Journal Home > Volume 16 , Issue 8

The effective, stable, and secure catalysts are essential for sulfate radical (SO4·−)-based advanced oxidation processes (SR-AOPs) to the degradation of organic contaminants in water. Heterogeneous supported cobalt-based catalysts are commonly used to activate peroxymonosulfate (PMS) to achieve the degradation. In this work, we synthesized Co3O4@Al2O3 three-dimensional (3D) mesoporous nanocomposite (denoted as Co3O4@Al2O3 3DPNC) in just one step by calcining cheap and green deep eutectic solvent (DES) solution containing Co salt. Co3O4@Al2O3 3DPNC with the high specific surface area (93.246 m2/g), uniform pore distribution (3.829 nm) and rich porosity (0.255 cm3/g) were attained in a beautiful hierarchical structure which exhibited the open 3D propeller-like microstructure, two-dimensional lamellar substructure with rich folds, as well as the decoration of highly dispersed Co3O4 nanoparticles on mesoporous amorphous Al2O3. The excellent chemical and thermal stability of Al2O3 ensures the high stability of the catalyst, and the formation of the complex hierarchical structure makes the active Co3O4 be homogenously dispersed for effective catalysis. The catalyst demonstrated outstanding performance for catalytic degradations of organic pollutants (acetaminophen, oxytetracycline, 5-sulfosalicylic acid, orange G and Rhodamine B) by generated SO4·−, ·OH and 1O2. With a very low cobalt content (equal to 28.2 mg/L of Co), the catalyst exhibited very high stability and excellent reusability in the recycling usages, while the leaching of the cobalt element (< 0.145 mg/L) was also at a low level. Our catalyst achieved effective degradations of acetaminophen in cycles without losing its stable hierarchical nanostructure.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

One-step synthesis of three-dimensional mesoporous Co3O4@Al2O3 nanocomposites with deep eutectic solvent: An efficient and stable peroxymonosulfate activator for organic pollutant degradations

Show Author's information Yuchen Wang1,2Kai Rong1Jiale Wei1,2Shanlei Chang1,3Dengbin Yu1( )Youxing Fang1( )Shaojun Dong1,2( )
State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
University of Science and Technology of China, Hefei 230026, China
College of Chemistry, Jilin University, Changchun 130022, China

Abstract

The effective, stable, and secure catalysts are essential for sulfate radical (SO4·−)-based advanced oxidation processes (SR-AOPs) to the degradation of organic contaminants in water. Heterogeneous supported cobalt-based catalysts are commonly used to activate peroxymonosulfate (PMS) to achieve the degradation. In this work, we synthesized Co3O4@Al2O3 three-dimensional (3D) mesoporous nanocomposite (denoted as Co3O4@Al2O3 3DPNC) in just one step by calcining cheap and green deep eutectic solvent (DES) solution containing Co salt. Co3O4@Al2O3 3DPNC with the high specific surface area (93.246 m2/g), uniform pore distribution (3.829 nm) and rich porosity (0.255 cm3/g) were attained in a beautiful hierarchical structure which exhibited the open 3D propeller-like microstructure, two-dimensional lamellar substructure with rich folds, as well as the decoration of highly dispersed Co3O4 nanoparticles on mesoporous amorphous Al2O3. The excellent chemical and thermal stability of Al2O3 ensures the high stability of the catalyst, and the formation of the complex hierarchical structure makes the active Co3O4 be homogenously dispersed for effective catalysis. The catalyst demonstrated outstanding performance for catalytic degradations of organic pollutants (acetaminophen, oxytetracycline, 5-sulfosalicylic acid, orange G and Rhodamine B) by generated SO4·−, ·OH and 1O2. With a very low cobalt content (equal to 28.2 mg/L of Co), the catalyst exhibited very high stability and excellent reusability in the recycling usages, while the leaching of the cobalt element (< 0.145 mg/L) was also at a low level. Our catalyst achieved effective degradations of acetaminophen in cycles without losing its stable hierarchical nanostructure.

Keywords: deep eutectic solvent, hierarchical nanostructure, peroxymonosulfate, organic pollutant degradation, Co3O4@Al2O3 nanocomposite

References(66)

[1]

Oh, W. D.; Dong, Z. L.; Lim, T. T. Generation of sulfate radical through heterogeneous catalysis for organic contaminants removal: Current development, challenges and prospects. Appl. Catal. B: Environ. 2016, 194, 169–201.

