Journal Home > Volume 16 , Issue 8

The preparation of high-efficiency phosphor is the key to the construction of white light-emitting diode (WLED) devices and their application in indoor photovoltaics. Compared with YVO4, InVO4 is not suitable as the host material of lanthanide ions because of its strong self-luminescence. Here, the work focused on combining the broadband emission from InVO4 and the red luminescence from YVO4:Eu3+ to obtain enhanced and stable multicolor luminescence. The band structure, density of state, and optical properties were studied by density functional theory. The spectral configuration of YVO4:In3+/Eu3+ with (112) surface appears to be broadening and redshifts with increasing layer number. When the In3+ concentration is 3.5 mol%, the YVO4:30%Eu3+/In3+ emits the strongest light. The Judd-Ofelt parameter Ω2 of YVO4:In3+/Eu3+ increases with increaing In3+ concentration, indicating that the symmetry decreases. By adjusting In3+/Eu3+ contents, the YVO4:In3+/Eu3+ not only can emit white light with a color rendering index of 95, but also can be used as high-efficiency red phosphor to build WLED devices with blue emitting N/Tb codoped carbon quantum dots (CQDs-N:Tb3+) and green emitting MOF:Tb3+ (MOF = metal organic framework), for which the color rendering index can also reach 95 and the color temperature is 5549 K. The manufactured WLED devices were further used to excite the silicon solar cell and make it show good photoelectric characteristics.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Tunable multicolor luminescence in vanadates from yttrium to indium with enhanced luminous efficiency and stability for its application in WLEDs and indoor photovoltaics

Show Author's information Yaoyang Zhang1Jing Mao1Peifen Zhu2( )Guofeng Wang1( )
Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri 65211, USA

Abstract

The preparation of high-efficiency phosphor is the key to the construction of white light-emitting diode (WLED) devices and their application in indoor photovoltaics. Compared with YVO4, InVO4 is not suitable as the host material of lanthanide ions because of its strong self-luminescence. Here, the work focused on combining the broadband emission from InVO4 and the red luminescence from YVO4:Eu3+ to obtain enhanced and stable multicolor luminescence. The band structure, density of state, and optical properties were studied by density functional theory. The spectral configuration of YVO4:In3+/Eu3+ with (112) surface appears to be broadening and redshifts with increasing layer number. When the In3+ concentration is 3.5 mol%, the YVO4:30%Eu3+/In3+ emits the strongest light. The Judd-Ofelt parameter Ω2 of YVO4:In3+/Eu3+ increases with increaing In3+ concentration, indicating that the symmetry decreases. By adjusting In3+/Eu3+ contents, the YVO4:In3+/Eu3+ not only can emit white light with a color rendering index of 95, but also can be used as high-efficiency red phosphor to build WLED devices with blue emitting N/Tb codoped carbon quantum dots (CQDs-N:Tb3+) and green emitting MOF:Tb3+ (MOF = metal organic framework), for which the color rendering index can also reach 95 and the color temperature is 5549 K. The manufactured WLED devices were further used to excite the silicon solar cell and make it show good photoelectric characteristics.

Keywords: luminescence enhancement, density functional theory (DFT) calculation, white light-emitting diodes (WLEDs), multicolor stability, indoor photovoltaics

References(39)

[1]

Mathews, I.; Kantareddy, S. N.; Buonassisi, T.; Peters, I. M. Technology and market perspective for indoor photovoltaic cells. Joule 2019, 3, 1415–1426.

[2]

Peng, Y. H.; Huq, T. N.; Mei, J. J.; Portilla, L.; Jagt, R. A.; Occhipinti, L. G.; MacManus-Driscoll, J. L.; Hoye, R. L. Z.; Pecunia, V. Indoor photovoltaics: Lead-free perovskite-inspired absorbers for indoor photovoltaics (Adv. Energy Mater. 1/2021). Adv. Energy. Mater. 2021, 11, 2170005.

[3]

Wang, G. F.; Peng, Q.; Li, Y. D. Lanthanide-doped nanocrystals: Synthesis, optical–magnetic properties, and applications. Acc. Chem. Res. 2011, 44, 322–332.

