AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

The atomic interface effect of single atom catalysts for electrochemical hydrogen peroxide production

Kaiyuan Liu1Pengwan Chen1,2Zhiyi Sun3Wenxing Chen3Qiang Zhou4Xin Gao1,2,( )
State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
Advanced Technology Research Institute, Beijing Institute of Technology, Jinan 250307, China
Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
China Academy of Ordnance Science, Beijing 100089, China
Present address: State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
Show Author Information

Graphical Abstract

The development of stable and high-efficiency single-atom catalysts (SACs) for electrochemical hydrogen peroxide (H2O2) production is important. The recent advances of the rationally designed SACs with unique atomic interfaces and their catalytic performances for 2e oxygen reduction reaction (ORR) are reviewed

Abstract

Producing hydrogen peroxide (H2O2) through an electrochemical oxygen reduction reaction (ORR) is a safe, green strategy and a promising alternative to traditional energy-intensive anthraquinone processes. Air and renewable power could be utilized for on-site and decentralized H2O2 production, demonstrating significant application potential. Currently, single atom catalysts (SACs) have demonstrated significant advantages in the catalytic production of H2O2 in 2e ORR. However, the selectivity of SACs in ORR once puzzled researchers. This article reviews the research on the development and achievements of H2O2 production by SACs catalysis in recent years. Especially, the structure–performance relationship is a guide to designing new SACs. Combining advanced characterization techniques and theoretical calculation methods, researchers have a clearer and more thorough understanding of the impact of the atomic interface of SACs on ORR catalytic performance. The coordination moiety formed between the active metal center atom and the support seriously determines the selectivity of SACs, mainly manifested in the adsorption of *OOH intermediates. Particularly, the atomic interface of metal atoms together with O/N co-coordination exhibit high selectivity and mass activity, and heteroatoms or functional groups on carbon supports present synergistic effects to promote the production of H2O2 in 2e ORR. Fine and accurate regulation of the atomic interface of SACs directly affects the 2e ORR performance of the catalysts. Therefore, it is important to deeply understand the atomic interface of SACs and contribute to the development of novel catalysts.

References

[1]

Tang, J. Y.; Zhao, T. S.; Solanki, D.; Miao, X. B.; Zhou, W. G.; Hu, S. Selective hydrogen peroxide conversion tailored by surface, interface, and device engineering. Joule 2021, 5, 1432–1461.

[2]

Shi, X. J.; Back, S.; Gill, T. M.; Siahrostami, S.; Zheng, X. L. Electrochemical synthesis of H2O2 by two-electron water oxidation reaction. Chem 2021, 7, 38–63.

[3]
Zhang, Y. N.; Pan, C. S.; Bian, G. M.; Xu, J.; Dong, Y. M.; Zhang, Y.; Lou, Y.; Liu, W. X.; Zhu, Y. F. H2O2 generation from O2 and H2O on a near-infrared absorbing porphyrin supramolecular photocatalyst. Nat. Energy 2023, 8, 361–371.
[4]

Hu, S. Membrane-less photoelectrochemical devices for H2O2 production: Efficiency limit and operational constraint. Sustainable Energy Fuels 2019, 3, 101–114.

[5]

Dowling, J. A.; Rinaldi, K. Z.; Ruggles, T. H.; Davis, S. J.; Yuan, M. Y.; Tong, F.; Lewis, N. S.; Caldeira, K. Role of long-duration energy storage in variable renewable electricity systems. Joule 2020, 4, 1907–1928.

[6]

Wen, Y. C.; Zhang, T.; Wang, J. Y.; Pan, Z. L.; Wang, T. F.; Yamashita, H.; Qian, X. F.; Zhao, Y. X. Electrochemical reactors for continuous decentralized H2O2 production. Angew. Chem., Int. Ed. 2022, 61, e202205972.

[7]

Zhu, W. Y.; Chen, S. W. Recent progress of single-atom catalysts in the electrocatalytic reduction of oxygen to hydrogen peroxide. Electroanalysis 2020, 32, 2591–2602.

[8]

Yang, S.; Verdaguer-Casadevall, A.; Arnarson, L.; Silvioli, L.; Čolić, V.; Frydendal, R.; Rossmeisl, J.; Chorkendorff, I.; Stephens, I. E. L. Toward the decentralized electrochemical production of H2O2: A focus on the catalysis. ACS Catal. 2018, 8, 4064–4081.

[9]

Xia, C.; Xia, Y.; Zhu, P.; Fan, L.; Wang, H. T. Direct electrosynthesis of pure aqueous H2O2 solutions up to 20% by weight using a solid electrolyte. Science 2019, 366, 226–231.

[10]

Zhou, Y.; Chen, G.; Zhang, J. J. A review of advanced metal-free carbon catalysts for oxygen reduction reactions towards the selective generation of hydrogen peroxide. J. Mater. Chem. A 2020, 8, 20849–20869.

[11]

Perry, S. C.; Pangotra, D.; Vieira, L.; Csepei, L. I.; Sieber, V.; Wang, L.; Ponce de León, C.; Walsh, F. C. Electrochemical synthesis of hydrogen peroxide from water and oxygen. Nat. Rev. Chem. 2019, 3, 442–458.

