AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Exploring the regulatory effect of stacked layers on moiré excitons in twisted WSe2/WSe2/WSe2 homotrilayer

Haihong Zheng1,2Biao Wu1,2Chang-Tian Wang3,4Shaofei Li1Jun He1Zongwen Liu5,6Jian-Tao Wang3,4,7Ji-an Duan2Yanping Liu1,2,8 ( )
School of Physics and Electronics, Hunan Key Laboratory for Super-microstructure and Ultrafast Process, Central South University, 932 South Lushan Road, Changsha 410083, China
State Key Laboratory of Precision Manufacturing for Extreme Service Performance, Central South University, 932 South Lushan Road, Changsha 410083, China
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
School of Chemical and Biomolecular Engineering, The University of Sydney, NSW 2006, Australia
The University of Sydney Nano Institute, The University of Sydney, NSW 2006, Australia
Songshan Lake Materials Laboratory, Dongguan 523808, China
Shenzhen Research Institute of Central South University, Shenzhen 518057, China
Show Author Information

Graphical Abstract

Our finds demonstrate the regulation of moiré excitons in twisted homotrilayers superlattices by different stacked layers. This discovery provides a new degree of freedom for the study of controllable moiré potentials, which are beneficial to the development of strongly coherent quantum emitters.

Abstract

Moiré superlattices in van der Waals structures have emerged as a powerful platform for studying the novel quantum properties of two-dimensional materials. The periodic moiré patterns generated by these structures lead to the formation of flat mini-bands, which alter the electronic energy bands of the material. The resulting flat electronic bands can greatly enhance strong correlative interactions between electrons, leading to the emergence of exotic quantum phenomena, including moiré phonons and moiré excitons. While extensive research has been conducted on the exotic quantum phenomena in twisted bilayers of transition metal dichalcogenides (TMDs), and the regulatory effect of stacked layers on moiré excitons remains unexplored. In this study, we report the fabrication of a twisted WSe2/WSe2/WSe2 homotrilayer with two twist angles and investigate the influence of stacked layers on moiré excitons. Our experiments reveal multiple moiré exciton splitting peaks in the twisted trilayer, with moiré potential depths of 78 and 112 meV in the bilayer and trilayer homostructures, respectively. We also observed the splitting of the moiré excitons at 90 K, indicating the presence of a deeper moiré potential in the twisted trilayer. Moreover, we demonstrate that stacked layers can tune the moiré excitons by manipulating temperature, laser power, and magnetic field. Our results provide a new physical model for studying moiré superlattices and their quantum properties, which could potentially pave the way for the development of quantum optoelectronics.

References

[1]

Hunt, B.; Sanchez-Yamagishi, J. D.; Young, A. F.; Yankowitz, M.; Leroy, B. J.; Watanabe, K.; Taniguchi, T.; Moon, P.; Koshino, M.; Jarillo-Herrero, P. et al. Massive dirac fermions and hofstadter butterfly in a van der Waals heterostructure. Science 2013, 340, 1427–1430.

[2]

Wu, B.; Zheng, H. H.; Li, S. F.; Wang, C. T.; Ding, J. N.; He, J.; Liu, Z. W.; Wang, J. T.; Liu, Y. P. Effect of layered-coupling in twisted WSe2 Moiré superlattices. Nano Res. 2023, 16, 3435–3442.

[3]

Mahdikhanysarvejahany, F.; Shanks, D. N.; Klein, M.; Wang, Q.; Koehler, M. R.; Mandrus, D. G.; Taniguchi, T.; Watanabe, K.; Monti, O. L. A.; LeRoy, B. J. et al. Localized interlayer excitons in MoSe2-WSe2 heterostructures without a Moiré potential. Nat. Commun. 2022, 13, 5354.

[4]

Wu, B.; Zheng, H. H.; Ding, J. N.; Wang, Y. P.; Liu, Z. W.; Liu, Y. P. Observation of interlayer excitons in trilayer type-II transition metal dichalcogenide heterostructures. Nano Res. 2022, 15, 9588–9594.

