Journal Home > Volume 16 , Issue 7

Humidity sensors with high sensitivity, rapid response, and facile fabrication process for contactless sensing applications have received considerable attention in recent years. Herein, humidity sensors based on hexagonal boron nitride (h-BN) nanosheets that are synthesized by a facile ultrasonic process have been fabricated, which display an ultrahigh sensitivity of 28,384% at 85% relative humidity (RH), rapid response/recovery time (3.0/5.5 s), and long-term stability in a wide humidity detection range (11%–85% RH), superior to most of the reported humidity sensors. The high sensitivity can be ascribed to the massive hydrophilic functional groups absorbed on the h-BN nanosheet surface. Benefiting from the high humidity sensing performances, contactless Morse code messaging and human writing and speech recognition have been demonstrated. This work demonstrates the great potential of the high-performance h-BN nanosheet-based humidity sensors for future contactless sensing devices.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Highly sensitive humidity sensors based on hexagonal boron nitride nanosheets for contactless sensing

Show Author's information Hang Liu1,§Jinxu Qin1,§Xigui Yang1,2( )Chaofan Lv1Wentao Huang1Fukui Li1Chuang Zhang1Yanran Wu1Lin Dong1Chongxin Shan1,2( )
Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Materials Physics, Ministry of Education, School of Physics & Microelectronics, Zhengzhou University, Zhengzhou 450052, China
Institute of Quantum materials and Physics, Henan Academy of Sciences, Zhengzhou 450046, China

§ Hang Liu and Jinxu Qin contributed equally to this work.

Abstract

Humidity sensors with high sensitivity, rapid response, and facile fabrication process for contactless sensing applications have received considerable attention in recent years. Herein, humidity sensors based on hexagonal boron nitride (h-BN) nanosheets that are synthesized by a facile ultrasonic process have been fabricated, which display an ultrahigh sensitivity of 28,384% at 85% relative humidity (RH), rapid response/recovery time (3.0/5.5 s), and long-term stability in a wide humidity detection range (11%–85% RH), superior to most of the reported humidity sensors. The high sensitivity can be ascribed to the massive hydrophilic functional groups absorbed on the h-BN nanosheet surface. Benefiting from the high humidity sensing performances, contactless Morse code messaging and human writing and speech recognition have been demonstrated. This work demonstrates the great potential of the high-performance h-BN nanosheet-based humidity sensors for future contactless sensing devices.

Keywords: boron nitride, humidity sensors, speech recognition, contactless detection

References(57)

[1]

Yin, F. F.; Guo, Y. J.; Qiu, Z. C.; Niu, H. S.; Wang, W. X.; Li, Y.; Kim, E. S.; Kim, N. Y. Hybrid electronic skin combining triboelectric nanogenerator and humidity sensor for contact and non-contact sensing. Nano Energy 2022, 101, 107541.

[2]

Yang, J. H.; Shi, R. L.; Lou, Z.; Chai, R. Q.; Jiang, K.; Shen, G. Z. Flexible smart noncontact control systems with ultrasensitive humidity sensors. Small 2019, 15, 1902801.

[3]

Trung, T. Q.; Duy, L. T.; Ramasundaram, S.; Lee, N. E. Transparent, stretchable, and rapid-response humidity sensor for body-attachable wearable electronics. Nano Res. 2017, 10, 2021–2033.

[4]

Miao, L. M.; Wan, J.; Song, Y.; Guo, H.; Chen, H. T.; Cheng, X. L.; Zhang, H. X. Skin-inspired humidity and pressure sensor with a wrinkle-on-sponge structure. ACS Appl. Mater. Interfaces 2019, 11, 39219–39227.

[5]

Kim, J. S.; So, Y.; Lee, S.; Pang, C.; Park, W.; Chun, S. Uniform pressure responses for nanomaterials-based biological on-skin flexible pressure sensor array. Carbon 2021, 181, 169–176.

[6]

Meng, K. Y.; Xiao, X.; Wei, W. X.; Chen, G. R.; Nashalian, A.; Shen, S.; Xiao, X.; Chen, J. Wearable pressure sensors for pulse wave monitoring. Adv. Mater. 2022, 34, 2109357.