[12]

Siahrostami, S.; Verdaguer-Casadevall, A.; Karamad, M.; Deiana, D.; Malacrida, P.; Wickman, B.; Escudero-Escribano, M.; Paoli, E. A.; Frydendal, R.; Hansen, T. W. et al. Enabling direct H2O2 production through rational electrocatalyst design. Nat. Mater. 2013, 12, 1137–1143.

[13]

Xia, Y.; Zhao, X. H.; Xia, C.; Wu, Z. Y.; Zhu, P.; Kim, J. Y.; Bai, X. W.; Gao, G. H.; Hu, Y. F.; Zhong, J. et al. Highly active and selective oxygen reduction to H2O2 on boron-doped carbon for high production rates. Nat. Commun. 2021, 12, 4225.

[14]

Zhang, Y.; Lyu, Z. H.; Chen, Z. T.; Zhu, S. Q.; Shi, Y. F.; Chen, R. H.; Xie, M. H.; Yao, Y.; Chi, M. F.; Shao, M. H. et al. Maximizing the catalytic performance of Pd@AuxPd1−x nanocubes in H2O2 production by reducing shell thickness to increase compositional stability. Angew. Chem., Int. Ed. 2021, 60, 19643–19647.

[15]

Ramaswamy, N.; Mukerjee, S. Influence of inner- and outer-sphere electron transfer mechanisms during electrocatalysis of oxygen reduction in alkaline media. J. Phys. Chem. C 2011, 115, 18015–18026.

[16]

Guo, X. Y.; Lin, S. R.; Gu, J. X.; Zhang, S. L.; Chen, Z. F.; Huang, S. P. Simultaneously achieving high activity and selectivity toward two-electron O2 electroreduction: The power of single-atom catalysts. ACS Catal. 2019, 9, 11042–11054.

[17]

Jing, H. Y.; Zhu, P.; Zheng, X. B.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv. Powder Mater. 2022, 1, 100013.

[18]

Yu, S. M.; Cheng, X.; Wang, Y. S.; Xiao, B.; Xing, Y. R.; Ren, J.; Lu, Y.; Li, H. Y.; Zhuang, C. Q.; Chen, G. High activity and selectivity of single palladium atom for oxygen hydrogenation to H2O2. Nat. Commun. 2022, 13, 4737.

[19]

Sun, Y. Y.; Han, L.; Strasser, P. A comparative perspective of electrochemical and photochemical approaches for catalytic H2O2 production. Chem. Soc. Rev. 2020, 49, 6605–6631.

[20]

Gao, J. J.; Liu, B. Progress of electrochemical hydrogen peroxide synthesis over single atom catalysts. ACS Mater. Lett. 2020, 2, 1008–1024.

[21]

Yang, T.; Yang, C. Y.; Le, J. B.; Yu, Z. Y.; Bu, L. Z.; Li, L. G.; Bai, S. X.; Shao, Q.; Hu, Z. W.; Pao, C. W. et al. Atomically isolated Pd sites within Pd-S nanocrystals enable trifunctional catalysis for direct, electrocatalytic and photocatalytic syntheses of H2O2. Nano Res. 2022, 15, 1861–1867.

[22]

Han, A. L.; Zhang, Z. D.; Yang, J. R.; Wang, D. S.; Li, Y. D. Carbon-supported single-atom catalysts for formic acid oxidation and oxygen reduction reactions. Small 2021, 17, 2004500.

[23]

Li, R. Z.; Wang, D. S. Understanding the structure–performance relationship of active sites at atomic scale. Nano Res. 2022, 15, 6888–6923.

[24]

Liu, J. J.; Gong, Z. C.; Yan, M. M.; He, G. C.; Gong, H. S.; Ye, G. L.; Fei, H. L. Electronic structure regulation of single-atom catalysts for electrochemical oxygen reduction to H2O2. Small 2022, 18, 2103824.

[25]

Zhu, P.; Xiong, X.; Wang, D. S. Regulations of active moiety in single atom catalysts for electrochemical hydrogen evolution reaction. Nano Res. 2022, 15, 5792–5815.

[26]

Liu, H. X.; Peng, X. Y.; Liu, X. J. Single-atom catalysts for the hydrogen evolution reaction. ChemElectroChem 2018, 5, 2963–2974.

[27]

Cao, L. L.; Luo, Q. Q.; Liu, W.; Lin, Y.; Liu, X. K.; Cao, Y. J.; Zhang, W.; Wu, Y. E.; Yang, J. L.; Yao, T. et al. Identification of single-atom active sites in carbon-based cobalt catalysts during electrocatalytic hydrogen evolution. Nat. Catal. 2019, 2, 134–141.

[28]
Lei, X.; Tang, Q. Y.; Zheng, Y. P.; Kidkhunthod, P.; Zhou, X. L.; Ji, B. F.; Tang, Y. B. High-entropy single-atom activated carbon catalysts for sustainable oxygen electrocatalysis. Nat. Sustain., in press, https://doi.org/10.1038/s41893-023-01101-z.
[29]

Wang, C. Y.; Schechter, A.; Feng, L. G. Iridium-based catalysts for oxygen evolution reaction in acidic media: Mechanism, catalytic promotion effects and recent progress. Nano Res. Energy 2023, 2, e9120056.

