AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

High-entropy selenides: A new platform for highly selective oxidation of glycerol to formate and energy-saving hydrogen evolution in alkali-acid hybrid electrolytic cell

Hu Yao1Yibo Wang2Yinan Zheng1Xin Yu1Junjie Ge2Yonghong Zhu3( )Xiaohui Guo1( )
Key Lab of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, The College of Chemistry and Materials Science, Northwest University, Xi’an 710069, China
Changchun Institute of Applied Chemistry, Changchun 130022, China
School of Chemical Engineering, Northwest University, Xi’an 710069, China
Show Author Information

Graphical Abstract

A kind of advanced high-entropy selenide (HESe) electrocatalysts were prepared by in-situ growth on copper foam (CF) for the first time. High-entropy selenide catalyst exhibits high selectivity for formate in glycerol oxidation reaction (GOR) and very low potential ~ 0.5 V in electrolysis hydrogen generation and robust operation stability.

Abstract

Glycerol oxidation reaction (GOR) coupled with hydrogen generation simultaneously is a promising strategy for developing sustainable energy conversion technologies, but the complexity of glycerol oxidation products and the high coupling hydrogen evolution potential limit its wide application. In this paper, a self-supported high-entropy selenide electrode can be fabricated via a simple hydrothermal process. Then, the prepared electrode as an advanced catalyst displays optimal catalytic activity (1.20 V at 10 mA·cm−2) and high selectivity for the formation of formate in GOR. The results show that the lattice distortion effect of high entropy materials composed of multiple elements is mainly responsible for the greatly improved catalytic activity and selectivity for GOR. Moreover, an advanced alkali-acid hybrid electrolytic cell was assembled that enables efficient energy-saving hydrogen generation and GOR simultaneously. Herein, the electrolyzer requires only 0.5 V applied voltage to reach 10 mA·cm−2 for hydrogen generation and maintains long-term operation stability.

Electronic Supplementary Material

Download File(s)
12274_2023_5842_MOESM1_ESM.pdf (3.2 MB)
12274_2023_5842_MOESM2_ESM.pdf (2.8 MB)

References

[1]

Li, X. J.; Zhang, H. K.; Li, X.; Hu, Q.; Deng, C.; Jiang, X. X.; Yang, H. P.; He, C. X. Janus heterostructure of cobalt and iron oxide as dual-functional electrocatalysts for overall water splitting. Nano Res. 2023, 16, 2245–2251.

[2]

Fan, L. F.; Ji, Y. X.; Wang, G. X.; Chen, J. X.; Chen, K.; Liu, X.; Wen, Z. H. High entropy alloy electrocatalytic electrode toward alkaline glycerol valorization coupling with acidic hydrogen production. J. Am. Chem. Soc. 2022, 144, 7224–7235.

[3]

Geng, S.; Tian, F. Y.; Li, M. G.; Liu, Y. Q.; Sheng, J.; Yang, W. W.; Yu, Y. S.; Hou, Y. L. Activating interfacial S sites of MoS2 boosts hydrogen evolution electrocatalysis. Nano Res. 2022, 15, 1809–1816.

[4]

Han, J. Y.; Guan, J. Q. Multicomponent transition metal oxides and (oxy)hydroxides for oxygen evolution. Nano Res. 2023, 16, 1913–1966.

[5]

Shang, H. S.; Liu, D. Atomic design of carbon-based dual-metal site catalysts for energy applications. Nano Res. 2023, 16, 6477–6506.

[6]

Chen, Y. X.; Lavacchi, A.; Miller, H. A.; Bevilacqua, M.; Filippi, J.; Innocenti, M.; Marchionni, A.; Oberhauser, W.; Wang, L.; Vizza, F. Nanotechnology makes biomass electrolysis more energy efficient than water electrolysis. Nat. Commun. 2014, 5, 4036.

[7]

Wang, T. J.; Li, F. M.; Huang, H.; Yin, S. W.; Chen, P.; Jin, P. J.; Chen, Y. Porous Pd-PdO nanotubes for methanol electrooxidation. Adv. Funct. Mater. 2020, 30, 2000534.

[8]

Liu, J. F.; Wang, Q. X.; Li, T.; Wang, Y.; Li, H. M.; Cabot, A. PdMoSb trimetallene as high-performance alcohol oxidation electrocatalyst. Nano Res. 2023, 16, 2041–2048.

