Journal Home > Volume 16 , Issue 8

Through interface engineering and content control strategy, a PdBi bimetallic interface structure was constructed for the first time to selectively convert CO2 to formate with a remarkably high Faraday efficiency (FEformate) of 94% and a partial current density (jformate) of 34 mA·cm−2 at −0.8 V vs. reversible hydrogen electrode (RHE) in an H-cell. Moreover, the PdBi interface electrocatalyst even exhibited a high current density of 180 mA·cm−2 with formate selectivity up to 92% in a flow cell and could steadily operate for at least 20 h. Electrochemical in-situ attenuated total reflection surface enhanced infrared absorption spectroscopy (ATR-SEIRAS) confirmed that the PdBi interface could greatly weaken the adsorption of *CO intermediates due to electronic and geometric effects. Density functional theory (DFT) calculations also established that the PdBi interface regulated the CO2-to-formate pathway by reducing the energy barrier toward HCOOH and largely weakening the adsorption of *CO intermediates on the catalyst surface. This study reveals that the unique PdBi bimetallic interface can provide a novel platform to study the reaction mechanism through combining in-situ ATR-SEIRAS and DFT calculations.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Unraveling the interfacial effect of PdBi bimetallic catalysts on promoting CO2 electroreduction to formate

Show Author's information Wenhui Liu1,§Lingtong Ding2,3,§Minmin Liu1( )Xiao Wang2,3( )Zhengrong Zhang1Tian-Wen Jiang4Shengjuan Huo1( )Wen-Bin Cai4
International Joint Laboratory of Catalytic Chemistry, Department of Chemistry, Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, China
Shenzhen Key Laboratory of Nanobiomechanics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, Fudan University, Shanghai 200438, China

§ Wenhui Liu and Lingtong Ding contributed equally to this work.

Abstract

Through interface engineering and content control strategy, a PdBi bimetallic interface structure was constructed for the first time to selectively convert CO2 to formate with a remarkably high Faraday efficiency (FEformate) of 94% and a partial current density (jformate) of 34 mA·cm−2 at −0.8 V vs. reversible hydrogen electrode (RHE) in an H-cell. Moreover, the PdBi interface electrocatalyst even exhibited a high current density of 180 mA·cm−2 with formate selectivity up to 92% in a flow cell and could steadily operate for at least 20 h. Electrochemical in-situ attenuated total reflection surface enhanced infrared absorption spectroscopy (ATR-SEIRAS) confirmed that the PdBi interface could greatly weaken the adsorption of *CO intermediates due to electronic and geometric effects. Density functional theory (DFT) calculations also established that the PdBi interface regulated the CO2-to-formate pathway by reducing the energy barrier toward HCOOH and largely weakening the adsorption of *CO intermediates on the catalyst surface. This study reveals that the unique PdBi bimetallic interface can provide a novel platform to study the reaction mechanism through combining in-situ ATR-SEIRAS and DFT calculations.

Keywords: interface engineering, formate, carbon dioxide reduction reaction, bimetallic PdBi, in-situ attenuated total reflection surface enhanced infrared absorption spectroscopy (ATR-SEIRAS)

References(61)

[1]

Hori, Y.; Murata, A.; Kikuchi, K.; Suzuki, S. Electrochemical reduction of carbon dioxides to carbon monoxide at a gold electrode in aqueous potassium hydrogen carbonate. J. Chem. Soc., Chem. Commun. 1987, 728–729.

[2]

Hori, Y.; Takahashi, I.; Koga, O.; Hoshi, N. Selective formation of C2 compounds from electrochemical reduction of CO2 at a series of copper single crystal electrodes. J. Phys. Chem. B 2002, 106, 15–17.

[3]

Wang, Y. O.; Godin, R.; Durrant, J. R.; Tang, J. W. Efficient hole trapping in carbon dot/oxygen-modified carbon nitride heterojunction photocatalysts for enhanced methanol production from CO2 under neutral conditions. Angew. Chem., Int. Ed. 2021, 60, 20811–20816.

[4]

Zhu, D. D.; Liu, J. L.; Qiao, S. Z. Recent advances in inorganic heterogeneous electrocatalysts for reduction of carbon dioxide. Adv. Mater. 2016, 28, 3423–3452.

[5]

Kibria, M. G.; Edwards, J. P.; Gabardo, C. M.; Dinh, C. T.; Seifitokaldani, A.; Sinton, D.; Sargent, E. H. Electrochemical CO2 reduction into chemical feedstocks: From mechanistic electrocatalysis models to system design. Adv. Mater. 2019, 31, 1807166.