[30]

Bai, L. C.; Hsu, C. S.; Alexander, D. T. L.; Chen, H. M.; Hu, X. L. Double-atom catalysts as a molecular platform for heterogeneous oxygen evolution electrocatalysis. Nat. Energy 2021, 6, 1054–1066.

[31]

Wang, Q.; Shang, L.; Sun-Waterhouse, D.; Zhang, T. R.; Waterhouse, G. Engineering local coordination environments and site densities for high-performance Fe-N-C oxygen reduction reaction electrocatalysis. SmartMat 2021, 2, 154–175.

[32]

Xu, Y. Y.; Xue, H. R.; Li, X. J.; Fan, X. L.; Li, P.; Zhang, T. F.; Chang, K.; Wang, T.; He, J. P. Application of metal-organic frameworks, covalent organic frameworks and their derivates for the metal-air batteries. Nano Res. Energy 2023, 2, e9120052.

[33]

Liu, K.; Fu, J. W.; Lin, Y. Y.; Luo, T.; Ni, G. H.; Li, H. M.; Lin, Z.; Liu, M. Insights into the activity of single-atom Fe-N-C catalysts for oxygen reduction reaction. Nat. Commun. 2022, 13, 2075.

[34]

Wang, Y.; Wu, J.; Tang, S. H.; Yang, J. R.; Ye, C. L.; Chen, J.; Lei, Y. P.; Wang, D. S. Synergistic Fe-Se atom pairs as bifunctional oxygen electrocatalysts boost low-temperature rechargeable Zn-air battery. Angew. Chem., Int. Ed. 2023, 62, e202219191.

[35]

Hao, Q.; Zhong, H. X.; Wang, J. Z.; Liu, K. H.; Yan, J. M.; Ren, Z. H.; Zhou, N.; Zhao, X.; Zhang, H.; Liu, D. X. et al. Nickel dual-atom sites for electrochemical carbon dioxide reduction. Nat. Synth. 2022, 1, 719–728.

[36]

Ahmad, T.; Liu, S.; Sajid, M.; Li, K.; Ali, M.; Liu, L.; Chen, W. Electrochemical CO2 reduction to C2+ products using Cu-based electrocatalysts: A review. Nano Res. Energy 2022, 1, e9120021.

[37]

Li, L. L.; Hasan, I. M. U.; Farwa; He, R. N.; Peng, L. W.; Xu, N. N.; Niazi, N. K.; Zhang, J. N.; Qiao, J. L. Copper as a single metal atom based photo-, electro-, and photoelectrochemical catalyst decorated on carbon nitride surface for efficient CO2 reduction: A review. Nano Res. Energy 2022, 1, e9120015.

[38]

Wu, Z. Y.; Karamad, M.; Yong, X.; Huang, Q. Z.; Cullen, D. A.; Zhu, P.; Xia, C.; Xiao, Q. F.; Shakouri, M.; Chen, F. Y. et al. Electrochemical ammonia synthesis via nitrate reduction on Fe single atom catalyst. Nat. Commun. 2021, 12, 2870.

[39]
Zheng, X. B.; Yang, J. R.; Li, P.; Jiang, Z. L.; Zhu, P.; Wang, Q. S.; Wu, J. B.; Zhang, E. H.; Sun, W. P.; Dou, S. X. et al. Dual-atom support boosts nickel-catalyzed urea electrooxidation. Angew. Chem. , Int. Ed., in press, https://doi.org/10.1002/anie.202217449.
[40]

Wang, G.; Wu, Y.; Li, Z. J.; Lou, Z. Z.; Chen, Q. Q.; Li, Y. F.; Wang, D. S.; Mao, J. J. Engineering a copper single-atom electron bridge to achieve efficient photocatalytic CO2 conversion. Angew. Chem., Int. Ed. 2023, 62, e202218460.

[41]

Li, H. B.; Zheng, J. J.; Yang, M. F.; Duan, J. G. Electron and configuration engineering of atomic Cu and multi-oxidated Cu2+1O centers via gasifiable reductant strategy for efficient oxygen reduction toward Zn-air battery. Nano Res. 2023, 16, 2383–2391.

[42]

Hao, J. C.; Zhuang, Z. C.; Cao, K. C.; Gao, G. H.; Wang, C.; Lai, F. L.; Lu, S. L.; Ma, P. M.; Dong, W. F.; Liu, T. X. et al. Unraveling the electronegativity-dominated intermediate adsorption on high-entropy alloy electrocatalysts. Nat. Commun. 2022, 13, 2662.

[43]

Chen, J. X.; Ma, Q.; Zheng, X. L.; Fang, Y. X.; Wang, J.; Dong, S. J. Kinetically restrained oxygen reduction to hydrogen peroxide with nearly 100% selectivity. Nat. Commun. 2022, 13, 2808.