[2]

Qi, J. J.; Liu, J. Z.; Sun, F. B.; Huang, T. B.; Duan, J.; Liu, W. High active amorphous Co(OH)2 nanocages as peroxymonosulfate activator for boosting acetaminophen degradation and DFT calculation. Chin. Chem. Lett. 2021, 32, 1814–1818.

[3]

Petrie, B.; Barden, R.; Kasprzyk-Hordern, B. A review on emerging contaminants in wastewaters and the environment: Current knowledge, understudied areas and recommendations for future monitoring. Water Res. 2015, 72, 3–27.

[4]

Gimeno, O.; Carbajo, M.; Beltran, F. J.; Rivas, F. J. Phenol and substituted phenols AOPs remediation. J. Hazard. Mater. 2005, 119, 99–108.

[5]

Peng, Y. T.; Tang, H. M.; Yao, B.; Gao, X.; Yang, X.; Zhou, Y. Y. Activation of peroxymonosulfate (PMS) by spinel ferrite and their composites in degradation of organic pollutants: A review. Chem. Eng. J. 2021, 414, 128800.

[6]

Hu, P. D.; Long, M. C. Cobalt-catalyzed sulfate radical-based advanced oxidation: A review on heterogeneous catalysts and applications. Appl. Catal. B: Environ. 2016, 181, 103–117.

[7]

Ghanbari, F.; Moradi, M. Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants: Review. Chem. Eng. J. 2017, 310, 41–62.

[8]

Chen, X. Y.; Chen, J. W.; Qiao, X. L.; Wang, D. G.; Cai, X. Y. Performance of nano-Co3O4/peroxymonosulfate system: Kinetics and mechanism study using Acid Orange 7 as a model compound. Appl. Catal. B: Environ. 2008, 80, 116–121.

[9]

Oyekunle, D. T.; Zhou, X. Q.; Shahzad, A.; Chen, Z. Q. Review on carbonaceous materials as persulfate activators: Structure–performance relationship, mechanism and future perspectives on water treatment. J. Mater. Chem. A 2021, 9, 8012–8050.

[10]

Gao, Q.; Wang, G. S.; Chen, Y. R.; Han, B.; Xia, K. S.; Zhou, C. G. Utilizing cobalt-doped materials as heterogeneous catalysts to activate peroxymonosulfate for organic pollutant degradation: A critical review. Environ. Sci.: Water Res. Technol. 2021, 7, 1197–1211.

[11]

Jiang, D. N.; Fang, D.; Zhou, Y.; Wang, Z. W.; Yang, Z. H.; Zhu, J.; Liu, Z. M. Strategies for improving the catalytic activity of metal-organic frameworks and derivatives in SR-AOPs: Facing emerging environmental pollutants. Environ. Pollut. 2022, 306, 119386.

[12]
Qi, F.; Chu, W.; Xu, B. B. Catalytic degradation of caffeine in aqueous solutions by cobalt-MCM41 activation of peroxymonosulfate. Appl. Catal. B: Environ. 2013, 134–135, 324–332.
[13]

Hou, J. F.; He, X. D.; Zhang, S. Q.; Yu, J. L.; Feng, M. B.; Li, X. D. Recent advances in cobalt-activated sulfate radical-based advanced oxidation processes for water remediation: A review. Sci. Total Environ. 2021, 770, 145311.

[14]

Li, B.; Wang, Y. F.; Zhang, L.; Xu, H. Y. Enhancement strategies for efficient activation of persulfate by heterogeneous cobalt-containing catalysts: A review. Chemosphere 2022, 291, 132954.

[15]

Shukla, P.; Wang, S. B.; Singh, K.; Ang, H. M.; Tadé, M. O. Cobalt exchanged zeolites for heterogeneous catalytic oxidation of phenol in the presence of peroxymonosulphate. Appl. Catal. B: Environ. 2010, 99, 163–169.

[16]

Matsuyama, K. Supercritical fluid processing for metal-organic frameworks, porous coordination polymers, and covalent organic frameworks. J. Supercrit. Fluids 2018, 134, 197–203.

[17]

Cai, T.; Deng, W.; Xu, P.; Yuan, J.; Liu, Z.; Zhao, K. F.; Tong, Q.; He, D. N. Great activity enhancement of Co3O4/γ-Al2O3 catalyst for propane combustion by structural modulation. Chem. Eng. J. 2020, 395, 125071.