[9]
Li, J. Y.; Xu, X. J.; Hou, X. B.; Zhang, S. C.; Su, G.; Tian, W. Q.; Wang, H. L.; Huang, M. H.; Toghan, A. Interface engineering of NiSe2 nanowrinkles/Ni5P4 nanorods for boosting urea oxidation reaction at large current densities. Nano Res., in press, https://doi.org/10.1007/s12274-023-5575-4.
[10]

Wu, X. H.; Wang, Y.; Wu, Z. S. Design principle of electrocatalysts for the electrooxidation of organics. Chem 2022, 8, 2594–2629.

[11]

Han, X. T.; Sheng, H. Y.; Yu, C.; Walker, T. W.; Huber, G. W.; Qiu, J. S.; Jin, S. Electrocatalytic oxidation of glycerol to formic acid by CuCo2O4 spinel oxide nanostructure catalysts. ACS Catal. 2020, 10, 6741–6752.

[12]

Yu, X. W.; Araujo, R. B.; Qiu, Z.; dos Santos, E. C.; Anil, A.; Cornell, A.; Pettersson, L. G. M.; Johnsson, M. Hydrogen evolution linked to selective oxidation of glycerol over CoMoO4—A theoretically predicted catalyst. Adv. Energy Mater. 2022, 12, 2103750.

[13]

Eppinger, J.; Huang, K. W. Formic acid as a hydrogen energy carrier. Acs Energy Lett. 2017, 2, 188–195.

[14]

Grasemann, M.; Laurenczy, G. Formic acid as a hydrogen source-recent developments and future trends. Energy Environ. Sci. 2012, 5, 8171–8181.

[15]

Dodekatos, G.; Schünemann, S.; Tüysüz, H. Recent advances in thermo-, photo-, and electrocatalytic glycerol oxidation. ACS Catal. 2018, 8, 6301–6333.

[16]

Oh, L. S.; Park, M.; Park, Y. S.; Kim, Y.; Yoon, W.; Hwang, J.; Lim, E.; Park, J. H.; Choi, S. M.; Seo, M. H. et al. How to change the reaction chemistry on nonprecious metal oxide nanostructure materials for electrocatalytic oxidation of biomass-derived glycerol to renewable chemicals? Adv. Mater. 2023, 35, 2203285.

[17]

Pagliaro, M.; Ciriminna, R.; Kimura, H.; Rossi, M.; Della Pina, C. From glycerol to value-added products. Angew. Chem., Int. Ed. 2007, 46, 4434–4440.

[18]

Ting, N. H.; Nguyen, T. X.; Lee, C. H.; Chen, Y. C.; Yeh, C. H.; Chen, H. Y. T.; Ting, J. M. Composition-controlled high entropy metal glycerate as high-performance electrocatalyst for oxygen evolution reaction. Appl. Mater. Today. 2022, 27, 101398.

[19]

He, Z. Y.; Hwang, J.; Gong, Z. H.; Zhou, M. Z.; Zhang, N.; Kang, X. W.; Han, J. W.; Chen, Y. Promoting biomass electrooxidation via modulating proton and oxygen anion deintercalation in hydroxide. Nat. Commun. 2022, 13, 3777.

[20]

Zhang, L. J.; Cai, W. W.; Bao, N. Z.; Yang, H. Implanting an electron donor to enlarge the d-p hybridization of high-entropy (oxy)hydroxide: A novel design to boost oxygen evolution. Adv. Mater. 2022, 34, 2110511.

[21]

Lei, Y. T.; Zhang, L. L.; Xu, W. J.; Xiong, C. L.; Chen, W. X.; Xiang, X.; Zhang, B.; Shang, H. S. Carbon-supported high-entropy Co-Zn-Cd-Cu-Mn sulfide nanoarrays promise high-performance overall water splitting. Nano Res. 2022, 15, 6054–606.

[22]

Liu, X.; Fang, Z. Y.; Teng, X.; Niu, Y. L.; Gong, S. Q.; Chen, W.; Meyer, T. J.; Chen, Z. F. Paired formate and H2 productions via efficient bifunctional Ni-Mo nitride nanowire electrocatalysts. J. Energy Chem. 2022, 72, 432–441.