[7]

Shin, J.; Jeong, B.; Kim, J.; Nam, V. B.; Yoon, Y.; Jung, J.; Hong, S.; Lee, H.; Eom, H.; Yeo, J. et al. Sensitive wearable temperature sensor with seamless monolithic integration. Adv. Mater. 2020, 32, 1905527.

[8]

Zhang, H. J.; Xu, K.; Lu, Y. F.; Liu, H. D.; Han, W. Q.; Zhao, Y.; Li, R. Z.; Nie, Z. T.; Xu, F.; Zhu, J. X. et al. Robust self-gated-carriers enabling highly sensitive wearable temperature sensors. Appl. Phys. Rev. 2021, 8, 031416.

[9]

Daus, A.; Jaikissoon, M.; Khan, A. I.; Kumar, A.; Grady, R. W.; Saraswat, K. C.; Pop, E. Fast-response flexible temperature sensors with atomically thin molybdenum disulfide. Nano Lett. 2022, 22, 6135–6140.

[10]

Gu, Y. F.; Hao, J. Y.; Wu, T. C.; Zhang, Z. G.; Zhang, Z. X.; Li, Q. H. Bimetallic MoNi/WNi nanoalloys for ultra-sensitive wearable temperature sensors. J. Mater. Chem. A 2022, 10, 5402–5409.

[11]

Hu, H.; Zhang, C. Q.; Pan, C. F.; Dai, H. Z.; Sun, H. N.; Pan, Y. F.; Lai, X. Y.; Lyu, C.; Tang, D. F.; Fu, J. Z. et al. Wireless flexible magnetic tactile sensor with super-resolution in large-areas. ACS Nano 2022, 16, 19271–19280.

[12]

Park, M.; Park, Y. J.; Chen, X.; Park, Y. K.; Kim, M. S.; Ahn, J. H. MoS2-based tactile sensor for electronic skin applications. Adv. Mater. 2016, 28, 2556–2562.

[13]

Miao, P.; Wang, J.; Zhang, C. C.; Sun, M. Y.; Cheng, S. S.; Liu, H. Graphene nanostructure-based tactile sensors for electronic skin applications. Nano-Micro Lett. 2019, 11, 71.

[14]

Park, Y. J.; Sharma, B. K.; Shinde, S. M.; Kim, M. S.; Jang, B.; Kim, J. H.; Ahn, J. H. All MoS2-based large area, skin-attachable active-matrix tactile sensor. ACS Nano 2019, 13, 3023–3030.

[15]

Lu, L. J.; Jiang, C. P.; Hu, G. S.; Liu, J. Q.; Yang, B. Flexible noncontact sensing for human–machine interaction. Adv. Mater. 2021, 33, 2100218.

[16]

Torres Alonso, E.; Shin, D. W.; Rajan, G.; Neves, A. I. S.; Russo, S.; Craciun, M. F. Water-based solution processing and wafer-scale integration of all-graphene humidity sensors. Adv. Sci. 2019, 6, 1802318.

[17]

Zhang, D. Z.; Zong, X. Q.; Wu, Z. L.; Zhang, Y. Ultrahigh-performance impedance humidity sensor based on layer-by-layer self-assembled TiN disulfide/titanium dioxide nanohybrid film. Sens. Actuators B: Chem. 2018, 266, 52–62.

[18]

Qin, J. X.; Yang, X. G.; Lv, C. F.; Li, Y. Z.; Chen, X. X.; Zhang, Z. F.; Zang, J. H.; Yang, X.; Liu, K. K.; Dong, L. et al. Humidity sensors realized via negative photoconductivity effect in nanodiamonds. J. Phys. Chem. Lett. 2021, 12, 4079–4084.

[19]
Zhang, D. Z.; Wang, M. Y.; Tang, M. C.; Song, X. S.; Zhang, X. X.; Kang, Z. J.; Liu, X. H.; Zhang, J. H.; Xue, Q. Z. Recent progress of diversiform humidity sensors based on versatile nanomaterials and their prospective applications. Nano Res., in press, https://doi.org/10.1007/s12274-022-4917-y.
[20]

Dai, J. X.; Zhao, H. R.; Lin, X. Z.; Liu, S.; Liu, Y. S.; Liu, X. P.; Fei, T.; Zhang, T. Ultrafast response polyelectrolyte humidity sensor for respiration monitoring. ACS Appl. Mater. Interfaces 2019, 11, 6483–6490.