[18]

Yang, Q. J.; Choi, H.; Chen, Y. J.; Dionysiou, D. D. Heterogeneous activation of peroxymonosulfate by supported cobalt catalysts for the degradation of 2,4-dichlorophenol in water: The effect of support, cobalt precursor, and UV radiation. Appl. Catal. B: Environ. 2008, 77, 300–307.

[19]

Sun, H. Q.; Liang, H. W.; Zhou, G. L.; Wang, S. B. Supported cobalt catalysts by one-pot aqueous combustion synthesis for catalytic phenol degradation. J. Colloid Interface Sci. 2013, 394, 394–400.

[20]

Nyathi, T. M.; Fadlalla, M. I.; Fischer, N.; York, A. P. E.; Olivier, E. J.; Gibson, E. K.; Wells, P. P.; Claeys, M. Support and gas environment effects on the preferential oxidation of carbon monoxide over Co3O4 catalysts studied in situ. Appl. Catal. B: Environ. 2021, 297, 120450.

[21]

Lyu, L.; Zhang, L. L.; Hu, C.; Yang, M. Enhanced Fenton-catalytic efficiency by highly accessible active sites on dandelion-like copper-aluminum-silica nanospheres for water purification. J. Mater. Chem. A 2016, 4, 8610–8619.

[22]

Faheem; Du, J. K.; Kim, S. H.; Hassan, M. A.; Irshad, S.; Bao, J. G. Application of biochar in advanced oxidation processes: Supportive, adsorptive, and catalytic role. Environ. Sci. Pollut. Res. 2020, 27, 37286–37312.

[23]

Francisco, M.; van den Bruinhorst, A.; Kroon, M. C. Low-transition-temperature mixtures (LTTMs): A new generation of designer solvents. Angew. Chem., Int. Ed. 2013, 52, 3074–3085.

[24]

Smith, E. L.; Abbott, A. P.; Ryder, K. S. Deep eutectic solvents (DESs) and their applications. Chem. Rev. 2014, 114, 11060–11082.

[25]

Rong, K.; Wei, J. L.; Huang, L.; Fang, Y. X.; Dong, S. J. Synthesis of low dimensional hierarchical transition metal oxides via a direct deep eutectic solvent calcining method for enhanced oxygen evolution catalysis. Nanoscale 2020, 12, 20719–20725.

[26]

Wei, J. L.; Rong, K.; Li, X. L.; Wang, Y. C.; Qiao, Z. A.; Fang, Y. X.; Dong, S. J. Deep eutectic solvent assisted facile synthesis of low-dimensional hierarchical porous high-entropy oxides. Nano Res. 2022, 15, 2756–2763.

[27]

Lai, L. D.; Yan, J. F.; Li, J.; Lai, B. Co/Al2O3-EPM as peroxymonosulfate activator for sulfamethoxazole removal: Performance, biotoxicity, degradation pathways and mechanism. Chem. Eng. J. 2018, 343, 676–688.

[28]

Ji, L.; Lin, J.; Zeng, H. C. Metal–support interactions in Co/Al2O3 catalysts: A comparative study on reactivity of support. J. Phys. Chem. B 2000, 104, 1783–1790.

[29]

Busca, G.; Guidetti, R.; Lorenzelli, V. Fourier-transform infrared study of the surface properties of cobalt oxides. J. Chem. Soc., Faraday Trans. 1990, 86, 989–994.

[30]

Zayat, M.; Levy, D. Blue CoAl2O4 particles prepared by the sol-gel and citrate-gel methods. Chem. Mater. 2000, 12, 2763–2769.

[31]

Wang, C. Y.; Liu, S. M.; Liu, L. H.; Bai, X. Synthesis of cobalt-aluminate spinels via glycine chelated precursors. Mater. Chem. Phys. 2006, 96, 361–370.

[32]

Deng, J.; Feng, S. F.; Zhang, K. J.; Li, J.; Wang, H. Y.; Zhang, T. Q.; Ma, X. Y. Heterogeneous activation of peroxymonosulfate using ordered mesoporous Co3O4 for the degradation of chloramphenicol at neutral pH. Chem. Eng. J. 2017, 308, 505–515.

[33]

Ma, Y. Y.; Wang, H. J.; Lv, X. F.; Xiong, D. B.; Xie, H. J.; Zhang, Z. H. Three-dimensional ordered mesoporous Co3O4/peroxymono-sulfate triggered nanoconfined heterogeneous catalysis for rapid removal of ranitidine in aqueous solution. Chem. Eng. J. 2022, 443, 136495.