[23]

Bai, J.; Huang, H.; Li, F. M.; Zhao, Y.; Chen, P.; Jin, P. J.; Li, S. N.; Yao, H. C.; Zeng, J. H.; Chen, Y. Glycerol oxidation assisted electrocatalytic nitrogen reduction: Ammonia and glyceraldehyde co-production on bimetallic RhCu ultrathin nanoflake nanoaggregates. J. Mater. Chem. A 2019, 7, 21149–21156.

[24]

Zheng, D. D.; Li, J. W.; Ci, S. Q.; Cai, P. W.; Ding, Y. C.; Zhang, M. T.; Wen, Z. H. Three-birds-with-one-stone electrolysis for energy-efficiency production of gluconate and hydrogen. Appl. Catal. B: Environ. 2020, 277, 119178.

[25]

Fan, L. F.; Ji, Y. X.; Wang, G. X.; Zhang, Z. F.; Yi, L. C.; Chen, K.; Liu, X.; Wen, Z. H. Bifunctional Mn-doped CoSe2 nanonetworks electrode for hybrid alkali/acid electrolytic H2 generation and glycerol upgrading. J. Energy Chem. 2022, 72, 424–431.

[26]

Zhou, J.; Dou, Y. B.; He, T.; Zhou, A. W.; Kong, X. J.; Wu, X. Q.; Liu, T. X.; Li, J. R. Revealing the effect of anion-tuning in bimetallic chalcogenides on electrocatalytic overall water splitting. Nano Res. 2021, 14, 4548–4555.

[27]

Ma, Y. J.; Ma, Y.; Wang, Q. S.; Schweidler, S.; Botros, M.; Fu, T. T.; Hahn, H.; Brezesinski, T.; Breitung, B. High-entropy energy materials: Challenges and new opportunities. Energy Environ. Sci. 2021, 14, 2883–2905.

[28]

Jiang, B.; Bridges, C. A.; Unocic, R. R.; Pitike, K. C.; Cooper, V. R.; Zhang, Y. P.; Lin, D. Y.; Page, K. Probing the local site disorder and distortion in pyrochlore high-entropy oxides. J. Am. Chem. Soc. 2021, 143, 4193–4204.

[29]

Lee, C.; Song, G.; Gao, M. C.; Feng, R.; Chen, P. Y.; Brechtl, J.; Chen, Y.; An, K.; Guo, W.; Poplawsky, J. D. et al. Lattice distortion in a strong and ductile refractory high-entropy alloy. Acta Mater. 2018, 160, 158–172.

[30]

Yu, C. L.; Wu, Z.; Liu, R. Y.; Dionysiou, D. D.; Yang, K.; Wang, C. Y.; Liu, H. Novel fluorinated Bi2MoO6 nanocrystals for efficient photocatalytic removal of water organic pollutants under different light source illumination. Appl. Catal. B: Environ. 2017, 209, 1–11.

[31]

Xia, C.; Liang, H. F.; Zhu, J. J.; Schwingenschlögl, U.; Alshareef, H. N. Active edge sites engineering in nickel cobalt selenide solid solutions for highly efficient hydrogen evolution. Adv. Energy Mater. 2017, 7, 1602089.

[32]

Zhu, W. X.; Wang, J.; Zhang, W. T.; Hu, N.; Wang, J.; Huang, L. J.; Wang, R.; Suo, Y. R.; Wang, J. L. Monolithic copper selenide submicron particulate film/copper foam anode catalyst for ultrasensitive electrochemical glucose sensing in human blood serum. J. Mater. Chem. B 2018, 6, 718–724.

[33]

Feng, H.; Li, J. H.; Liu, Y. Q.; Xu, Z. F.; Cui, Y.; Liu, M. Q.; Liu, X.; He, L. Z.; Jiang, J. B.; Qian, D. Cubic MnSe2 nanoparticles dispersed on multi-walled carbon nanotubes: A robust electrochemical sensing platform for chloramphenicol. J. Electroanal. Chem. 2022, 922, 116755.

[34]

Han, Z. S.; Kong, F. J.; Zheng, J. H.; Chen, J. Y.; Tao, S.; Qian, B. MnSe nanoparticles encapsulated into N-doped carbon fibers with a binder-free and free-standing structure for lithium ion batteries. Ceram. Int. 2021, 47, 1429–1438.