[6]

Ross, M. B.; De Luna, P.; Li, Y. F.; Dinh, C. T.; Kim, D.; Yang, P. D.; Sargent, E. H. Designing materials for electrochemical carbon dioxide recycling. Nat. Catal. 2019, 2, 648–658.

[7]

Weng, Z.; Wu, Y. S.; Wang, M. Y.; Jiang, J. B.; Yang, K.; Huo, S. J.; Wang, X. F.; Ma, Q.; Brudvig, G. W.; Batista, V. S. et al. Active sites of copper-complex catalytic materials for electrochemical carbon dioxide reduction. Nat. Commun. 2018, 9, 415.

[8]

Birdja, Y. Y.; Pérez-Gallent, E.; Figueiredo, M. C.; Göttle, A. J.; Calle-Vallejo, F.; Koper, M. T. M. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nature Energy 2019, 4, 732–745.

[9]

Tao, Z. X.; Wu, Z. S.; Wu, Y. S.; Wang, H. L. Activating copper for electrocatalytic CO2 reduction to formate via molecular interactions. ACS Catal. 2020, 10, 9271–9275.

[10]

Zhang, W. Y.; Qin, Q.; Dai, L.; Qin, R. X.; Zhao, X. J.; Chen, X. M.; Ou, D. H.; Chen, J.; Chuong, T. T.; Wu, B. H. et al. Electrochemical reduction of carbon dioxide to methanol on hierarchical Pd/SnO2 nanosheets with abundant Pd–O–Sn interfaces. Angew. Chem., Int. Ed. 2018, 57, 9475–9479.

[11]

Liu, M.; Pang, Y. J.; Zhang, B.; De Luna, P.; Voznyy, O.; Xu, J. X.; Zheng, X. L.; Dinh, C. T.; Fan, F. J.; Cao, C. H. et al. Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration. Nature 2016, 537, 382–386.

[12]

Han, N.; Ding, P.; He, L.; Li, Y. Y.; Li, Y. G. Promises of main group metal-based nanostructured materials for electrochemical CO2 reduction to formate. Adv. Energy Mater. 2020, 10, 1902338.

[13]

Jia, L.; Sun, M.; Xu, J.; Zhao, X.; Zhou, R.; Pan, B.; Wang, L.; Han, N.; Huang, B.; Li, Y. Phase-dependent electrocatalytic CO2 reduction on Pd3Bi nanocrystals. Angew. Chem., Int. Ed. 2021, 60, 21741–21745.

[14]

Jouny, M.; Luc, W.; Jiao, F. General techno-economic analysis of CO2 electrolysis systems. Ind. Eng. Chem. Res. 2018, 57, 2165–2177.

[15]

Lv, H.; Lv, F.; Qin, H. Y.; Min, X. W.; Sun, L. Z.; Han, N.; Xu, D. D.; Li, Y. G.; Liu, B. Single-crystalline mesoporous palladium and palladium-copper nanocubes for highly efficient electrochemical CO2 reduction. CCS Chem. 2022, 4, 1376–1385.

[16]

Zhou, R.; Fan, X.; Ke, X. X.; Xu, J.; Zhao, X.; Jia, L.; Pan, B. B.; Han, N.; Li, L. X.; Liu, X. J. et al. Two-dimensional palladium-copper alloy nanodendrites for highly stable and selective electrochemical formate production. Nano Lett. 2021, 21, 4092–4098.

[17]

Wu, Z. X.; Wu, H. B.; Cai, W. Q.; Wen, Z. H.; Jia, B. H.; Wang, L.; Jin, W.; Ma, T. Y. Engineering bismuth–tin interface in bimetallic aerogel with a 3D porous structure for highly selective electrocatalytic CO2 reduction to HCOOH. Angew. Chem., Int. Ed. 2021, 60, 12554–12559.

[18]

An, X. W.; Li, S. S.; Hao, X. Q.; Xie, Z. K.; Du, X.; Wang, Z. D.; Hao, X. G.; Abudula, A.; Guan, G. Q. Common strategies for improving the performances of tin and bismuth-based catalysts in the electrocatalytic reduction of CO2 to formic acid/formate. Renew. Sust. Energy Rev. 2021, 143, 110952.