[21]

Duan, Z. H.; Jiang, Y. D.; Yan, M. G.; Wang, S.; Yuan, Z.; Zhao, Q. N.; Sun, P.; Xie, G. Z.; Du, X. S.; Tai, H. L. Facile, flexible, cost-saving, and environment-friendly paper-based humidity sensor for multifunctional applications. ACS Appl. Mater. Interfaces 2019, 11, 21840–21849.

[22]

Cao, Q.; Yu, C.; Cheng, X. F.; Sun, W. J.; He, J. H.; Li, N. J.; Li, H.; Chen, D. Y.; Xu, Q. F.; Lu, J. M. Polysquaramides: Rapid and stable humidity sensing for breath monitoring and morse code communication. Sens. Actuators B:Chem. 2020, 320, 128390.

[23]

Burman, D.; Ghosh, R.; Santra, S.; Guha, P. K. Highly proton conducting MoS2/graphene oxide nanocomposite based chemoresistive humidity sensor. RSC Adv. 2016, 6, 57424–57433.

[24]

Burman, D.; Santra, S.; Pramanik, P.; Guha, P. K. Pt decorated MoS2 nanoflakes for ultrasensitive resistive humidity sensor. Nanotechnology 2018, 29, 115504.

[25]

Shaukat, R. A.; Khan, M. U.; Saqib, Q. M.; Chougale, M. Y.; Kim, J.; Bae, J. All range highly linear and sensitive humidity sensor based on 2D material TiSi2 for real-time monitoring. Sens. Actuators B: Chem. 2021, 345, 130371.

[26]

Wang, D. Y.; Zhang, D. Z.; Li, P.; Yang, Z. M.; Mi, Q.; Yu, L. D. Electrospinning of flexible poly(vinyl alcohol)/MXene nanofiber-based humidity sensor self-powered by monolayer molybdenum diselenide piezoelectric nanogenerator. Nano-Micro Lett. 2021, 13, 57.

[27]

Shaybanizadeh, S.; Chermahini, A. N. Fabricating boron nitride nanosheets from hexagonal BN in water solution by a combined sonication and thermal-assisted hydrolysis method. Ceram. Int. 2021, 47, 11122–11128.

[28]

Ma, Z. S.; Ding, H. L.; Liu, Z.; Cheng, Z. L. Preparation and tribological properties of hydrothermally exfoliated ultrathin hexagonal boron nitride nanosheets (BNNSs) in mixed NaOH/KOH solution. J. Alloys Compd. 2019, 784, 807–815.

[29]

Sajid, M.; Kim, H. B.; Lim, J. H.; Choi, K. H. Liquid-assisted exfoliation of 2D hBN flakes and their dispersion in PEO to fabricate highly specific and stable linear humidity sensors. J. Mater. Chem. C 2018, 6, 1421–1432.

[30]

Feng, Y.; Gong, S. J.; Du, E. W.; Yu, K.; Ren, J.; Wang, Z. G.; Zhu, Z. Q. TaS2 nanosheet-based ultrafast response and flexible humidity sensor for multifunctional applications. J. Mater. Chem. C 2019, 7, 9284–9292.

[31]

Kumar, A.; Malik, G.; Sharma, S.; Chandra, R.; Mulik, R. S. Precursors controlled morphologies of nanocrystalline h-BN and its growth mechanism. Ceram. Int. 2021, 47, 30985–30992.

[32]

Budak, E. Low temperature synthesis of hexagonal boron nitride by solid state reaction in the presence of lithium salts. Ceram. Int. 2018, 44, 13161–13164.

[33]

Kubota, Y.; Watanabe, K.; Tsuda, O.; Taniguchi, T. Deep ultraviolet light-emitting hexagonal boron nitride synthesized at atmospheric pressure. Science 2007, 317, 932–934.