[44]

Sun, K.; Xu, W. W.; Lin, X.; Tian, S. B.; Lin, W. F.; Zhou, D. J.; Sun, X. M. Electrochemical oxygen reduction to hydrogen peroxide via a two-electron transfer pathway on carbon-based single-atom catalysts. Adv. Mater. Interfaces 2021, 8, 2001360.

[45]

Zheng, X. B.; Li, P.; Dou, S. X.; Sun, W. P.; Pan, H. G.; Wang, D. S.; Li, Y. D. Non-carbon-supported single-atom site catalysts for electrocatalysis. Energy Environ. Sci. 2021, 14, 2809–2858.

[46]

Xu, J. W.; Zheng, X. L.; Feng, Z. P.; Lu, Z. Y.; Zhang, Z. W.; Huang, W.; Li, Y. B.; Vuckovic, D.; Li, Y. Q.; Dai, S. et al. Organic wastewater treatment by a single-atom catalyst and electrolytically produced H2O2. Nat. Sustain. 2021, 4, 233–241.

[47]

Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.

[48]

Zhu, H.; Sun, S. H.; Hao, J. C.; Zhuang, Z. C.; Zhang, S. G.; Wang, T. D.; Kang, Q.; Lu, S. L.; Wang, X. F.; Lai, F. L. et al. A high-entropy atomic environment converts inactive to active sites for electrocatalysis. Energy Environ. Sci. 2023, 16, 619–628.

[49]

Chung, H. T.; Cullen, D. A.; Higgins, D.; Sneed, B. T.; Holby, E. F.; More, K. L.; Zelenay, P. Direct atomic-level insight into the active sites of a high-performance PGM-free ORR catalyst. Science 2017, 357, 479–484.

[50]

Zhuang, Z. C.; Li, Y.; Li, Y. H.; Huang, J. Z.; Wei, B.; Sun, R.; Ren, Y. J.; Ding, J.; Zhu, J. X.; Lang, Z. Q. et al. Atomically dispersed nonmagnetic electron traps improve oxygen reduction activity of perovskite oxides. Energy Environ. Sci. 2021, 14, 1016–1028.

[51]

Liu, Z. H.; Du, Y.; Yu, R. H.; Zheng, M. B.; Hu, R.; Wu, J. S.; Xia, Y. Y.; Zhuang, Z. C.; Wang, D. S. Tuning mass transport in electrocatalysis down to sub-5 nm through nanoscale grade separation. Angew. Chem., Int. Ed. 2023, 62, e202212653.

[52]

Zhuang, Z. C.; Li, Y. H.; Yu, R. H.; Xia, L. X.; Yang, J. R.; Lang, Z. Q.; Zhu, J. X.; Huang, J. Z.; Wang, J. O.; Wang, Y. et al. Reversely trapping atoms from a perovskite surface for high-performance and durable fuel cell cathodes. Nat. Catal. 2022, 5, 300–310.

[53]

Jiang, Z. L.; Sun, W. M.; Shang, H. S.; Chen, W. X.; Sun, T. T.; Li, H. J.; Dong, J. C.; Zhou, J.; Li, Z.; Wang, Y. et al. Atomic interface effect of a single atom copper catalyst for enhanced oxygen reduction reactions. Energy Environ. Sci. 2019, 12, 3508–3514.

[54]

Feng, C.; Zhang, Z. R.; Wang, D. D.; Kong, Y.; Wei, J.; Wang, R. Y.; Ma, P. Y.; Li, H. L.; Geng, Z. G.; Zuo, M. et al. Tuning the electronic and steric interaction at the atomic interface for enhanced oxygen evolution. J. Am. Chem. Soc. 2022, 144, 9271–9279.

[55]

Guan, S. Y.; Liu, Y. Y.; Zhang, H. H.; Wei, H. J.; Liu, T.; Wu, X. L.; Wen, H.; Shen, R. F.; Mehdi, S.; Ge, X. H. et al. Atomic interface-exciting catalysis on cobalt nitride-oxide for accelerating hydrogen generation. Small 2022, 18, 2107417.

[56]

Shang, H. S.; Sun, W. M.; Sui, R.; Pei, J. J.; Zheng, L. R.; Dong, J. C.; Jiang, Z. L.; Zhou, D. N.; Zhuang, Z. B.; Chen, W. X. et al. Engineering isolated Mn-N2C2 atomic interface sites for efficient bifunctional oxygen reduction and evolution reaction. Nano Lett. 2020, 20, 5443–5450.

[57]

Liu, J. J.; Wei, Z. X.; Gong, Z. C.; Yan, M. M.; Hu, Y. F.; Zhao, S. L.; Ye, G. L.; Fei, H. L. Single-atom CoN4 sites with elongated bonding induced by phosphorus doping for efficient H2O2 electrosynthesis. Appl. Catal. B:Environ. 2023, 324, 122267.

[58]

Zheng, X. B.; Li, B. B.; Wang, Q. S.; Wang, D. S.; Li, Y. D. Emerging low-nuclearity supported metal catalysts with atomic level precision for efficient heterogeneous catalysis. Nano Res. 2022, 15, 7806–7839.

[59]

Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res. 2022, 15, 1730–1752.

