoepitaxial growth of GaN nanowires. Adv. Mater. 2006, 18, 216–220.

[39]

Si, Z. W.; Liu, Z. L.; Hu, Y. Q.; Zheng, S. A.; Dong, X. M.; Gao, X. D.; Wang, J. F.; Xu, K. Growth behavior and stress distribution of bulk GaN grown by Na-flux with HVPE GaN seed under near-thermodynamic equilibrium. Appl. Surf. Sci. 2022, 578, 152073.

[40]

Chen, K. M.; Yeh, Y. H.; Wu, Y. H.; Chiang, C. H.; Yang, D. R.; Gao, Z. S.; Chao, C. L.; Chi, T. W.; Fang, Y. H.; Tsay, J. D. et al. Stress and defect distribution of thick GaN film homoepitaxially regrown on free-standing GaN by hydride vapor phase epitaxy. Jpn. J. Appl. Phys. 2010, 49, 091001.

[41]

Imade, M.; Imanishi, M.; Todoroki, Y.; Imabayashi, H.; Matsuo, D.; Murakami, K.; Takazawa, H.; Kitamoto, A.; Maruyama, M.; Yoshimura, M. et al. Fabrication of low-curvature 2 in. GaN wafers by Na-flux coalescence growth technique. Appl. Phys. Express 2014, 7, 035503.

[42]

Kawamura, F.; Tanpo, M.; Miyoshi, N.; Imade, M.; Yoshimura, M.; Mori, Y.; Kitaoka, Y.; Sasaki, T. Growth of GaN single crystals with extremely low dislocation density by two-step dislocation reduction. J. Cryst. Growth 2009, 311, 3019–3024.

[43]

Mori, Y.; Kitaoka, Y.; Imade, M.; Miyoshi, N.; Yoshimura, M.; Sasaki, T. Growth of bulk GaN crystals by Na flux method. Phys. Status Solidi C 2011, 8, 1445–1449.

[44]

Mori, Y.; Imade, M.; Maruyama, M.; Yoshimura, M. Growth of GaN crystals by Na flux method. ECS J. Solid State Sci. Technol. 2013, 2, N3068–N3071.

[45]

Si, Z. W.; Liu, Z. L.; Gu, H.; Dong, X. M.; Gao, X. D.; Ren, Y. J.; Wang, X.; Wang, J. F.; Xu, K. Study on the stress and mechanism of self-separated GaN grown by Na-flux method. Appl. Phys. Express 2021, 14, 035501.

[46]

Imanishi, M.; Yoshida, T.; Kitamura, T.; Murakami, K.; Imade, M.; Yoshimura, M.; Shibata, M.; Tsusaka, Y.; Matsui, J.; Mori, Y. Homoepitaxial hydride vapor phase epitaxy growth on GaN wafers manufactured by the Na-flux method. Cryst. Growth Des. 2017, 17, 3806–3811.

[47]

Lee, S.; Kim, J.; Oh, J.; Ryu, J.; Hwang, K.; Hwang, J.; Kang, S.; Choi, J. H.; Sim, Y. C.; Cho, Y. H. et al. A discrete core–shell-like micro-light-emitting diode array grown on sapphire nano-membranes. Sci. Rep. 2020, 10, 7506.

[48]

Wang, G.; Yuan, W. X.; Jian, J. K.; Bao, H. Q.; Wang, J. F.; Chen, X. L.; Liang, J. K. Growth of GaN single crystals by Ca3N2 flux. Scr. Mater. 2008, 58, 319–322.

[49]

Si, Z. W.; Liu, Z. L.; Hu, Y. Q.; Wang, X. X.; Xu, C. X.; Zheng, S. N.; Dong, X. M.; Gao, X. D.; Chen, J. J.; Wang, J. F. et al. Yellow-green luminescence due to polarity-dependent incorporation of carbon impurities in self-assembled GaN microdisk. Nano Lett. 2022, 22, 8670–8678.

[50]

Chung, K.; Yoo, H.; Hyun, J. K.; Oh, H.; Tchoe, Y.; Lee, K.; Baek, H.; Kim, M.; Yi, G. C. Flexible GaN light-emitting diodes using GaN microdisks epitaxial laterally overgrown on graphene dots. Adv. Mater. 2016, 28, 7688–7694.