[34]

Song, L.; Ci, L.; Lu, H.; Sorokin, P. B.; Jin, C. H.; Ni, J.; Kvashnin, A. G.; Kvashnin, D. G.; Lou, J.; Yakobson, B. I. et al. Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett. 2010, 10, 3209–3215.

[35]

Liang, J. L.; Song, Q. Q.; Lin, J.; Huang, Y.; Fang, Y.; Yu, C.; Xue, Y. M.; Liu, Z. Y.; Tang, C. C. Pore structure regulation and carbon dioxide adsorption capacity improvement on porous BN fibers: Effects of high-temperature treatments in gaseous ambient. Chem. Eng. J. 2019, 373, 616–623.

[36]

Mahdizadeh, A.; Farhadi, S.; Zabardasti, A. Microwave-assisted rapid synthesis of graphene-analogue hexagonal boron nitride (h-BN) nanosheets and their application for the ultrafast and selective adsorption of cationic dyes from aqueous solutions. RSC Adv. 2017, 7, 53984–53995.

[37]

Chen, C.; Wang, J. M.; Liu, D.; Yang, C.; Liu, Y. C.; Ruoff, R. S.; Lei, W. W. Functionalized boron nitride membranes with ultrafast solvent transport performance for molecular separation. Nat. Commun. 2018, 9, 1902.

[38]

Liu, Z.; Gong, Y. J.; Zhou, W.; Ma, L. L.; Yu, J. J.; Idrobo, J. C.; Jung, J.; MacDonald, A. H.; Vajtai, R.; Lou, J. et al. Ultrathin high-temperature oxidation-resistant coatings of hexagonal boron nitride. Nat. Commun. 2013, 4, 2541.

[39]

Li, L.; Chen, J. J.; Sheng, G. D.; Pan, Y. X.; Guo, X. J. Enhanced performance for total Cr removal using a novel h-BN supported nanoscale iron sulfide composite: Stabilization effects and removal mechanism. Colloids Surf. A: Physicochem. Eng. Asp. 2022, 637, 128239.

[40]

He, W. H.; Wang, Y. W.; Fan, C. M.; Wang, Y. F.; Zhang, X. C.; Liu, J. X.; Li, R. Enhanced charge separation and increased oxygen vacancies of h-BN/OV-BiOCl for improved visible-light photocatalytic performance. RSC Adv. 2019, 9, 14286–14295.

[41]

Chen, N. M.; Zhu, Z. G.; Su, T.; Liao, W. P.; Deng, C. L.; Ren, W. Z.; Zhao, Y. C.; Lü, H. Y. Catalytic hydrogenolysis of hydroxymethylfurfural to highly selective 2,5-dimethylfuran over FeCoNi/h-BN catalyst. Chem. Eng. J. 2020, 381, 122755.

[42]

Wang, X. Z.; Zhang, C. H.; Chang, Q.; Wang, L. C.; Lv, B. L.; Xu, J.; Xiang, H. W.; Yang, Y.; Li, Y. W. Enhanced Fischer–Tropsch synthesis performances of Fe/h-BN catalysts by Cu and Mn. Catal. Today 2020, 343, 91–100.

[43]

Zhang, Z. F.; Lin, C. N.; Yang, X.; Zang, J. H.; Li, K. Y.; Lu, Y. C.; Li, Y. Z.; Dong, L.; Shan, C. X. Wafer-sized polycrystalline diamond photodetector planar arrays for solar-blind imaging. J. Mater. Chem. C 2022, 10, 6488–6496.

[44]

Zhang, Z. F.; Lin, C. N.; Yang, X.; Tian, Y. Z.; Gao, C. J.; Li, K. Y.; Zang, J. H.; Yang, X. G.; Dong, L.; Shan, C. X. Solar-blind imaging based on 2-inch polycrystalline diamond photodetector linear array. Carbon 2021, 173, 427–432.

[45]

Qin, J. X.; Yang, X. G.; Shen, C. L.; Chang, Y.; Deng, Y.; Zhang, Z. F.; Liu, H.; Lv, C. F.; Li, Y. Z.; Zhang, C. et al. Carbon nanodot-based humidity sensor for self-powered respiratory monitoring. Nano Energy 2022, 101, 107549.