[60]

Yang, J. R.; Li, W. H.; Xu, K. N.; Tan, S. D.; Wang, D. S.; Li, Y. D. Regulating the tip effect on single-atom and cluster catalysts: Forming reversible oxygen species with high efficiency in chlorine evolution reaction. Angew. Chem., Int. Ed. 2022, 61, e202200366.

[61]

Choi, C. H.; Kim, M.; Kwon, H. C.; Cho, S. J.; Yun, S.; Kim, H. T.; Mayrhofer, K. J. J.; Kim, H.; Choi, M. Tuning selectivity of electrochemical reactions by atomically dispersed platinum catalyst. Nat. Commun. 2016, 7, 10922.

[62]

Yang, S.; Tak, Y. J.; Kim, J.; Soon, A.; Lee, H. Support effects in single-atom platinum catalysts for electrochemical oxygen reduction. ACS Catal. 2017, 7, 1301–1307.

[63]

Sahoo, S. K.; Ye, Y.; Lee, S.; Park, J.; Lee, H.; Lee, J.; Han, J. W. Rational design of TiC-supported single-atom electrocatalysts for hydrogen evolution and selective oxygen reduction reactions. ACS Energy Lett. 2019, 4, 126–132.

[64]

Jiang, K.; Back, S.; Akey, A. J.; Xia, C.; Hu, Y. F.; Liang, W. T.; Schaak, D.; Stavitski, E.; Nørskov, J. K.; Siahrostami, S. et al. Highly selective oxygen reduction to hydrogen peroxide on transition metal single atom coordination. Nat. Commun. 2019, 10, 3997.

[65]

Jung, E.; Shin, H.; Lee, B. H.; Efremov, V.; Lee, S.; Lee, H. S.; Kim, J.; Hooch Antink, W.; Park, S.; Lee, K. S. et al. Atomic-level tuning of Co-N-C catalyst for high-performance electrochemical H2O2 production. Nat. Mater. 2020, 19, 436–442.

[66]

Tang, C.; Chen, L.; Li, H. J.; Li, L. Q.; Jiao, Y.; Zheng, Y.; Xu, H. L.; Davey, K.; Qiao, S. Z. Tailoring acidic oxygen reduction selectivity on single-atom catalysts via modification of first and second coordination spheres. J. Am. Chem. Soc. 2021, 143, 7819–7827.

[67]

Chen, S. Y.; Luo, T.; Li, X. Q.; Chen, K. J.; Fu, J. W.; Liu, K.; Cai, C.; Wang, Q. Y.; Li, H. M.; Chen, Y. et al. Identification of the highly active Co–N4 coordination motif for selective oxygen reduction to hydrogen peroxide. J. Am. Chem. Soc. 2022, 144, 14505–14516.

[68]

Yan, M. M.; Wei, Z. X.; Gong, Z. C.; Johannessen, B.; Ye, G. L.; He, G. C.; Liu, J. J.; Zhao, S. L.; Cui, C. Y.; Fei, H. L. Sb2S3-templated synthesis of sulfur-doped Sb-N-C with hierarchical architecture and high metal loading for H2O2 electrosynthesis. Nat. Commun. 2023, 14, 368.

[69]

Yan, J. X.; Ye, F. H.; Dai, Q. B.; Ma, X. Y.; Fang, Z. H.; Dai, L. M.; Hu, C. G. Recent progress in carbon-based electrochemical catalysts: From structure design to potential applications. Nano Res. Energy 2023, 2, e9120047.

[70]
Gao, Y.; Liu, B. Z.; Wang, D. S. Microenvironment engineering of single/dual-atom catalysts for electrocatalytic application. Adv. Mater., in press, https://doi.org/10.1002/adma.202209654.
[71]

Wang, B. Q.; Chen, S. H.; Zhang, Z. D.; Wang, D. S. Low-dimensional material supported single-atom catalysts for electrochemical CO2 reduction. SmartMat 2022, 3, 84–110.

[72]

Cui, T. T.; Wang, Y. P.; Ye, T.; Wu, J.; Chen, Z. Q.; Li, J.; Lei, Y. P.; Wang, D. D.; Li, Y. D. Engineering dual single-atom sites on 2D ultrathin N-doped carbon nanosheets attaining ultra-low-temperature zinc-air battery. Angew. Chem., Int. Ed. 2022, 61, e202115219.

[73]

Zhuang, Z. C.; Xia, L. X.; Huang, J. Z.; Zhu, P.; Li, Y.; Ye, C. L.; Xia, M. G.; Yu, R. H.; Lang, Z. Q.; Zhu, J. X. et al. Continuous modulation of electrocatalytic oxygen reduction activities of single-atom catalysts through p-n junction rectification. Angew. Chem., Int. Ed. 2023, 62, e202212335.

[74]

Gao, J. J.; Yang, H. B.; Huang, X.; Hung, S. F.; Cai, W. Z.; Jia, C. M.; Miao, S.; Chen, H. M.; Yang, X. F.; Huang, Y. Q. et al. Enabling direct H2O2 production in acidic media through rational design of transition metal single atom catalyst. Chem 2020, 6, 658–674.