[4]

Wang, G. F.; Peng, Q.; Li, Y. D. Upconversion luminescence of monodisperse CaF2: Yb3+/Er3+ nanocrystals. J. Am. Chem. Soc. 2009, 131, 14200–14201.

[5]

Ma, Z. Z.; Shi, Z. F.; Yang, D. W.; Li, Y. W.; Zhang, F.; Wang, L. T.; Chen, X.; Wu, D.; Tian, Y. T.; Zhang, Y. et al. High color-rendering index and stable white light-emitting diodes by assembling two broadband emissive self-trapped excitons. Adv. Mater. 2021, 33, 2001367.

[6]

Huang, P.; Zhou, B. Y.; Zheng, Q.; Tian, Y.; Wang, M. M.; Wang, L. J.; Li, J. L.; Jiang, W. Nano wave plates structuring and index matching in transparent hydroxyapatite-YAG: Ce composite ceramics for high luminous efficiency white light-emitting diodes. Adv. Mater. 2020, 32, 1905951.

[7]

Zhu, X. Y.; Wang, X. H.; Zhang, H. X.; Zhang, F. Luminescence lifetime imaging based on lanthanide nanoparticles. Angew. Chem., Int. Ed. 2022, 61, e202209378.

[8]

Zhang, Z. W.; Li, J. H.; Yang, N.; Liang, Q. Y.; Xu, Y. Q.; Fu, S. T.; Yan, J.; Zhou, J. B.; Shi, J. X.; Wu, M. M. A novel multi-center activated single-component white light-emitting phosphor for deep UV chip-based high color-rendering WLEDs. Chem. Eng. J. 2020, 390, 124601.

[9]

Ding, H.; Zhou, X. X.; Zhang, Z. H.; Zhao, Y. P.; Wei, J. S.; Xiong, H. M. Large scale synthesis of full-color emissive carbon dots from a single carbon source by a solvent-free method. Nano Res. 2022, 15, 3548–3555.

[10]

Diaz-Rodriguez, R.; Gálico, D. A.; Chartrand, D.; Suturina, E. A.; Murugesu, M. Toward opto-structural correlation to investigate luminescence thermometry in an organometallic Eu(II) complex. J. Am. Chem. Soc. 2022, 144, 912–921.

[11]

Jeong, J.; Jin, D. K.; Choi, J.; Jang, J.; Kang, B. K.; Wang, Q. X.; Park, W. I.; Jeong, M. S.; Bae, B. S.; Yang, W. S. et al. Transferable, flexible white light-emitting diodes of GaN p-n junction microcrystals fabricated by remote epitaxy. Nano Energy 2021, 86, 106075.

[12]

Sun, Z. H.; Yan, F. Y.; Xu, J.; Zhang, H.; Chen, L. Solvent-controlled synthesis strategy of multicolor emission carbon dots and its applications in sensing and light-emitting devices. Nano Res. 2022, 15, 414–422.

[13]

Huang, K.; Le, N.; Wang, J. S.; Huang, L.; Zeng, L.; Xu, W. C.; Li, Z. J.; Li, Y.; Han, G. Designing next generation of persistent luminescence: Recent advances in uniform persistent luminescence nanoparticles. Adv. Mater. 2022, 34, 2107962.

[14]

Wang, Z. F.; Liu, Y.; Zhen, S. J.; Li, X. X.; Zhang, W. G.; Sun, X.; Xu, B. Y.; Wang, X.; Gao, Z. H.; Meng, X. G. Gram-scale synthesis of 41% efficient single-component white-light-emissive carbonized polymer dots with hybrid fluorescence/phosphorescence for white light-emitting diodes. Adv. Sci. 2020, 7, 1902688.

[15]

Wang, Z. B.; Jiang, N. Z.; Liu, M. L.; Zhang, R. D.; Huang, F.; Chen, D. Q. Bright electroluminescent white-light-emitting diodes based on carbon dots with tunable correlated color temperature enabled by aggregation. Small 2021, 17, 2104551.