[34]

Hilmen, A. M.; Schanke, D.; Hanssen, K. F.; Holmen, A. Study of the effect of water on alumina supported cobalt Fischer-Tropsch catalysts. Appl. Catal. A: Gen. 1999, 186, 169–188.

[35]

Wang, Y. S.; Wang, C. S.; Chen, M. Q.; Hu, J. X.; Tang, Z. Y.; Liang, D. F.; Cheng, W.; Yang, Z. L.; Wang, J.; Zhang, H. Influence of CoAl2O4 spinel and Co-phyllosilicate structures derived from Co/sepiolite catalysts on steam reforming of bio-oil for hydrogen production. Fuel 2020, 279, 118449.

[36]

Tan, X. H.; Guo, L. M.; Liu, S. N.; Wu, J. X.; Zhao, T. Q.; Ren, J. C.; Liu, Y. L.; Kang, X. H.; Wang, H. F.; Sun, L. F. et al. A general one-pot synthesis strategy of 3D porous hierarchical networks crosslinked by monolayered nanoparticles interconnected nanoplates for lithium ion batteries. Adv. Funct. Mater. 2019, 29, 1903003.

[37]

Liao, G. Z.; Qing, X.; Xu, P.; Li, L. S.; Lu, P.; Chen, W. R.; Xia, D. H. Synthesis of single atom cobalt dispersed on 2D carbon nanoplate and degradation of acetaminophen by peroxymonosulfate activation. Chem. Eng. J. 2022, 427, 132027.

[38]

Nguyen, T. B.; Huang, C. P.; Doong, R. A.; Wang, M. H.; Chen, C. W.; Dong, C. D. Manipulating the morphology of 3D flower-like CoMn2O4 bimetallic catalyst for enhancing the activation of peroxymonosulfate toward the degradation of selected persistent pharmaceuticals in water. Chem. Eng. J. 2022, 436, 135244.

[39]

Yang, M. T.; Du, Y. C.; Tong, W. C.; Yip, A. C. K.; Lin, K. Y. A. Cobalt-impregnated biochar produced from CO2-mediated pyrolysis of Co/lignin as an enhanced catalyst for activating peroxymonosulfate to degrade acetaminophen. Chemosphere 2019, 226, 924–933.

[40]

Kang, S. M.; Hwang, J. CoMn2O4 embedded hollow activated carbon nanofibers as a novel peroxymonosulfate activator. Chem. Eng. J. 2021, 406, 127158.

[41]

Yun, W. C.; Lin, K. Y. A.; Tong, W. C.; Lin, Y. F.; Du, Y. C. Enhanced degradation of paracetamol in water using sulfate radical-based advanced oxidation processes catalyzed by 3-dimensional Co3O4 nanoflower. Chem. Eng. J. 2019, 373, 1329–1337.

[42]

Tuan, D. D.; Hu, C.; Kwon, E.; Du, Y. C.; Lin, K. Y. A. Coordination polymer-derived porous Co3O4 nanosheet as an effective catalyst for activating peroxymonosulfate to degrade sulfosalicylic acid. Appl. Surf. Sci. 2020, 532, 147382.

[43]

Yan, J. C.; Lei, M.; Zhu, L. H.; Anjum, M. N.; Zou, J.; Tang, H. Q. Degradation of sulfamonomethoxine with Fe3O4 magnetic nanoparticles as heterogeneous activator of persulfate. J. Hazard. Mater. 2011, 186, 1398–1404.

[44]

Chen, L. W.; Ding, D. H.; Liu, C.; Cai, H.; Qu, Y.; Yang, S. J.; Gao, Y.; Cai, T. M. Degradation of norfloxacin by CoFe2O4-GO composite coupled with peroxymonosulfate: A comparative study and mechanistic consideration. Chem. Eng. J. 2018, 334, 273–284.

[45]

Ji, Y. F.; Dong, C. X.; Kong, D. Y.; Lu, J. H. New insights into atrazine degradation by cobalt catalyzed peroxymonosulfate oxidation: Kinetics, reaction products and transformation mechanisms. J. Hazard. Mater. 2015, 285, 491–500.

[46]

Huang, Y. H.; Huang, Y. F.; Huang, C. I.; Chen, C. Y. Efficient decolorization of azo dye Reactive Black B involving aromatic fragment degradation in buffered Co2+/PMS oxidative processes with a ppb level dosage of Co2+-catalyst. J. Hazard. Mater. 2009, 170, 1110–1118.