[75]

Cai, Y. M.; Fu, J. J.; Zhou, Y.; Chang, Y. C.; Min, Q. H.; Zhu, J. J.; Lin, Y. H.; Zhu, W. L. Insights on forming N, O-coordinated Cu single-atom catalysts for electrochemical reduction CO2 to methane. Nat. Commun. 2021, 12, 586.

[76]

Fan, W. J.; Duan, Z. Y.; Liu, W.; Mehmood, R.; Qu, J. T.; Cao, Y. C.; Guo, X. Y.; Zhong, J.; Zhang, F. X. Rational design of heterogenized molecular phthalocyanine hybrid single-atom electrocatalyst towards two-electron oxygen reduction. Nat. Commun. 2023, 14, 1426.

[77]

Zheng, X. B.; Yang, J. R.; Xu, Z. F.; Wang, Q. S.; Wu, J. B.; Zhang, E. H.; Dou, S. X.; Sun, W. P.; Wang, D. S.; Li, Y. D. Ru-Co pair sites catalyst boosts the energetics for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2022, 61, e202205946.

[78]

Gong, H. S.; Wei, Z. X.; Gong, Z. C.; Liu, J. J.; Ye, G. L.; Yan, M. M.; Dong, J. C.; Allen, C.; Liu, J. B.; Huang, K. et al. Low-coordinated Co-N-C on oxygenated graphene for efficient electrocatalytic H2O2 production. Adv. Funct. Mater. 2022, 32, 2106886.

[79]

Cao, P. K.; Quan, X.; Nie, X. W.; Zhao, K.; Liu, Y. M.; Chen, S.; Yu, H. T.; Chen, J. G. Metal single-site catalyst design for electrocatalytic production of hydrogen peroxide at industrial-relevant currents. Nat. Commun. 2023, 14, 172.

[80]

Wang, Y.; Zhang, Z. S.; Zhang, X.; Yuan, Y. B.; Jiang, Z.; Zheng, H. Z.; Wang, Y. G.; Zhou, H.; Liang, Y. Y. Theory-driven design of electrocatalysts for the two-electron oxygen reduction reaction based on dispersed metal phthalocyanines. CCS Chem. 2022, 4, 228–236.

[81]

Wang, N.; Zhao, X. H.; Zhang, R.; Yu, S.; Levell, Z. H.; Wang, C. Y.; Ma, S. B.; Zou, P. C.; Han, L. L.; Qin, J. Y. et al. Highly selective oxygen reduction to hydrogen peroxide on a carbon-supported single-atom Pd electrocatalyst. ACS Catal. 2022, 12, 4156–4164.

[82]

Zhang, E. H.; Tao, L.; An, J. K.; Zhang, J. W.; Meng, L. Z.; Zheng, X. B.; Wang, Y.; Li, N.; Du, S. X.; Zhang, J. T. et al. Engineering the local atomic environments of indium single-atom catalysts for efficient electrochemical production of hydrogen peroxide. Angew. Chem., Int. Ed. 2022, 61, e202117347.

[83]

Liu, C.; Li, H.; Liu, F.; Chen, J. S.; Yu, Z. X.; Yuan, Z. W.; Wang, C. J.; Zheng, H. L.; Henkelman, G.; Wei, L. et al. Intrinsic activity of metal centers in metal-nitrogen-carbon single-atom catalysts for hydrogen peroxide synthesis. J. Am. Chem. Soc. 2020, 142, 21861–21871.

[84]

Zhang, F. F.; Zhu, Y. L.; Tang, C.; Chen, Y.; Qian, B. B.; Hu, Z. W.; Chang, Y. C.; Pao, C. W.; Lin, Q.; Kazemi, S. A. et al. High-efficiency electrosynthesis of hydrogen peroxide from oxygen reduction enabled by a tungsten single atom catalyst with unique terdentate N1O2 coordination. Adv. Funct. Mater. 2022, 32, 2110224.

[85]

Wu, Y. H.; Ding, Y. F.; Han, X.; Li, B. B.; Wang, Y. F.; Dong, S. Y.; Li, Q. L.; Dou, S. X.; Sun, J. Y.; Sun, J. H. Modulating coordination environment of Fe single atoms for high-efficiency all-pH-tolerated H2O2 electrochemical production. Appl. Catal. B:Environ. 2022, 315, 121578.

[86]

Wang, Y. L.; Shi, R.; Shang, L.; Waterhouse, G. I. N.; Zhao, J. Q.; Zhang, Q. H.; Gu, L.; Zhang, T. R. High-efficiency oxygen reduction to hydrogen peroxide catalyzed by nickel single-atom catalysts with tetradentate N2O2 coordination in a three-phase flow cell. Angew. Chem., Int. Ed. 2020, 59, 13057–13062.

[87]

Xiao, C. Q.; Cheng, L.; Zhu, Y. H.; Wang, G. C.; Chen, L. Y.; Wang, Y. T.; Chen, R. Z.; Li, Y. H.; Li, C. Z. Super-coordinated nickel N4Ni1O2 site single-atom catalyst for selective H2O2 electrosynthesis at high current densities. Angew. Chem., Int. Ed. 2022, 61, e202206544.