[5]

Zheng, H. H.; Wu, B.; Li, S. F.; He, J.; Chen, K. Q.; Liu, Z. W.; Liu, Y. P. Evidence for interlayer coupling and Moiré excitons in twisted WS2/WS2 homostructure superlattices. Nano Res. 2023, 16, 3429–3434.

[6]

Shi, Z. W.; Jin, C. H.; Yang, W.; Ju, L.; Horng, J.; Lu, X. B.; Bechtel, H. A.; Martin, M. C.; Fu, D. Y.; Wu, J. Q. et al. Gate-dependent pseudospin mixing in graphene/boron nitride Moiré superlattices. Nat. Phys. 2014, 10, 743–747.

[7]

Bao, X. T.; Wu, X. X.; Ke, Y. X.; Wu, K. M.; Jiang, C. X.; Wu, B.; Li, J.; Yue, S.; Zhang, S.; Shi, J. W. et al. Giant out-of-plane exciton emission enhancement in two-dimensional indium selenide via a plasmonic nanocavity. Nano Lett. 2023, 23, 3716–3723.

[8]

Wallbank, J. R.; Patel, A. A.; Mucha-Kruczyński, M.; Geim, A. K.; Fal'ko, V. I. Generic miniband structure of graphene on a hexagonal substrate. Phys. Rev. B 2013, 87, 245408.

[9]

Tan, Q. H.; Rasmita, A.; Zhang, Z. W.; Cai, H. B.; Cai, X. B.; Dai, X. R.; Watanabe, K.; Taniguchi, T.; MacDonald, A. H.; Gao, W. B. Layer-dependent correlated phases in WSe2/MoS2 Moiré superlattice. Nat. Mater. 2023, 22, 605–611.

[10]

Li, S. F.; Zheng, H. H.; Ding, J. N.; Wu, B.; He, J.; Liu, Z. W.; Liu, Y. P. Dynamic control of Moiré potential in twisted WS2-WSe2 heterostructures. Nano Res. 2022, 15, 7688–7694.

[11]

Shi, J. W.; Wu, X. X.; Wu, K. M.; Zhang, S.; Sui, X.; Du, W. N.; Yue, S.; Liang, Y.; Jiang, C. X.; Wang, Z. et al. Giant enhancement and directional second harmonic emission from monolayer WS2 on silicon substrate via Fabry–Pérot micro-cavity. ACS Nano 2022, 16, 13933–13941.

[12]

Li, H.; Papadakis, R.; Hussain, T.; Karton, A.; Liu, J. W. Moiré patterns arising from bilayer graphone/graphene superlattice. Nano Res. 2020, 13, 1060–1064.

[13]

Cao, Y.; Fatemi, V.; Fang, S. A.; Watanabe, K.; Taniguchi, T.; Kaxiras, E.; Jarillo-Herrero, P. Unconventional superconductivity in magic-angle graphene superlattices. Nature 2018, 556, 43–50.

[14]

Wang, X.; Xiao, C. X.; Park, H.; Zhu, J. Y.; Wang, C.; Taniguchi, T.; Watanabe, K.; Yan, J. Q.; Xiao, D.; Gamelin, D. R. et al. Light-induced ferromagnetism in Moiré superlattices. Nature 2022, 604, 468–473.

[15]

Cao, Y.; Fatemi, V.; Demir, A.; Fang, S. A.; Tomarken, S. L.; Luo, J. Y.; Sanchez-Yamagishi, J. D.; Watanabe, K.; Taniguchi, T.; Kaxiras, E. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 2018, 556, 80–84.

[16]

R.; Jiang, L. L.; Wu, S.; Lyu, B.; Li, H. Y.; Chittari, B. L.; Watanabe, K.; Taniguchi, T.; Shi, Z. W.; Jung, J. et al. Evidence of a gate-tunable Mott insulator in a trilayer graphene Moiré superlattice. Nat. Phys. 2019, 15, 237–241.