[19]

Huang, W. C.; Zhu, J.; Wang, M. K.; Hu, L. P.; Tang, Y. F.; Shu, Y. Q.; Xie, Z. J.; Zhang, H. Emerging mono-elemental bismuth nanostructures: Controlled synthesis and their versatile applications. Adv. Funct. Mater. 2020, 31, 2007584.

[20]

Lu, X.; Wu, Y. S.; Yuan, X. L.; Wang, H. L. An integrated CO2 electrolyzer and formate fuel cell enabled by a reversibly restructuring Pb-Pd bimetallic catalyst. Angew. Chem., Int. Ed. 2019, 58, 4031–4035.

[21]

Pan, B. B.; Yuan, G. T.; Zhao, X.; Han, N.; Huang, Y.; Feng, K.; Cheng, C.; Zhong, J.; Zhang, L.; Wang, Y. H. et al. Highly dispersed indium oxide nanoparticles supported on carbon nanorods enabling efficient electrochemical CO2 reduction. Small Sci. 2021, 1, 2100029.

[22]

Xie, Y.; Ou, P. F.; Wang, X.; Xu, Z. Y.; Li, Y. C.; Wang, Z. Y.; Huang, J. E.; Wicks, J.; McCallum, C.; Wang, N. et al. High carbon utilization in CO2 reduction to multi-carbon products in acidic media. Nat. Catal. 2022, 5, 564–570.

[23]

Zhong, H. X.; Qiu, Y. L.; Li, X. F.; Pan, L. W.; Zhang, H. M. Ordered cone-structured tin directly grown on carbon paper as efficient electrocatalyst for CO2 electrochemical reduction to formate. J. Energy Chem. 2021, 55, 236–243.

[24]

Jiang, T. W.; Qin, X. X.; Ye, K.; Zhang, W. Y.; Li, H.; Liu, W. H.; Huo, S. J.; Zhang, X. G.; Jiang, K.; Cai, W. B. An interactive study of catalyst and mechanism for electrochemical CO2 reduction to formate on Pd surfaces. Appl. Catal. B: Environ. 2023, 334, 122815.

[25]

Zhang, G. R.; Qin, X. X.; Deng, C. W.; Cai, W. B.; Jiang, K. Electrocatalytic CO2 and HCOOH interconversion on Pd-based catalysts. Adv. Sens. Energy Mater. 2022, 1, 100007.

[26]

Gong, Q. F.; Ding, P.; Xu, M. Q.; Zhu, X. R.; Wang, M. Y.; Deng, J.; Ma, Q.; Han, N.; Zhu, Y.; Lu, J. et al. Structural defects on converted bismuth oxide nanotubes enable highly active electrocatalysis of carbon dioxide reduction. Nat. Commun. 2019, 10, 2807.

[27]

Li, W. J.; Zhang, Z. R.; Liu, W. H.; Gan, Q.; Liu, M. M.; Huo, S. J.; Chen, W. ZnSn nanocatalyst: Ultra-high formate selectivity from CO2 electrochemical reduction and the structure evolution effect. J. Colloid Interface Sci. 2022, 608, 2791–2800.

[28]

Zhao, C. C.; Wang, J. L. Electrochemical reduction of CO2 to formate in aqueous solution using electro-deposited Sn catalysts. Chem. Eng. J. 2016, 293, 161–170.

[29]

Zhou, Y.; Zhou, R.; Zhu, X. R.; Han, N.; Song, B.; Liu, T. C.; Hu, G. Z.; Li, Y. F.; Lu, J.; Li, Y. G. Mesoporous PdAg nanospheres for stable electrochemical CO2 reduction to formate. Adv. Mater. 2020, 32, 2000992.

[30]

Jiang, B.; Zhang, X. G.; Jiang, K.; Wu, D. Y.; Cai, W. B. Boosting formate production in electrocatalytic CO2 reduction over wide potential window on Pd surfaces. J. Am. Chem. Soc. 2018, 140, 2880–2889.

[31]

Xie, L. F.; Liu, X.; Huang, F. Y.; Liang, J. S.; Liu, J. Y.; Wang, T. Y.; Yang, L. M.; Cao, R. G.; Li, Q. Regulating Pd-catalysis for electrocatalytic CO2 reduction to formate via intermetallic PdBi nanosheets. Chin. J. Catal. 2022, 43, 1680–1686.

[32]

Gao, D. F.; Zhou, H.; Wang, J.; Miao, S.; Yang, F.; Wang, G. X.; Wang, J. G.; Bao, X. H. Size-dependent electrocatalytic reduction of CO2 over Pd nanoparticles. J. Am. Chem. Soc. 2015, 137, 4288–4291.