[88]

Wei, G. Y.; Liu, X. P.; Zhao, Z. W.; Men, C. B.; Ding, Y.; Gao, S. Y. Constructing ultrahigh-loading unsymmetrically coordinated Zn-N3O single-atom sites with efficient oxygen reduction for H2O2 production. Chem. Eng. J. 2023, 455, 140721.

[89]

Li, W. H.; Yang, J. R.; Wang, D. S. Long-range interactions in diatomic catalysts boosting electrocatalysis. Angew. Chem., Int. Ed. 2022, 61, e202213318.

[90]

Zhang, Q. R.; Tan, X.; Bedford, N. M.; Han, Z. J.; Thomsen, L.; Smith, S.; Amal, R.; Lu, X. Y. Direct insights into the role of epoxy groups on cobalt sites for acidic H2O2 production. Nat. Commun. 2020, 11, 4181.

[91]

Jia, Y. L.; Xue, Z. Q.; Yang, J.; Liu, Q. L.; Xian, J. H.; Zhong, Y. C.; Sun, Y. M.; Zhang, X. X.; Liu, Q. H.; Yao, D. X. et al. Tailoring the electronic structure of an atomically dispersed zinc electrocatalyst: Coordination environment regulation for high selectivity oxygen reduction. Angew. Chem., Int. Ed. 2022, 61, e202110838.

[92]

Zhang, B. W.; Zheng, T.; Wang, Y. X.; Du, Y.; Chu, S. Q.; Xia, Z. H.; Amal, R.; Dou, S. X.; Dai, L. M. Highly efficient and selective electrocatalytic hydrogen peroxide production on Co-O-C active centers on graphene oxide. Commun. Chem. 2022, 5, 43.

[93]

Xu, W. W.; Liang, Z.; Gong, S.; Zhang, B. S.; Wang, H.; Su, L. F.; Chen, X.; Han, N. N.; Tian, Z. Q.; Kallio, T. et al. Fast and stable electrochemical production of H2O2 by electrode architecture engineering. ACS Sustainable Chem. Eng. 2021, 9, 7120–7129.

[94]

Song, X. Z.; Li, N.; Zhang, H.; Wang, H.; Wang, L. Y.; Bian, Z. Y. Promotion of hydrogen peroxide production on graphene-supported atomically dispersed platinum: Effects of size on oxygen reduction reaction pathway. J. Power Sources 2019, 435, 226771.

[95]

Song, X. Z.; Li, N.; Zhang, H.; Wang, L.; Yan, Y. J.; Wang, H.; Wang, L. Y.; Bian, Z. Y. Graphene-supported single nickel atom catalyst for highly selective and efficient hydrogen peroxide production. ACS Appl. Mater. Interfaces 2020, 12, 17519–17527.

[96]

Yang, Q. H.; Xu, W. W.; Gong, S.; Zheng, G. K.; Tian, Z. Q.; Wen, Y. J.; Peng, L. M.; Zhang, L. J.; Lu, Z. Y.; Chen, L. Atomically dispersed Lewis acid sites boost 2-electron oxygen reduction activity of carbon-based catalysts. Nat. Commun. 2020, 11, 5478.

[97]

Tang, C.; Jiao, Y.; Shi, B. Y.; Liu, J. N.; Xie, Z. H.; Chen, X.; Zhang, Q.; Qiao, S. Z. Coordination tunes selectivity: Two-electron oxygen reduction on high-loading molybdenum single-atom catalysts. Angew. Chem., Int. Ed. 2020, 59, 9171–9176.

[98]

Zhao, J. J.; Fu, C. H.; Ye, K.; Liang, Z.; Jiang, F. L.; Shen, S. Y.; Zhao, X. R.; Ma, L.; Shadike, Z.; Wang, X. M. et al. Manipulating the oxygen reduction reaction pathway on Pt-coordinated motifs. Nat. Commun. 2022, 13, 685.

[99]

Zou, H. Y.; Arachchige, L. J.; Dai, H.; Liu, H.; Jiao, F. F.; Hu, W.; Li, F.; Wei, S. T.; Sun, C. H.; Duan, L. L. Pushing the limit of atomically dispersed Au catalysts for electrochemical H2O2 production by precise electronic perturbation of the active site. Chem Catal. 2023, 3, 100583.

[100]

Ledendecker, M.; Pizzutilo, E.; Malta, G.; Fortunato, G. V.; Mayrhofer, K. J. J.; Hutchings, G. J.; Freakley, S. J. Isolated Pd sites as selective catalysts for electrochemical and direct hydrogen peroxide synthesis. ACS Catal. 2020, 10, 5928–5938.

[101]

Sun, Y. Y.; Silvioli, L.; Sahraie, N. R.; Ju, W.; Li, J. K.; Zitolo, A.; Li, S.; Bagger, A.; Arnarson, L.; Wang, X. L. et al. Activity-selectivity trends in the electrochemical production of hydrogen peroxide over single-site metal-nitrogen-carbon catalysts. J. Am. Chem. Soc. 2019, 141, 12372–12381.