[17]

Wu, B.; Zheng, H. H.; Li, S. F.; Ding, J. N.; He, J.; Liu, Z. W.; Liu, Y. P. Enhanced interlayer neutral excitons and trions in MoSe2/MoS2/MoSe2 trilayer heterostructure. Nano Res. 2022, 15, 5640–5645.

[18]

Miao, S. N.; Wang, T. N.; Huang, X.; Chen, D. X.; Lian, Z.; Wang, C.; Blei, M.; Taniguchi, T.; Watanabe, K.; Tongay, S. et al. Strong interaction between interlayer excitons and correlated electrons in WSe2/WS2 Moiré superlattice. Nat. Commun. 2021, 12, 3608.

[19]

Wu, B.; Wang, Y. P.; Zhong, J. H.; Zeng, C.; Madoune, Y.; Zhu, W. T.; Liu, Z. W.; Liu, Y. P. Observation of double indirect interlayer exciton in MoSe2/WSe2 heterostructure. Nano Res. 2022, 15, 2661–2666.

[20]

Chen, D. X.; Lian, Z.; Huang, X.; Su, Y.; Rashetnia, M.; Yan, L.; Blei, M.; Taniguchi, T.; Watanabe, K.; Tongay, S. et al. Tuning Moiré excitons and correlated electronic states through layer degree of freedom. Nat. Commun. 2022, 13, 4810.

[21]

Bai, Y. S.; Zhou, L.; Wang, J.; Wu, W. J.; McGilly, L. J.; Halbertal, D.; Lo, C. F. B.; Liu, F.; Ardelean, J.; Rivera, P. et al. Excitons in strain-induced one-dimensional Moiré potentials at transition metal dichalcogenide heterojunctions. Nat. Mater. 2020, 19, 1068–1073.

[22]

Wang, X. Y.; Zhao, Y. Z.; Kong, X.; Zhang, Q.; Ng, H. K.; Lim, S. X.; Zheng, Y.; Wu, X.; Watanabe, K.; Xu, Q. H. et al. Dynamic tuning of moire superlattice morphology by laser modification. ACS Nano 2022, 16, 8172–8180.

[23]

Liu, Y. P.; Gao, Y. J.; Zhang, S. Y.; He, J.; Yu, J.; Liu, Z. W. Valleytronics in transition metal dichalcogenides materials. Nano Res. 2019, 12, 2695–2711.

[24]

Yoo, Y.; Degregorio, Z. P.; Johns, J. E. Seed crystal homogeneity controls lateral and vertical heteroepitaxy of monolayer MoS2 and WS2. J. Am. Chem. Soc. 2015, 137, 14281–14287.

[25]

Zhao, S. L.; Wang, E. Q.; Üzer, E. A.; Guo, S. F.; Qi, R. S.; Tan, J. Y.; Watanabe, K.; Taniguchi, T.; Nilges, T.; Gao, P. et al. Anisotropic Moiré optical transitions in twisted monolayer/bilayer phosphorene heterostructures. Nat. Commun. 2021, 12, 3947.

[26]

Wu, F. C.; Lovorn, T.; MacDonald, A. H. Theory of optical absorption by interlayer excitons in transition metal dichalcogenide heterobilayers. Phys. Rev. B 2018, 97, 035306.

[27]

Tran, K.; Moody, G.; Wu, F. C.; Wu, F. C.; Lu, X. B.; Choi, J.; Kim, K.; Rai, A.; Sanchez, D. A.; Quan, J. M. et al. Evidence for Moiré excitons in van der Waals heterostructures. Nature 2019, 567, 71–75.

[28]

Utama, M. I. B.; Zeng, H. F.; Sadhukhan, T.; Dasgupta, A.; Gavin, S. C.; Ananth, R.; Lebedev, D.; Wang, W.; Chen, J. S.; Watanabe, K. et al. Chemomechanical modification of quantum emission in monolayer WSe2. Nat. Commun. 2023, 14, 2193.