[16]

Wang, Y. H.; Wang, K. P.; Dai, F. X.; Zhang, K.; Tang, H. F.; Wang, L.; Xing, J. A warm-white light-emitting diode based on single-component emitter aromatic carbon nitride. Nat. Commun. 2022, 13, 6495.

[17]

Lu, H. L.; Sun, Y.; Li, M. Z.; Wang, Q. Y.; Wang, R. H.; Zhu, P. F.; Wang, G. F. CsPbBr3: Na with an adjustable bandgap, improved luminescence stability, and its application in WLEDs with excellent color quality and vision performance. Adv. Funct. Mater. 2023, 33, 2212767.

[18]

Yoon, S.; Seo, M.; Kim, I. S.; Lee, K.; Woo, K. Ultra-stable and highly efficient white light emitting diodes through CsPbBr3 perovskite nanocrystals-silica composite phosphor functionalized with surface phenyl molecules. Small 2023, 19, 2206311.

[19]

Zhai, Y. L.; Yang, X. W.; Zhao, S. N.; Liu, P.; Lin, J.; Zhang, Y. Directly imaging of the atomic structure of luminescent centers in CaYAlO4:Ce3+. Nano Res. 2023, 16, 3004–3009.

[20]

Sun, Y.; Li, Y. N.; Zhang, W. Y.; Zhu, P. F.; Zhu, H. Y.; Qin, W. P.; Wang, G. F. Simultaneous synthesis, modification, and DFT calculation of three-color lead halide perovskite phosphors for improving stability and luminous efficiency of WLEDs. Adv. Opt. Mater. 2022, 10, 2101765.

[21]

He, S. G.; Xu, F. F.; Han, T. T.; Lu, Z. Q.; Wang, W.; Peng, J. Q.; Du, F.; Yang, F. L.; Ye, X. Y. A Mn4+-doped oxyfluoride phosphor with remarkable negative thermal quenching and high color stability for warm WLEDs. Chem. Eng. J. 2020, 392, 123657.

[22]

Prodanov, M. F.; Gupta, S. K.; Kang, C. B.; Diakov, M. Y.; Vashchenko, V. V.; Srivastava, A. K. Thermally stable quantum rods, covering full visible range for display and lighting application. Small 2021, 17, 2004487.

[23]

Pan, M.; Liao, W. M.; Yin, S. Y.; Sun, S. S.; Su, C. Y. Single-phase white-light-emitting and photoluminescent color-tuning coordination assemblies. Chem. Rev. 2018, 118, 8889–8935.

[24]

He, Q. Y.; Zhang, Y. Q.; Yu, Y. X.; Chen, Y.; Jin, M. F. F.; Mei, E. R.; Liang, X. J.; Zhai, L. L.; Xiang, W. D. Ultrastable Gd3+ doped CsPbBrI2 nanocrystals red glass for high efficiency WLEDs. Chem. Eng. J. 2021, 411, 128530.

[25]

Yuan, F. L.; He, P.; Xi, Z. F.; Li, X. H.; Li, Y. C.; Zhong, H. Z.; Fan, L. Z.; Yang, S. H. Highly efficient and stable white LEDs based on pure red narrow bandwidth emission triangular carbon quantum dots for wide-color gamut backlight displays. Nano Res. 2019, 12, 1669–1674.

[26]

Chen, J. W.; Xiang, H. Y.; Wang, J.; Wang, R.; Li, Y.; Shan, Q. S.; Xu, X. B.; Dong, Y. H.; Wei, C. T.; Zeng, H. B. Perovskite white light emitting diodes: Progress, challenges, and opportunities. ACS Nano 2021, 15, 17150–17174.

[27]

Bao, S.; Yu, H. Y.; Gao, G. Y.; Zhu, H. Y.; Wang, D. S.; Zhu, P. F.; Wang, G. F. Rare-earth single atom based luminescent composite nanomaterials: Tunable full-color single phosphor and applications in WLEDs. Nano Res. 2022, 15, 3594–3605.