[35]

Hu, L.; He, L. Q.; Wang, X.; Shang, C. Q.; Zhou, G. F. MnSe embedded in carbon nanofibers as advanced anode material for sodium ion batteries. Nanotechnology 2020, 31, 335402.

[36]

Javed, M. S.; Shah, S. S. A.; Hussain, S.; Tan, S. Z.; Mai, W. J. Mesoporous manganese-selenide microflowers with enhanced electrochemical performance as a flexible symmetric 1.8 V supercapacitor. Chem. Eng. J. 2020, 382, 122814.

[37]

Abdallah, W. A.; Nelson, A. E. Characterization of MoSe2 (0001) and ion-sputtered MoSe2 by XPS. J. Mater Sci. 2005, 40, 2679–2681.

[38]

Choffel, M. A.; Gannon, R. N.; Göhler, F.; Miller, A. M.; Medlin, D. L.; Seyller, T.; Johnson, D. C. Synthesis and electrical properties of a new compound (BiSe)0.97(Bi2Se3)1.26(BiSe)0.97(MoSe2) containing metallic 1T-MoSe2. Chem. Mater. 2021, 33, 6403–6411.

[39]

Hadland, E. C.; Göhler, F.; Mitchson, G.; Fender, S. S.; Schmidt, C.; Zahn, D. R. T.; Seyller, T.; Johnson, D. C. Synthesis and properties of (BiSe)0.97MoSe2: A heterostructure containing both 2H-MoSe2 and 1T-MoSe2. Chem. Mater. 2019, 31, 5824–5831.

[40]

Zhou, Y. F.; Shen, Y.; Xi, J. Y. Seed-mediated synthesis of PtxAuy@Ag electrocatalysts for the selective oxidation of glycerol. Appl. Catal. B: Environ. 2019, 245, 604–612.

[41]

Gomes, J. F.; Tremiliosi-Filho, G. Spectroscopic studies of the glycerol electro-oxidation on polycrystalline Au and Pt surfaces in acidic and alkaline media. Electrocatalysis 2011, 2, 96–105.

[42]

Houache, M. S. E.; Hughes, K.; Ahmed, A.; Safari, R.; Liu, H. S.; Botton, G. A.; Baranova, E. A. Electrochemical valorization of glycerol on Ni-rich bimetallic NiPd nanoparticles: Insight into product selectivity using in situ polarization modulation infrared-reflection absorption spectroscopy. ACS Sustain. Chem. Eng. 2019, 7, 14425–14434.

[43]

Houache, M. S. E.; Safari, R.; Nwabara, U. O.; Rafaïdeen, T.; Botton, G. A.; Kenis, P. J. A.; Baranton, S.; Coutanceau, C.; Baranova, E. A. Selective electrooxidation of glycerol to formic acid over carbon supported Ni1−xMx (M = Bi, Pd, and Au) nano-catalysts and coelectrolysis of CO2. ACS Appl. Energy Mater. 2020, 3, 8725–8738.

[44]

Qiao, H. Y.; Wang, X. Z.; Dong, Q.; Zheng, H. K.; Chen, G.; Hong, M.; Yang, C. P.; Wu, M. L.; He, K.; Hu, L. B. A high-entropy phosphate catalyst for oxygen evolution reaction. Nano Energy 2021, 86, 106029.

[45]

Jeong, I.; Cho, K.; Yun, S.; Shin, J.; Kim, J.; Kim, G. T.; Lee, T.; Chung, S. Tailoring the electrical characteristics of MoS2 FETs through controllable surface charge transfer doping using selective inkjet printing. ACS Nano 2022, 16, 6215–6223.

[46]

Tanaka, T.; Sueishi, T.; Saito, K.; Guo, Q. X.; Nishio, M.; Yu, K. M.; Walukiewicz, W. Existence and removal of Cu2Se second phase in coevaporated Cu2ZnSnSe4 thin films. J. Appl. Phys. 2012, 111, 053522.

[47]

Beak, G. Y.; Jeon, C. W. XPS and Raman study of slope-polished Cu(In,Ga)Se2 thin films. Electron. Mater. Lett. 2016, 12, 399–403.