[29]

Yu, H. Y.; Liu, G. B.; Tang, J. J.; Xu, X. D.; Yao, W. Moiré excitons: From programmable quantum emitter arrays to spin–orbit-coupled artificial lattices. Sci. Adv. 2017, 3, e1701696.

[30]

Elizabeth, M., Liu, X., Hu, Z. H., Fieramosca, A., Huang, Y. Q., Du, W., Liu, S., Zhao, J. X., Watanabe, K., Taniguchi, T., and Xiong, Q. H. Evidence for moiré trions in twisted MoSe2 homobilayers. Nano Lett. 2021, 21, 4461–4468.

[31]

Li, Z. D.; Lu, X. B.; Cordovilla Leon, D. F.; Lyu, Z.; Xie, H. C.; Hou, J. Z.; Lu, Y. Z.; Guo, X. Y.; Kaczmarek, A.; Taniguchi, T. et al. Interlayer exciton transport in MoSe2/WSe2 heterostructures. ACS Nano 2021, 15, 1539–1547.

[32]

Seyler, K. L.; Rivera, P.; Yu, H. Y.; Wilson, N. P.; Ray, E. L.; Mandrus, D. G.; Yan, J. Q.; Yao, W.; Xu, X. D. Signatures of Moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature 2019, 567, 66–70.

[33]

Mahdikhanysarvejahany, F.; Shanks, D. N.; Muccianti, C.; Badada, B. H.; Idi, I.; Alfrey, A.; Raglow, A.; Koehler, M. R.; Mandrus, D. G.; Taniguchi, T. et al. Temperature dependent Moiré trapping of interlayer excitons in MoSe2-WSe2 heterostructures. npj 2D Mater. Appl. 2021, 5, 67.

[34]

Fang, Y. T.; Wang, L.; Sun, Q. L.; Lu, T. P.; Deng, Z.; Ma, Z. G.; Jiang, Y.; Jia, H. Q.; Wang, W. X.; Zhou, J. M. et al. Investigation of temperature-dependent photoluminescence in multi-quantum wells. Sci. Rep. 2015, 5, 12718.

[35]

Wang, X.; Zhu, J. Y.; Seyler, K. L.; Rivera, P.; Zheng, H. Y.; Wang, Y. Q.; He, M. H.; Taniguchi, T.; Watanabe, K.; Yan, J. Q. et al. Moiré trions in MoSe2/WSe2 heterobilayers. Nat. Nanotechnol. 2021, 16, 1208–1213.

[36]

Brotons-Gisbert, M.; Baek, H.; Molina-Sánchez, A.; Campbell, A.; Scerri, E.; White, D.; Watanabe, K.; Taniguchi, T.; Bonato, C.; Gerardot, B. D. Spin-layer locking of interlayer excitons trapped in Moiré potentials. Nat. Mater. 2020, 19, 630–636.

[37]

Zhang, Z. W.; Huang, Z. W.; Li, J.; Wang, D.; Lin, Y.; Yang, X. D.; Liu, H.; Liu, S.; Wang, Y. L.; Li, B. et al. Endoepitaxial growth of monolayer mosaic heterostructures. Nat. Nanotechnol. 2022, 17, 493–499.

Nano Research
Pages 10573-10579
Cite this article:
Zheng H, Wu B, Wang C-T, et al. Exploring the regulatory effect of stacked layers on moiré excitons in twisted WSe2/WSe2/WSe2 homotrilayer. Nano Research, 2023, 16(7): 10573-10579. https://doi.org/10.1007/s12274-023-5822-8
Topics:

851

Views

7

Crossref

6

Web of Science

7

Scopus

0

CSCD

Altmetrics

Received: 18 April 2023
Revised: 08 May 2023
Accepted: 09 May 2023
Published: 31 May 2023
© Tsinghua University Press 2023
Return