[51]

Lin, Y. T.; Yeh, T. W.; Nakajima, Y.; Dapkus, P. D. Catalyst-free GaN nanorods synthesized by selective area growth. Adv. Funct. Mater. 2014, 24, 3162–3171.

[52]

Gačević, Ž.; Sanchez, D. G.; Calleja, E. Formation mechanisms of GaN nanowires grown by selective area growth homoepitaxy. Nano Lett. 2015, 15, 1117–1121.

[53]

Gradečak, S.; Qian, F.; Li, Y.; Park, H. G.; Lieber, C. M. GaN nanowire lasers with low lasing thresholds. Appl. Phys. Lett. 2005, 87, 173111.

[54]

Gu, H.; Liu, Z. L.; Dong, X. M.; Gao, X. D.; Tian, F. F.; Wang, J. F.; Xu, K. Investigation of oxygen impurity in different growth zones of GaN crystal grown by Na-flux method. J. Cryst. Growth 2020, 544, 125702.

[55]

Si, Z. W.; Liu, Z. L.; Gu, H.; Ren, Y. J.; Dong, X. M.; Gao, X. D.; Wang, J. F.; Xu, K. Stress evolution in different growth mechanism of GaN grown by Na-flux method. Jpn. J. Appl. Phys. 2020, 59, 110901.

[56]

Si, Z. W.; Liu, Z. L.; Zheng, S. N.; Dong, X. M.; Gao, X. D.; Wang, J. F.; Xu, K. Yellow luminescence and carrier distribution due to polarity-dependent incorporation of carbon impurities in bulk GaN by Na flux. J. Lumin 2023, 255, 119566.

[57]

Utsumi, W.; Saitoh, H.; Kaneko, H.; Watanuki, T.; Aoki, K.; Shimomura, O. Congruent melting of gallium nitride at 6 GPa and its application to single-crystal growth. Nat. Mater. 2003, 2, 735–738.

[58]

Liu, Z. L.; Ren, G. Q.; Shi, L.; Su, X. J.; Wang, J. F.; Xu, K. Effect of carbon types on the generation and morphology of GaN polycrystals grown using the Na flux method. CrystEngComm 2015, 17, 1030–1036.

[59]

Kawamura, F.; Morishita, M.; Tanpo, M.; Imade, M.; Yoshimura, M.; Kitaoka, Y.; Mori, Y.; Sasaki, T. Effect of carbon additive on increases in the growth rate of 2 in. GaN single crystals in the Na flux method. J. Cryst. Growth 2008, 310, 3946–3949.

[60]

Zhao, B. J.; Lockrey, M. N.; Wang, N. Y.; Caroff, P.; Yuan, X. M.; Li, L.; Wong-Leung, J.; Tan, H. H.; Jagadish, C. Highly regular rosette-shaped cathodoluminescence in GaN self-assembled nanodisks and nanorods. Nano Res. 2020, 13, 2500–2505.

[61]

Tamboli, A. C.; Schmidt, M. C.; Hirai, A.; DenBaars, S. P.; Hu, E. L. Observation of whispering gallery modes in nonpolar m-plane GaN microdisks. Appl. Phys. Lett. 2009, 94, 251116.

[62]

Kouno, T.; Kishino, K.; Sakai, M. Lasing action on whispering gallery mode of self-organized GaN hexagonal microdisk crystal fabricated by RF-plasma-assisted molecular beam epitaxy. IEEE J. Quantum Electron. 2011, 47, 1565–1570.

[63]

Tessarek, C.; Goldhahn, R.; Sarau, G.; Heilmann, M.; Christiansen, S. Carrier-induced refractive index change observed by a whispering gallery mode shift in GaN microrods. New J. Phys. 2015, 17, 083047.

[64]

Coulon, P. M.; Hugues, M.; Alloing, B.; Beraudo, E.; Leroux, M.; Zuniga-Perez, J. GaN microwires as optical microcavities: Whispering gallery modes vs. Fabry-Perot modes. Opt. Express 2012, 20, 18707–18716.

[65]

Baek, H.; Hyun, J. K.; Chung, K.; Oh, H.; Yi, G. C. Selective excitation of Fabry-Perot or whispering-gallery mode-type lasing in GaN microrods. Appl. Phys. Lett. 2014, 105, 201108.