[33]

Bai, X. F.; Chen, W.; Zhao, C. C.; Li, S. G.; Song, Y. F.; Ge, R. P.; Wei, W.; Sun, Y. H. Exclusive formation of formic acid from CO2 electroreduction by a tunable Pd-Sn alloy. Angew. Chem., Int. Ed. 2017, 56, 12219–12223.

[34]

Bok, J.; Lee, S. Y.; Lee, B. H.; Kim, C.; Nguyen, D. L. T.; Kim, J. W.; Jung, E.; Lee, C. W.; Jung, Y.; Lee, H. S. et al. Designing atomically dispersed Au on tensile-strained Pd for efficient CO2 electroreduction to formate. J. Am. Chem. Soc. 2021, 143, 5386–5395.

[35]

Li, J. H.; Liu, M. Y.; Li, Y.; Yuan, L.; Zhang, P.; Cai, Z.; Chen, H.; Zou, J. L. ZIF-8@ZIF-67-derived ZnCo2O4@nitrogen-doped carbon/carbon nanotubes wrapped by a carbon layer: A stable oxygen reduction catalyst with a competitive strength in acid media. Mater. Today Energy 2021, 19, 100574.

[36]

Gunji, T.; Ochiai, H.; Ohira, T.; Liu, Y. B.; Nakajima, Y.; Matsumoto, F. Preparation of various Pd-based alloys for electrocatalytic CO2 reduction reaction-selectivity depending on secondary elements. Chem. Mater. 2020, 32, 6855–6863.

[37]

Wang, Y. X.; Cao, L.; Libretto, N. J.; Li, X.; Li, C. Y.; Wan, Y. D.; He, C.; Lee, J.; Gregg, J.; Zong, H. et al. Ensemble effect in bimetallic electrocatalysts for CO2 reduction. J. Am. Chem. Soc. 2019, 141, 16635–16642.

[38]

Xie, H.; Wan, Y. Y.; Wang, X. M.; Liang, J. S.; Lu, G.; Wang, T. Y.; Chai, G. L.; Adli, N. M.; Priest, C.; Huang, Y. H. et al. Boosting Pd-catalysis for electrochemical CO2 reduction to CO on Bi-Pd single atom alloy nanodendrites. Appl. Catal. B: Environ. 2021, 289, 119783.

[39]

Mori, K.; Sano, T.; Kobayashi, H.; Yamashita, H. Surface engineering of a supported PdAg catalyst for hydrogenation of CO2 to formic acid: Elucidating the active Pd atoms in alloy nanoparticles. J. Am. Chem. Soc. 2018, 140, 8902–8909.

[40]

Lu, L.; Sun, X. F.; Ma, J.; Yang, D. X.; Wu, H. H.; Zhang, B. X.; Zhang, J. L.; Han, B. X. Highly efficient electroreduction of CO2 to methanol on palladium-copper bimetallic aerogels. Angew. Chem., Int. Ed. 2018, 57, 14149–14153.

[41]

Wang, P. T.; Qiao, M.; Shao, Q.; Pi, Y. C.; Zhu, X.; Li, Y. F.; Huang, X. Q. Phase and structure engineering of copper tin heterostructures for efficient electrochemical carbon dioxide reduction. Nat. Commun. 2018, 9, 4933.

[42]

Wang, Y. F.; Han, P.; Lv, X. M.; Zhang, L. J.; Zheng, G. F. Defect and interface engineering for aqueous electrocatalytic CO2 reduction. Joule 2018, 2, 2551–2582.

[43]

Shen, X. Y.; Liu, X. K.; Wang, S. C.; Chen, T.; Zhang, W.; Cao, L. L.; Ding, T.; Lin, Y.; Liu, D.; Wang, L. et al. Synergistic modulation at atomically dispersed Fe/Au interface for selective CO2 electroreduction. Nano Lett. 2021, 21, 686–692.

[44]

Gao, D. F.; Zhang, Y.; Zhou, Z. W.; Cai, F.; Zhao, X. F.; Huang, W. G.; Li, Y. S.; Zhu, J. F.; Liu, P.; Yang, F. et al. Enhancing CO2 electroreduction with the metal–oxide interface. J. Am. Chem. Soc. 2017, 139, 5652–5655.