[46]

Yu, S. G.; Chen, C.; Zhang, H. Y.; Zhang, J.; Liu, J. Design of high sensitivity graphite carbon nitride/zinc oxide humidity sensor for breath detection. Sens. Actuators B: Chem. 2021, 332, 129536.

[47]

Solanki, V.; Krupanidhi, S. B.; Nanda, K. K. Sequential elemental dealloying approach for the fabrication of porous metal oxides and chemiresistive sensors thereof for electronic listening. ACS Appl. Mater. Interfaces 2017, 9, 41428–41434.

[48]

Fatima, Q.; Haidry, A. A.; Yao, Z. J.; He, Y.; Li, Z.; Sun, L. C.; Xie, L. J. The critical role of hydroxyl groups in water vapor sensing of graphene oxide. Nanoscale Adv. 2019, 1, 1319–1330.

[49]

Zhao, J.; Li, N.; Yu, H.; Wei, Z.; Liao, M. Z.; Chen, P.; Wang, S. P.; Shi, D. X.; Sun, Q. J.; Zhang, G. Y. Highly sensitive MoS2 humidity sensors array for noncontact sensation. Adv. Mater. 2017, 29, 1702076.

[50]

Zhu, C. C.; Tao, L. Q.; Wang, Y.; Zheng, K.; Yu, J. B.; L, X.; Chen, X. P.; Huang, Y. X. Graphene oxide humidity sensor with laser-induced graphene porous electrodes. Sens. Actuators B: Chem. 2020, 325, 128790.

[51]

Shelke, N. T.; Late, D. J. Hydrothermal growth of MoSe2 nanoflowers for photo- and humidity sensor applications. Sens. Actuators A: Phys. 2019, 295, 160–168.

[52]

Guo, H. Y.; Lan, C. Y.; Zhou, Z. F.; Sun, P. H.; Wei, D. P.; Li, C. Transparent, flexible, and stretchable WS2 based humidity sensors for electronic skin. Nanoscale 2017, 9, 6246–6253.

[53]

Zhang, D. Z.; Xu, Z. Y.; Yang, Z. M.; Song, X. S. High-performance flexible self-powered tin disulfide nanoflowers/reduced graphene oxide nanohybrid-based humidity sensor driven by triboelectric nanogenerator. Nano Energy 2020, 67, 104251.

[54]

Cao, Y. D.; Zhong, H. B.; Chen, B.; Lin, X. L.; Shen, J. F.; Ye, M. X. Liquid metal-assisted hydrothermal preparation of cobalt disulfide on the polymer tape surface for flexible sensor. Nano Res. 2023, 16, 7575–7582.

[55]

Zheng, N.; Xue, J. H.; Jie, Y.; Cao, X.; Wang, Z. L. Wearable and humidity-resistant biomaterials-based triboelectric nanogenerator for high entropy energy harvesting and self-powered sensing. Nano Res. 2022, 15, 6213–6219.

[56]

Liu, X. Z.; Wang, Y. Q.; Wang, G. Y.; Ma, Y. F.; Zheng, Z. H.; Fan, K. K.; Liu, J. C.; Zhou, B. Q.; Wang, G.; You, Z. et al. An ultrasound-driven implantable wireless energy harvesting system using a triboelectric transducer. Matter 2022, 5, 4315–4331.

[57]

Lu, Y. Y.; Yang, G.; Shen, Y. J.; Yang, H. Y.; Xu, K. C. Multifunctional flexible humidity sensor systems towards noncontact wearable electronics. Nano-Micro Lett. 2022, 14, 150.

File
12274_2023_5837_MOESM1_ESM.pdf (499.6 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 23 March 2023
Revised: 15 May 2023
Accepted: 17 May 2023
Published: 30 June 2023
Issue date: July 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 12174348, U21A2070, and 62027816), the Young Elite Scientists Sponsorship Program by CAST (No. 2021QNRC001), the Natural Science Foundation of Henan Province (No. 212300410410), and the China Postdoctoral Science Foundation (Nos. 2018M630830 and 2019T120631).

Return