[48]

Zhang, L.; Zhao, S. L.; Li, Y. F.; Lan, Y. Q.; Han, M.; Dai, Z. H.; Bao, J. C. Monoclinic copper(I) selenide nanocrystals and copper(I) selenide/palladium heterostructures: Synthesis, characterization, and surface-enhanced Raman scattering performance. Eur. J. Inorg. Chem. 2015, 2015, 2229–2236.

[49]

Qin, R.; Wang, P. Y.; Li, Z. L.; Zhu, J. X.; Cao, F.; Xu, H. W.; Ma, Q. L.; Zhang, J. Y.; Yu, J.; Mu, S. C. Ru-incorporated nickel diselenide nanosheet arrays with accelerated adsorption kinetics toward overall water splitting. Small 2022, 18, 2105305.

[50]

Chen, Z.; Cai, L.; Yang, X. F.; Kronawitter, C.; Guo, L. J.; Shen, S. H.; Koel, B. E. Reversible structural evolution of NiCoOxHy during the oxygen evolution reaction and identification of the catalytically active phase. ACS Catal. 2018, 8, 1238–1247.

[51]

Diaz-Morales, O.; Ferrus-Suspedra, D.; Koper, M. T. M. The importance of nickel oxyhydroxide deprotonation on its activity towards electrochemical water oxidation. Chem Sci. 2016, 7, 2639–2645.

[52]

Chen, D. C.; Xiong, X. H.; Zhao, B. T.; Mahmoud, M. A.; El-Sayed, M. A.; Liu, M. L. Probing structural evolution and charge storage mechanism of NiO2Hx electrode materials using in operando resonance Raman spectroscopy. Adv. Sci. 2016, 3, 1500433.

[53]

Zhang, L. L.; Wang, Z. P.; Zhang, J. T.; Lin, Z. P.; Zhang, Q. H.; Zhong, W. W.; Wu, G. F. High activity and stability in Ni2P/(Co,Ni)OOH heterointerface with a multiple-hierarchy structure for alkaline hydrogen evolution reaction. Nano Res. 2023, 16, 6552–6559.

[54]

Yu, Y. N.; Xia, F. J.; Wang, C. J.; Wu, J. S.; Fu, X. B.; Ma, D. S.; Lin, B. C.; Wang, J. A.; Yue, Q.; Kang, Y. J. High-entropy alloy nanoparticles as a promising electrocatalyst to enhance activity and durability for oxygen reduction. Nano Res. 2022, 15, 7868–7876.

[55]

Liu, Y. W.; Hua, X. M.; Xiao, C.; Zhou, T. F.; Huang, P. C.; Guo, Z. P.; Pan, B. C.; Xie, Y. Heterogeneous spin states in ultrathin nanosheets induce subtle lattice distortion to trigger efficient hydrogen evolution. J. Am. Chem. Soc. 2016, 138, 5087–5092.

[56]

Cheng, B. Y.; Lou, H. B.; Sarkar, A.; Zeng, Z. D.; Zhang, F.; Chen, X. H.; Tan, L. J.; Prakapenka, V.; Greenberg, E.; Wen, J. G. et al. Pressure-induced tuning of lattice distortion in a high-entropy oxide. Commun. Chem. 2019, 2, 114.

[57]

Ding, Y. C.; Cai, P. W.; Wen, Z. H. Electrochemical neutralization energy: From concept to devices. Chem. Soc. Rev. 2021, 50, 1495–1511.

[58]

Miao, X. B.; Zhang, L. F.; Wu, L.; Hu, Z. P.; Shi, L.; Zhou, S. M. Quadruple perovskite ruthenate as a highly efficient catalyst for acidic water oxidation. Nat. Commun. 2019, 10, 3809.

Nano Research
Pages 10832-10839
Cite this article:
Yao H, Wang Y, Zheng Y, et al. High-entropy selenides: A new platform for highly selective oxidation of glycerol to formate and energy-saving hydrogen evolution in alkali-acid hybrid electrolytic cell. Nano Research, 2023, 16(8): 10832-10839. https://doi.org/10.1007/s12274-023-5842-4
Topics:

640

Views

10

Crossref

8

Web of Science

8

Scopus

1

CSCD

Altmetrics

Received: 13 April 2023
Revised: 11 May 2023
Accepted: 12 May 2023
Published: 13 June 2023
© Tsinghua University Press 2023
Return