AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

A small organic molecule strategy for remedying oxygen vacancies by bismuth defects in BiOBr nanosheet with excellent photocatalytic CO2 reduction

Jing XieZhenjiang LuYue FengJianguo HuangJindou HuAize HaoYali Cao( )
State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources; College of Chemistry, Xinjiang University, Urumqi 830046, China
Show Author Information

Graphical Abstract

Bi defective BiOBr thin nanosheet with [001] facet exposed was constructed to repair oxygen vacancies via an acetic acid molecule modified solvent-free strategy, which displayed the optimum photocatalytic activity, high selectivity, and long-time stability for CO2 reduction.

Abstract

Defect modulation currently plays a decisive role in addressing the poor photoabsorption, sluggish electron hole separation, and high CO2 activation barrier in photocatalytic CO2 reduction. However, hunting for a straightforward strategy to balance the concentration of oxygen vacancy and metal cation defect in one photocatalyst is still a great challenge. Herein, a bismuth vacancies BiOBr nanosheets (BiOBr-1) on the exposed [001] facets were constructed via an acetic acid molecule modification strategy, which can repair oxygen defect by bismuth vacancy in low-temperature solid-state chemical method. Benefiting from the formed bismuth defects that can not only broaden light absorption and elevate charge separation efficiency, but also enhance adsorption and activation of CO2 molecules, the evolution rates of photocatalytic CO2 conversion into CO (71.23 μmol·g−1·h−1) and CH4 (8.90 μmol·g−1·h−1) attained by BiOBr-1 are superior 7.1 and 11 times to that of plate-like BiOBr. The photocatalytic mechanisms including adsorption concentration and activation process of CO2 are further revealed by the in situ diffuse reflectance infrared flourier transform spectra (DRIFTS). This finding of the existence of distinct defects in ultrathin nanosheets undoubtedly leads to new possibilities for photocatalyst design using two-dimensional materials with high solar-driven photocatalytic activity.

Electronic Supplementary Material

Download File(s)
12274_2023_5828_MOESM1_ESM.pdf (724.4 KB)

References

[1]

Gong, E.; Ali, S.; Hiragond, C. B.; Kim, H. S.; Powar, N. S.; Kim, D.; Kim, H.; In, S. I. Solar fuels: Research and development strategies to accelerate photocatalytic CO2 conversion into hydrocarbon fuels. Energy Environ. Sci. 2022, 15, 880–937.

[2]

Guo, R. T.; Wang, J.; Bi, Z. X.; Chen, X.; Hu, X.; Pan, W. G. Recent advances and perspectives of core–shell nanostructured materials for photocatalytic CO2 reduction. Small 2023, 19, 2206314.

[3]

Albero, J.; Peng, Y.; García, H. Photocatalytic CO2 reduction to C2+ products. ACS Catal. 2020, 10, 5734–5749.

[4]

Miao, Z. R.; Wang, Q. L.; Zhang, Y. F.; Meng, L. P.; Wang, X. X. In situ construction of S-scheme AgBr/BiOBr heterojunction with surface oxygen vacancy for boosting photocatalytic CO2 reduction with H2O. Appl. Catal. B: Environ. 2022, 301, 120802.

[5]

Dai, C. H.; Zhong, L. X.; Gong, X. Z.; Zeng, L.; Xue, C.; Li, S. Z.; Liu, B. Triphenylamine based conjugated microporous polymers for selective photoreduction of CO2 to CO under visible light. Green Chem. 2019, 21, 6606–6610.

[6]

Xie, S. J.; Zhang, Q. H.; Liu, G. D.; Wang, Y. Photocatalytic and photoelectrocatalytic reduction of CO2 using heterogeneous catalysts with controlled nanostructures. Chem. Commun. 2016, 52, 35–59.

[7]

Hosseini, S. T.; Raissi, H.; Pakdel, M. High-performance carbon dioxide capture and storage by multi-functional sphingosine kinase inhibitors through a CO2-philic membrane. New J. Chem. 2020, 44, 7771–7779.

[8]

Qian, X. Z.; Yang, W. Y.; Gao, S.; Xiao, J.; Basu, S.; Yoshimura, A.; Shi, Y. F.; Meunier, V.; Li, Q. Highly selective, defect-induced photocatalytic CO2 reduction to acetaldehyde by the Nb-doped TiO2 nanotube array under simulated solar illumination. ACS Appl. Mater. Interfaces 2020, 12, 55982–55993.

[9]

Shi, R.; Zhao, Y. X.; Waterhouse, G. I. N.; Zhang, S.; Zhang, T. R. Defect engineering in photocatalytic nitrogen fixation. ACS Catal. 2019, 9, 9739–9750.

[10]

Ren, X. J.; Gao, M. C.; Zhang, Y. F.; Zhang, Z. Z.; Cao, X. Z.; Wang, B. Y.; Wang, X. X. Photocatalytic reduction of CO2 on BiOX: Effect of halogen element type and surface oxygen vacancy mediated mechanism. Appl. Catal. B: Environ. 2020, 274, 119063.