[66]

Lyons, J. L.; Janotti, A.; Van De Walle, C. G. Effects of carbon on the electrical and optical properties of InN, GaN, and AlN. Phys. Rev. B 2014, 89, 035204.

[67]

Reshchikov, M. A.; Demchenko, D. O.; Usikov, A.; Helava, H.; Makarov, Y. Carbon defects as sources of the green and yellow luminescence bands in undoped GaN. Phys. Rev. B 2014, 90, 235203.

[68]

Reshchikov, M. A.; Morkoç, H.; Park, S. S.; Lee, K. Y. Two charge states of dominant acceptor in unintentionally doped GaN: Evidence from photoluminescence study. Appl. Phys. Lett. 2002, 81, 4970–4972.

[69]

Reshchikov, M. A.; Morkoç, H.; Park, S. S.; Lee, K. Y. Yellow and green luminescence in a freestanding GaN template. Appl. Phys. Lett. 2001, 78, 3041–3043.

[70]

Xie, Z. J.; Sui, Y.; Buckeridge, J.; Sokol, A. A.; Keal, T. W.; Walsh, A. Prediction of multiband luminescence due to the gallium vacancy-oxygen defect complex in GaN. Appl. Phys. Lett. 2018, 112, 262104.

[71]

Xu, S. R.; Hao, Y.; Zhang, J. C.; Jiang, T.; Yang, L. N.; Lu, X. L.; Lin, Z. Y. Yellow luminescence of polar and nonpolar GaN nanowires on r-plane sapphire by metal organic chemical vapor deposition. Nano Lett. 2013, 13, 3654–3657.

[72]

Sekiguchi, T.; Lee, W.; Luo, X. J.; Kimura, T.; Cho, Y. Cathodoluminescence study of killer defects in GaN wafers on sapphire substrates. Phys. Status Solidi C 2017, 14, 1700054.

[73]

Lee, W.; Watanabe, K.; Kumagai, K.; Park, S.; Lee, H.; Yao, T.; Chang, J.; Sekiguchi, T. Cathodoluminescence study of nonuniformity in hydride vapor phase epitaxy-grown thick GaN films. J. Electron Microsc. 2012, 61, 25–30.

[74]

Lee, S. C.; Sun, X. Y.; Hersee, S. D.; Brueck, S. R. J. Orientation-dependent nucleation of GaN on a nanoscale faceted Si surface. J. Cryst. Growth 2005, 279, 289–292.

[75]

Kung, P.; Walker, D.; Hamilton, M.; Diaz, J.; Razeghi, M. Lateral epitaxial overgrowth of GaN films on sapphire and silicon substrates. Appl. Phys. Lett. 1999, 74, 570–572.

[76]

Kawamura, T.; Akiyama, T.; Kitamoto, A.; Imanishi, M.; Yoshimura, M.; Mori, Y.; Morikawa, Y.; Kangawa, Y.; Kakimoto, K. Absolute surface energies of oxygen-adsorbed GaN surfaces. J. Cryst. Growth 2020, 549, 125868.

[77]

Cruz, S. C.; Keller, S.; Mates, T. E.; Mishra, U. K.; DenBaars, S. P. Crystallographic orientation dependence of dopant and impurity incorporation in GaN films grown by metalorganic chemical vapor deposition. J. Cryst. Growth 2009, 311, 3817–3823.

[78]

Zywietz, T. K.; Neugebauer, J.; Scheffler, M. The adsorption of oxygen at GaN surfaces. Appl. Phys. Lett. 1999, 74, 1695–1697.

[79]

Li, X.; Coleman, J. J. Depth-resolved and excitation power dependent cathodoluminescence study of GaN films grown by metalorganic chemical vapor deposition. Appl. Phys. Lett. 1997, 70, 438–440.

[80]

Fleischer, K.; Toth, M.; Phillips, M. R.; Zou, J.; Li, G.; Chua, S. J. Depth profiling of GaN by cathodoluminescence microanalysis. Appl. Phys. Lett. 1999, 74, 1114–1116.

[81]

Kanaya, K.; Okayama, S. Penetration and energy-loss theory of electrons in solid targets. J. Phys. D: Appl. Phys. 1972, 5, 43–58.