[45]

Li, Z.; Feng, Y. J.; Li, Y. F.; Chen, X. P.; Li, N.; He, W. H.; Liu, J. Fabrication of Bi/Sn bimetallic electrode for high-performance electrochemical reduction of carbon dioxide to formate. Chem. Eng. J. 2022, 428, 130901.

[46]

Li, H.; Jiang, T. W.; Qin, X. X.; Chen, J.; Ma, X. Y.; Jiang, K.; Zhang, X. G.; Cai, W. B. Selective reduction of CO2 to CO on an Sb-modified Cu electrode: Spontaneous fabrication and physical insight. ACS Catal. 2021, 11, 6846–6856.

[47]

Jiang, T. W.; Zhou, Y. W.; Ma, X. Y.; Qin, X. X.; Li, H.; Ding, C.; Jiang, B.; Jiang, K.; Cai, W. B. Spectrometric study of electrochemical CO2 reduction on Pd and Pd-B electrodes. ACS Catal. 2021, 11, 840–848.

[48]

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

[49]

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

[50]

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

[51]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[52]
Johnson, R. Computational chemistry comparison and benchmark database [Online]. NIST: Gaithersburg, MD, 2018; T47C7Z. http://cccbdb.nist.gov (accessed Apr 20, 2023).
[53]

Gao, D. F.; Zhou, H.; Cai, F.; Wang, J. G.; Wang, G. X.; Bao, X. H. Pd-containing nanostructures for electrochemical CO2 reduction reaction. ACS Catal. 2018, 8, 1510–1519.

[54]

Sun, L. B.; Reddu, V.; Fisher, A. C.; Wang, X. Electrocatalytic reduction of carbon dioxide: Opportunities with heterogeneous molecular catalysts. Energy Environ. Sci. 2020, 13, 374–403.

[55]

Fu, Y. Y.; Wang, T. T.; Zheng, W. Z.; Lei, C. J.; Yang, B.; Chen, J.; Li, Z. J.; Lei, L. C.; Yuan, C.; Hou, Y. Nanoconfined tin oxide within N-doped nanocarbon supported on electrochemically exfoliated graphene for efficient electroreduction of CO2 to formate and C1 products. ACS Appl. Mater. Interfaces 2020, 12, 16178–16185.

[56]

Fan, K.; Jia, Y. F.; Ji, Y. F.; Kuang, P. Y.; Zhu, B. C.; Liu, X. Y.; Yu, J. G. Curved surface boosts electrochemical CO2 reduction to formate via bismuth nanotubes in a wide potential window. ACS Catal. 2020, 10, 358–364.

[57]

Ma, M.; Trześniewski, B. J.; Xie, J.; Smith, W. A. Selective and efficient reduction of carbon dioxide to carbon monoxide on oxide-derived nanostructured silver electrocatalysts. Angew. Chem., Int. Ed. 2016, 55, 9748–9752.

[58]

Xu, X. L.; Zhang, X. M.; Xia, Z. X.; Sun, R. L.; Wang, J. H.; Jiang, Q. K.; Yu, S. S.; Wang, S. L.; Sun, G. Q. Fe-N-C with intensified exposure of active sites for highly efficient and stable direct methanol fuel cells. ACS Appl. Mater. Interfaces 2021, 13, 16279–16288.

[59]

Herron, J. A.; Tonelli, S.; Mavrikakis, M. Atomic and molecular adsorption on Pd (111). Surf. Sci. 2012, 606, 1670–1679.

[60]

Zhu, S. Q.; Wang, Q.; Qin, X. P.; Gu, M.; Tao, R.; Lee, B. P.; Zhang, L. L.; Yao, Y. Z.; Li, T. H.; Shao, M. H. Tuning structural and compositional effects in Pd-Au nanowires for highly selective and active CO2 electrochemical reduction reaction. Adv. Energy Mater. 2018, 8, 1802238.

[61]

Mistry, H.; Varela, A. S.; Kühl, S.; Strasser, P.; Cuenya, B. R. Nanostructured electrocatalysts with tunable activity and selectivity. Nat. Rev. Mater. 2016, 1, 16009.

File
12274_2023_5829_MOESM1_ESM.pdf (1.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 20 April 2023
Revised: 08 May 2023
Accepted: 10 May 2023
Published: 13 June 2023
Issue date: August 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 22003074 and 22002087), Youth Innovation Promotion Association CAS, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials (No. 2021MCIMKF03), and Baoshan Iron & Steel Co., Ltd. (Baosteel), located in Shanghai, China.

Return