[11]

Zhao, J. L.; Miao, Z. R.; Zhang, Y. F.; Wen, G. Y.; Liu, L. H.; Wang, X. X.; Cao, X. Z.; Wang, B. Y. Oxygen vacancy-rich hierarchical BiOBr hollow microspheres with dramatic CO2 photoreduction activity. J. Colloid Interface Sci. 2021, 593, 231–243.

[12]

Xiong, J.; Di, J.; Xia, J. X.; Zhu, W. S.; Li, H. M. Surface defect engineering in 2D nanomaterials for photocatalysis. Adv. Funct. Mater. 2018, 28, 1801983.

[13]

Wang, J.; Jiang, W. J.; Liu, D.; Wei, Z.; Zhu, Y. F. Photocatalytic performance enhanced via surface bismuth vacancy of Bi6S2O15 core/shell nanowires. Appl. Catal. B: Environ. 2015, 176–177, 306–314.

[14]

Pan, L.; Wang, S. B.; Mi, W. B.; Song, J. J.; Zou, J. J.; Wang, L.; Zhang, X. W. Undoped ZnO abundant with metal vacancies. Nano Energy 2014, 9, 71–79.

[15]

Wang, S. B.; Pan, L.; Song, J. J.; Mi, W. B.; Zou, J. J.; Wang, L.; Zhang, X. W. Titanium-defected undoped anatase TiO2 with p-type conductivity, room-temperature ferromagnetism, and remarkable photocatalytic performance. J. Am. Chem. Soc. 2015, 137, 2975–2983.

[16]

Jiao, X. C.; Chen, Z. W.; Li, X. D.; Sun, Y. F.; Gao, S.; Yan, W. S.; Wang, C. M.; Zhang, Q.; Lin, Y.; Luo, Y. et al. Defect-mediated electron-hole separation in one-unit-cell ZnIn2S4 layers for boosted solar-driven CO2 reduction. J. Am. Chem. Soc. 2017, 139, 7586–7594.

[17]

Shi, M.; Li, G. N.; Li, J. M.; Jin, X.; Tao, X. P.; Zeng, B.; Pidko, E. A.; Li, R. G.; Li, C. Intrinsic facet-dependent reactivity of well-defined BiOBr nanosheets on photocatalytic water splitting. Angew. Chem., Int. Ed. 2020, 59, 6590–6595.

[18]

Wang, Q. L.; Miao, Z. R.; Zhang, Y. F.; Yan, T. J.; Meng, L. P.; Wang, X. X. Photocatalytic reduction of CO2 with H2O mediated by Ce-tailored bismuth oxybromide surface frustrated Lewis pairs. ACS Catal. 2022, 12, 4016–4025.

[19]

Xu, B. Y.; An, Y.; Liu, Y. Y.; Qin, X. Y.; Zhang, X. Y.; Dai, Y.; Wang, Z. Y.; Wang, P.; Whangbo, M. H.; Huang, B. B. Enhancing the photocatalytic activity of BiOX (X = Cl, Br, and I), (BiO)2CO3 and Bi2O3 by modifying their surfaces with polar organic anions, 4-substituted thiophenolates. J. Mater. Chem. A 2017, 5, 14406–14414.

[20]

Fu, J. W.; Zhu, B. C.; Jiang, C. J.; Cheng, B.; You, W.; Yu, J. G. Hierarchical porous O-doped g-C3N4 with enhanced photocatalytic CO2 reduction activity. Small 2017, 13, 1603938.

[21]

Hasani, A.; Tekalgne, M.; Le, Q. V.; Jang, H. W.; Kim, S. Y. Two-dimensional materials as catalysts for solar fuels: Hydrogen evolution reaction and CO2 reduction. J. Mater. Chem. A 2019, 7, 430–454.

[22]

Wu, J.; Li, X. D.; Shi, W.; Ling, P. Q.; Sun, Y. F.; Jiao, X. C.; Gao, S.; Liang, L.; Xu, J. Q.; Yan, W. S. et al. Efficient visible-light-driven CO2 reduction mediated by defect-engineered BiOBr atomic layers. Angew. Chem., Int. Ed. 2018, 57, 8719–8723.

[23]

Di, J.; Chen, C.; Zhu, C.; Song, P.; Xiong, J.; Ji, M. X.; Zhou, J. D.; Fu, Q. D.; Xu, M. Z.; Hao, W. et al. Bismuth vacancy-tuned bismuth oxybromide ultrathin nanosheets toward photocatalytic CO2 reduction. ACS Appl. Mater. Interfaces 2019, 11, 30786–30792.

[24]

Ye, X. R.; Jia, D. Z.; Yu, J. Q.; Xin, X. Q.; Xue, Z. L. One-step solid-state reactions at ambient temperatures–—A novel approach to nanocrystal synthesis. 3.0.CO;2-T">Adv. Mater. 1999, 11, 941–942.