[102]

Zhang, J. C.; Yang, H. B.; Gao, J. J.; Xi, S. B.; Cai, W. Z.; Zhang, J. M.; Cui, P.; Liu, B. Design of hierarchical, three-dimensional free-standing single-atom electrode for H2O2 production in acidic media. Carbon Energy 2020, 2, 276–282.

[103]

Liu, W.; Zhang, C.; Zhang, J. J.; Huang, X.; Song, M.; Li, J. W.; He, F.; Yang, H. P.; Zhang, J.; Wang, D. L. Tuning the atomic configuration of Co-N-C electrocatalyst enables highly-selective H2O2 production in acidic media. Appl. Catal. B:Environ. 2022, 310, 121312.

[104]

Xu, H.; Zhang, S. B.; Geng, J.; Wang, G. Z.; Zhang, H. M. Cobalt single atom catalysts for the efficient electrosynthesis of hydrogen peroxide. Inorg. Chem. Front. 2021, 8, 2829–2834.

[105]

Suk, M.; Chung, M. W.; Han, M. H.; Oh, H. S.; Choi, C. H. Selective H2O2 production on surface-oxidized metal-nitrogen-carbon electrocatalysts. Catal. Today 2021, 359, 99–105.

[106]

Li, X. G.; Tang, S. S.; Dou, S.; Fan, H. J.; Choksi, T. S.; Wang, X. Molecule confined isolated metal sites enable the electrocatalytic synthesis of hydrogen peroxide. Adv. Mater. 2022, 34, 2104891.

[107]

Lin, R. J.; Kang, L. Q.; Lisowska, K.; He, W. Y.; Zhao, S. Y.; Hayama, S.; Hutchings, G. J.; Brett, D. J. L.; Corà, F.; Parkin, I. P. et al. Approaching theoretical performances of electrocatalytic hydrogen peroxide generation by cobalt-nitrogen moieties. Angew. Chem., Int. Ed. 2023, 62, e202301433.

[108]

Li, B. Q.; Zhao, C. X.; Liu, J. N.; Zhang, Q. Electrosynthesis of hydrogen peroxide synergistically catalyzed by atomic Co-Nx-C sites and oxygen functional groups in noble-metal-free electrocatalysts. Adv. Mater. 2019, 31, 1808173.

[109]

Kim, J. H.; Shin, D.; Lee, J.; Baek, D. S.; Shin, T. J.; Kim, Y. T.; Jeong, H. Y.; Kwak, J. H.; Kim, H.; Joo, S. H. A general strategy to atomically dispersed precious metal catalysts for unravelling their catalytic trends for oxygen reduction reaction. ACS Nano 2020, 14, 1990–2001.

[110]

Shen, R. A.; Chen, W. X.; Peng, Q.; Lu, S. Q.; Zheng, L. R.; Cao, X.; Wang, Y.; Zhu, W.; Zhang, J. T.; Zhuang, Z. B. et al. High-concentration single atomic Pt sites on hollow CuSx for selective O2 reduction to H2O2 in acid solution. Chem 2019, 5, 2099–2110.

[111]

Shin, S.; Kim, J.; Park, S.; Kim, H. E.; Sung, Y. E.; Lee, H. Changes in the oxidation state of Pt single-atom catalysts upon removal of chloride ligands and their effect for electrochemical reactions. Chem. Commun. (Camb.) 2019, 55, 6389–6392.

[112]

Fang, Q.-J.; Pan, J.-k.; Zhang, W.; Sun, F.-l.; Chen, W.-x.; Yu, Y.-f.; Hu, A.-F.; Zhuang, G.-l. Cooperatively interface role of surface atoms and aqueous media on single atom catalytic property for H2O2 synthesis. J. Colloid Interface Sci. 2022, 617, 752–763.

[113]

Kuznetsov, D. A.; Chen, Z.; Abdala, P. M.; Safonova, O. V.; Fedorov, A.; Muller, C. R. Single-Atom-Substituted Mo2CTx:Fe-Layered Carbide for Selective Oxygen Reduction to Hydrogen Peroxide: Tracking the Evolution of the MXene Phase. J. Am. Chem. Soc. 2021, 143, 5771–5778.

[114]

Yang, S.; Kim, J.; Tak, Y. J.; Soon, A.; Lee, H. Single-atom catalyst of platinum supported on titanium nitride for selective electrochemical reactions. Angew. Chem., Int. Ed. 2016, 55, 2058–2062.

[115]

Kim, H. E.; Lee, I. H.; Cho, J.; Shin, S.; Ham, H. C.; Kim, J. Y.; Lee, H. Palladium single-atom catalysts supported on C@C3N4 for electrochemical reactions. ChemElectroChem 2019, 6, 4757–4764.

Nano Research
Pages 10724-10741
Cite this article:
Liu K, Chen P, Sun Z, et al. The atomic interface effect of single atom catalysts for electrochemical hydrogen peroxide production. Nano Research, 2023, 16(8): 10724-10741. https://doi.org/10.1007/s12274-023-5823-7
Topics:

1536

Views

13

Crossref

11

Web of Science

12

Scopus

0

CSCD

Altmetrics

Received: 20 April 2023
Revised: 06 May 2023
Accepted: 09 May 2023
Published: 01 July 2023
© Tsinghua University Press 2023
Return