[82]

Imanishi, M.; Murakami, K.; Imabayashi, H.; Takazawa, H.; Todoroki, Y.; Matsuo, D.; Maruyama, M.; Imade, M.; Yoshimura, M.; Mori, Y. Coalescence growth of dislocation-free GaN crystals by the Na-flux method. Appl. Phys. Express 2012, 5, 095501.

[83]

Imade, M.; Murakami, K.; Matsuo, D.; Imabayashi, H.; Takazawa, H.; Todoroki, Y.; Kitamoto, A.; Maruyama, M.; Yoshimura, M.; Mori, Y. Centimeter-sized bulk GaN single crystals grown by the Na-flux method with a necking technique. Cryst. Growth Des. 2012, 12, 3799–3805.

[84]

Mahadik, N. A.; Qadri, S. B.; Freitas, J. A. Jr. Structural inhomogeneities and impurity incorporation in growth of high-quality ammonothermal GaN substrates. Cryst. Growth Des. 2015, 15, 291–294.

[85]

Sintonen, S.; Wahl, S.; Richter, S.; Meyer, S.; Suihkonen, S.; Schulz, T.; Irmscher, K.; Danilewsky, A. N.; Tuomi, T. O.; Stankiewicz, R. et al. Evolution of impurity incorporation during ammonothermal growth of GaN. J. Cryst. Growth 2016, 456, 51–57.

[86]

Feng, D.; Ming, N. B.; Hong, J. F.; Yang, Y. S.; Zhu, J. S.; Yang, Z.; Wang, Y. N. Enhancement of second-harmonic generation in LiNbO3 crystals with periodic laminar ferroelectric domains. Appl. Phys. Lett. 1980, 37, 607–609.

[87]

Lin, Z. Y.; Zhang, J. C.; Xu, S. R.; Chen, Z. B.; Yang, S. Y.; Tian, K.; Su, X. J.; Shi, X. F.; Hao, Y. Influence of vicinal sapphire substrate on the properties of N-polar GaN films grown by metal-organic chemical vapor deposition. Appl. Phys. Lett. 2014, 105, 082114.

[88]

Yang, J.; Zhao, D. G.; Jiang, D. S.; Chen, P.; Liu, Z. S.; Zhu, J. J.; Li, X. J.; He, X. G.; Liu, J. P.; Zhang, L. Q. et al. Emission efficiency enhanced by reducing the concentration of residual carbon impurities in InGaN/GaN multiple quantum well light emitting diodes. Opt. Express 2016, 24, 13824–13831.

[89]

Czekalla, C.; Sturm, C.; Schmidt-Grund, R.; Cao, B. Q.; Lorenz, M.; Grundmann, M. Whispering gallery mode lasing in zinc oxide microwires. Appl. Phys. Lett. 2008, 92, 241102.

[90]

Chen, R.; Ling, B.; Sun, X. W.; Sun, H. D. Room temperature excitonic whispering gallery mode lasing from high-quality hexagonal ZnO microdisks. Adv. Mater. 2011, 23, 2199–2204.

[91]

Choi, H. W.; Hui, K. N.; Lai, P. T.; Chen, P.; Zhang, X. H.; Tripathy, S.; Teng, J. H.; Chua, S. J. Lasing in GaN microdisks pivoted on Si. Appl. Phys. Lett. 2006, 89, 211101.

[92]

Zi, H.; Cheung, Y. F.; Damilano, B.; Frayssinet, E.; Alloing, B.; Duboz, J. Y.; Boucaud, P.; Semond, F.; Choi, H. W. Influence of surface roughness on the lasing characteristics of optically pumped thin-film GaN microdisks. Opt. Lett. 2022, 47, 1521–1524.

[93]

Mei, Y.; Xie, M. C.; Long, H.; Ying, L. Y.; Zhang, B. P. Low threshold GaN-based microdisk lasers on silicon with high Q factor. J. Lightwave Technol. 2022, 40, 2952–2958.

[94]

Navid, I. A.; Pandey, A.; Goh, Y. M.; Schwartz, J.; Hovden, R.; Mi, Z. T. GaN-based deep-nano structures: Break the efficiency bottleneck of conventional nanoscale optoelectronics. Adv. Opt. Mater. 2022, 10, 2102263.