[25]

Xie, J.; Cao, Y. L.; Hu, J. D.; Tang, Y. K.; Jia, D. Z. A solvent-free strategy to realize the substitution of I for IO3 in a BiOIO3 photocatalyst with an opposite charge transfer path. Green Chem. 2020, 22, 1424–1431.

[26]

Gao, X. M.; Gao, K. L.; Zhu, W.; Liang, C. H.; Li, Q. G.; Fu, F.; Zhu, Y. F. Accurate guided alternating atomic layer enhance internal electric field to steering photogenerated charge separation for enhance photocatalytic activity. Appl. Catal. B: Environ. 2021, 298, 120536.

[27]

Wang, H.; Chen, S. C.; Yong, D. Y.; Zhang, X. D.; Li, S.; Shao, W.; Sun, X. S.; Pan, B. C.; Xie, Y. Giant electron–hole interactions in confined layered structures for molecular oxygen activation. J. Am. Chem. Soc. 2017, 139, 4737–4742.

[28]

Zhang, X.; Zhang, Y.; Feng, Z. Y.; Zhao, J. M.; Yang, Z. M.; Wang, X.; Wang, W. S. Self-accelerating photocharge separation in BiOBr ultrathin nanosheets for boosting photoreversible color switching. Chem. Eng. J. 2022, 428, 131235.

[29]

Kang, Z. H.; Lin, E. Z.; Qin, N.; Wu, J.; Bao, D. H. Bismuth vacancy-mediated quantum dot precipitation to trigger efficient piezocatalytic activity of Bi2WO6 nanosheets. ACS Appl. Mater. Interfaces 2022, 14, 11375–11387.

[30]

Liu, G. P.; Wang, B.; Zhu, X. W.; Ding, P. H.; Zhao, J. Z.; Li, H. M.; Chen, Z. R.; Zhu, W. S.; Xia, J. X. Edge-site-rich ordered macroporous BiOCl triggers C=O activation for efficient CO2 photoreduction. Small 2022, 18, 2105228.

[31]

Di, J.; Xia, J. X.; Chisholm, M. F.; Zhong, J.; Chen, C.; Cao, X. Z.; Dong, F.; Chi, Z.; Chen, H. L.; Weng, Y. X. et al. Defect-tailoring mediated electron–hole separation in single-unit-cell Bi3O4Br nanosheets for boosting photocatalytic hydrogen evolution and nitrogen fixation. Adv. Mater. 2019, 31, 1807576.

[32]

Ma, S. H.; Luo, X.; Ran, G.; Li, Y. P.; Cao, Z. Q.; Liu, X. Y.; Chen, G. Q.; Yan, J. H.; Wang, L. Defect engineering of ultrathin 2D nanosheet BiOI/Bi for enhanced photothermal-catalytic synergistic bacteria-killing. Chem. Eng. J. 2022, 435, 134810.

[33]

Zhang, N.; Li, X. Y.; Ye, H. C.; Chen, S. M.; Ju, H. X.; Liu, D. B.; Lin, Y.; Ye, W.; Wang, C. M.; Xu, Q. et al. Oxide defect engineering enables to couple solar energy into oxygen activation. J. Am. Chem. Soc. 2016, 138, 8928–8935.

[34]

Zhang, L. P.; Ran, J. R.; Qiao, S. Z.; Jaroniec, M. Characterization of semiconductor photocatalysts. Chem. Soc. Rev. 2019, 48, 5184–5206.

[35]

Bian, J.; Zhang, Z. Q.; Feng, J. N.; Thangamuthu, M.; Yang, F.; Sun, L.; Li, Z. J.; Qu, Y.; Tang, D. Y.; Lin, Z. W. et al. Energy platform for directed charge transfer in the cascade Z-scheme heterojunction: CO2 photoreduction without a cocatalyst. Angew. Chem., Int. Ed. 2021, 60, 20906–20914.

[36]

Li, Y.; Li, B. H.; Zhang, D. N.; Cheng, L.; Xiang, Q. J. Crystalline carbon nitride supported copper single atoms for photocatalytic CO2 reduction with nearly 100% CO selectivity. ACS Nano 2020, 14, 10552–10561.

[37]

Fu, J. T.; Bao, H. H.; Liu, Y. F.; Mi, Y. Y.; Qiu, Y.; Zhuo, L. C.; Liu, X. J.; Luo, J. Oxygen doping induced by nitrogen vacancies in Nb4N5 enables highly selective CO2 reduction. Small 2020, 16, 1905825.

Nano Research
Pages 297-306
Cite this article:
Xie J, Lu Z, Feng Y, et al. A small organic molecule strategy for remedying oxygen vacancies by bismuth defects in BiOBr nanosheet with excellent photocatalytic CO2 reduction. Nano Research, 2024, 17(1): 297-306. https://doi.org/10.1007/s12274-023-5828-2
Topics:

1167

Views

9

Crossref

9

Web of Science

10

Scopus

0

CSCD

Altmetrics

Received: 28 March 2023
Revised: 02 May 2023
Accepted: 10 May 2023
Published: 29 June 2023
© Tsinghua University Press 2023
Return