[28]

Zhang, Y. Q.; Zhang, Z. H.; Yu, W. J.; He, Y.; Chen, Z. J.; Xiao, L. X.; Shi, J. J.; Guo, X.; Wang, S. F.; Qu, B. Lead-free double perovskite Cs2AgIn0.9Bi0.1Cl6 quantum dots for white light-emitting diodes. Adv. Sci. 2022, 9, 2102895.

[29]

Kökçam-Demir, Ü.; Goldman, A.; Esrafili, L.; Gharib, M.; Morsali, A.; Weingart, O.; Janiak, C. Coordinatively unsaturated metal sites (open metal sites) in metal-organic frameworks: Design and applications. Chem. Soc. Rev. 2020, 49, 2751–2798.

[30]

Xu, L. N.; Li, Y. N.; Pan, Q. J.; Wang, D.; Li, S. J.; Wang, G. F.; Chen, Y. J.; Zhu, P. F.; Qin, W. P. Dual-mode light-emitting lanthanide metal-organic frameworks with high water and thermal stability and their application in white LEDs. ACS Appl. Mater. Interfaces 2020, 12, 18934.

[31]

Yu, H. Y.; Liu, J. C.; Bao, S.; Gao, G. Y.; Zhu, H. Y.; Zhu, P. F.; Wang, G. F. Luminescent lanthanide single atom composite materials: Tunable full-color single phosphor and applications in white LEDs. Chem. Eng. J. 2022, 430, 132782.

[32]

Tudi, A.; Han, S. J.; Yang, Z. H.; Pan, S. L. Potential optical functional crystals with large birefringence: Recent advances and future prospects. Coordin. Chem. Rev. 2022, 459, 214380.

[33]

Bartholomew, J.; Rochman, J.; Xie, T.; Kindem, J. M.; Ruskuc, A.; Craiciu, I.; Lei, M.; Faraon, A. On-chip coherent microwave-to-optical transduction mediated by ytterbium in YVO4. Nat. Commun. 2020, 11, 3266.

[34]

He, Y. J.; Liu, J.; Sung, S. J.; Chang, C. H. Downshifting and antireflective thin films for solar module power enhancement. Mater. Des. 2021, 201, 109454.

[35]

Tong, T. H.; Zhang, W. Y.; Yang, Z. H.; Pan, S. L. Series of crystals with giant optical anisotropy: A targeted strategic research. Angew. Chem., Int. Ed. 2021, 60, 1332–1338.

[36]

Keevend, K.; Puust, L.; Kurvits, K.; Gerken, L. R. H.; Starsich, F. H. L.; Li, J. H.; Matter, M. T.; Spyrogianni, A.; Sotiriou, G. A.; Stiefel, M. et al. Ultrabright and stable luminescent labels for correlative cathodoluminescence electron microscopy bioimaging. Nano Lett. 2019, 19, 6013–6018.

[37]

Kang, B.; Kim, H.; Byeon, S. H. In situ immobilization of YVO4: Eu phosphor particles on a film of vertically oriented Y2(OH)5Cl·nH2O nanosheets. Chem. Commun. 2020, 56, 12745–12748.

[38]

Mitrić, J.; Ralević, U.; Mitrić, M.; Ćirković, J.; Križan, G.; Romčević, M.; Gilić, M.; Romčević, N. Isotope-like effect in YVO4: Eu3+ nanopowders: Raman spectroscopy. J. Raman Spectrosc. 2019, 50, 802–808.

[39]

Liu, Y. L.; Yang, C. M.; Xiong, H. L.; Zhang, N. N.; Leng, Z. H.; Li, R. Q.; Gan, S. C. Surfactant assisted synthesis of the YVO4: Ln3+ (Ln = Eu, Dy, Sm) phosphors and shape-dependent luminescence properties. Colloid Surface A: Physicochem. Eng. Aspects 2016, 502, 139–146.

File
12274_2023_5821_MOESM1_ESM.pdf (4.8 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 14 April 2023
Revised: 08 May 2023
Accepted: 09 May 2023
Published: 15 June 2023
Issue date: August 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 22271080).

Return