[95]

Tawfik, W. Z.; Song, J.; Lee, J. J.; Ha, J. S.; Ryu, S. W.; Choi, H. S.; Ryu, B.; Lee, J. K. Effect of external tensile stress on blue InGaN/GaN multi-quantum-well light-emitting diodes. Appl. Surf. Sci. 2013, 283, 727–731.

[96]

Cho, S. I.; Chang, K.; Kwon, M. S. Strain analysis of a GaN epilayer grown on a c-plane sapphire substrate with different growth times. J. Mater. Sci. 2007, 42, 3569–3572.

[97]

Chen, J. W.; Chen, Y. F.; Lu, H.; Schaff, W. J. Cross-sectional Raman spectra of InN epifilms. Appl. Phys. Lett. 2005, 87, 041907.

[98]

Schustek, P.; Hocker, M.; Klein, M.; Simon, U.; Scholz, F.; Thonke, K. Spectroscopic study of semipolar 1122-HVPE GaN exhibiting high oxygen incorporation. J. Appl. Phys. 2014, 116, 163515.

[99]

Johnson, J. C.; Choi, H. J.; Knutsen, K. P.; Schaller, R. D.; Yang, P. D.; Saykally, R. J. Single gallium nitride nanowire lasers. Nat. Mater. 2002, 1, 106–110.

[100]

Lo, M. H.; Cheng, Y. J.; Kuo, H. C.; Wang, S. C. Enhanced electron–hole plasma stimulated emission in optically pumped gallium nitride nanopillars. Appl. Phys. Lett. 2011, 98, 121101.

[101]

Lo, M. H.; Cheng, Y. J.; Kuo, H. C.; Wang, S. C. Enhanced stimulated emission from optically pumped gallium nitride nanopillars. Appl. Phys. Express 2011, 4, 022102.

[102]

Guo, Z.; Zhao, D. X.; Liu, Y. C.; Shen, D. Z.; Yao, B.; Zhang, Z. Z.; Li, B. H.; Guo, Z.; Liu, Y. C. Electrically pumped single-mode lasing emission of self-assembled n-ZnO microcrystalline film/p-GaN heterojunction diode. J. Phys. Chem. C 2010, 114, 15499–15503.

[103]

Luo, X. X.; Cai, Y.; Wang, Y. S.; Chen, Z. Y.; Liu, F.; Zhang, L.; Zhang, Y. P.; Li, F. Fully deterministic analysis on photonic whispering-gallery modes of irregular polygonal microcavities with testing in hexagons. Phys. Rev. A 2021, 103, L031503.

[104]

Lozac'h, M.; Nakano, Y.; Sang, L. W.; Sakoda, K.; Sumiya, M. Study of defect levels in the band gap for a thick InGaN film. Jpn. J. Appl. Phys. 2012, 51, 121001.

[105]

Kucheyev, S. O.; Toth, M.; Phillips, M. R.; Williams, J. S.; Jagadish, C.; Li, G. Chemical origin of the yellow luminescence in GaN. J. Appl. Phys. 2002, 91, 5867–5874.

[106]

Zhang, H. S.; Shi, L.; Yang, X. B.; Zhao, Y. J.; Xu, K.; Wang, L. W. First-principles calculations of quantum efficiency for point defects in semiconductors: The example of yellow luminance by GaN: CN + ON and GaN: CN. Adv. Opt. Mater. 2017, 5, 1700404.

[107]

Zhao, D. G. 6.2: Invited paper: Effect of carbon impurity on the performance of GaN-based laser diodes. SID Symp. Digest Tech. Papers 2021, 52, 117–118.

File
12274_2023_5845_MOESM1_ESM.pdf (5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 26 February 2023
Revised: 17 May 2023
Accepted: 21 May 2023
Published: 18 July 2023
Issue date: August 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

We thank Dr. JueMin Yi and Dr. Miao Wang in Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (SINANO) for valuable discussions. This work was supported by the National Key R&D Program of China (No. 2021YFB3602000) and the Fundamental Research Funds for the Central Universities (No. WK5290000003). The authors are grateful for the technical support for Nano-X from SINANO.

Return