[47]

Peng, L. J.; Shang, Y. N.; Gao, B. Y.; Xu, X. Co3O4 anchored in N, S heteroatom co-doped porous carbons for degradation of organic contaminant: Role of pyridinic N–Co binding and high tolerance of chloride. Appl. Catal. B: Environ. 2021, 282, 119484.

[48]

Feng, Y.; Wu, D. L.; Deng, Y.; Zhang, T.; Shih, K. Sulfate radical-mediated degradation of sulfadiazine by CuFeO2 rhombohedral crystal-catalyzed peroxymonosulfate: Synergistic effects and mechanisms. Environ. Sci. Technol. 2016, 50, 3119–3127.

[49]

Yang, W. C.; Li, X. Y.; Jiang, Z.; Li, C. F.; Zhao, J.; Wang, H. Y.; Liao, Q. Structure-dependent catalysis of Co3O4 crystals in persulfate activation via nonradical pathway. Appl. Surf. Sci. 2020, 525, 146482.

[50]

Wang, Z. H.; Yuan, R. X.; Guo, Y. G.; Xu, L.; Liu, J. S. Effects of chloride ions on bleaching of azo dyes by Co2+/oxone regent: Kinetic analysis. J. Hazard. Mater. 2011, 190, 1083–1087.

[51]

Li, W.; Li, Y. X.; Zhang, D. Y.; Lan, Y. Q.; Guo, J. CuO-Co3O4@CeO2 as a heterogeneous catalyst for efficient degradation of 2,4-dichlorophenoxyacetic acid by peroxymonosulfate. J. Hazard. Mater. 2020, 381, 121209.

[52]

Koo, H. M.; Ahn, C. I.; Lee, D. H.; Roh, H. S.; Shin, C. H.; Kye, H.; Bae, J. W. Roles of Al2O3 promoter for an enhanced structural stability of ordered-mesoporous Co3O4 catalyst during CO hydrogenation to hydrocarbons. Fuel 2018, 225, 460–471.

[53]

Wang, Q. F.; Shao, Y. S.; Gao, N. Y.; Chu, W. H.; Chen, J. X.; Lu, X.; Zhu, Y. P.; An, N. Activation of peroxymonosulfate by Al2O3-based CoFe2O4 for the degradation of sulfachloropyridazine sodium: Kinetics and mechanism. Sep. Purif. Technol. 2017, 189, 176–185.

[54]

Ahn, C. I.; Koo, H. M.; Jo, J. M.; Roh, H. S.; Lee, J. B.; Lee, Y. J.; Jang, E. J.; Bae, J. W. Stabilized ordered-mesoporous Co3O4 structures using Al pillar for the superior CO hydrogenation activity to hydrocarbons. Appl. Catal. B: Environ. 2016, 180, 139–149.

[55]

Verstraeten, S. V.; Lucangioli, S.; Galleano, M. ESR characterization of thallium(III)-mediated nitrones oxidation. Inorg. Chim. Acta 2009, 362, 2305–2310.

[56]

Xia, D. H.; Yin, R.; Sun, J. L.; An, T. C.; Li, G. Y.; Wang, W. J.; Zhao, H. J.; Wong, P. K. Natural magnetic pyrrhotite as a high-efficient persulfate activator for micropollutants degradation: Radicals identification and toxicity evaluation. J. Hazard. Mater. 2017, 340, 435–444.

[57]

Lee, H.; Lee, H. J.; Jeong, J.; Lee, J.; Park, N. B.; Lee, C. Activation of persulfates by carbon nanotubes: Oxidation of organic compounds by nonradical mechanism. Chem. Eng. J. 2015, 266, 28–33.

[58]

Zhang, H.; An, Q.; Su, Y.; Quan, X.; Chen, S. Co3O4 with upshifted d-band center and enlarged specific surface area by single-atom Zr doping for enhanced PMS activation. J. Hazard. Mater. 2023, 448, 130987.

[59]

Yang, X. D.; Duan, J.; Qi, J. J.; Li, X. Z.; Gao, J.; Liang, Y. F.; Li, S.; Duan, T.; Liu, W. Modulating the electron structure of Co-3d in Co3O4−x/WO2.72 for boosting peroxymonosulfate activation and degradation of sulfamerazine: Roles of high-valence W and rich oxygen vacancies. J. Hazard. Mater. 2023, 445, 130576.

[60]

Han, X. L.; Zhang, W.; Li, S.; Cheng, C. Y.; Yu, Q. L.; Jia, Q. L.; Zhou, L.; Xiu, G. Mn-MOF derived manganese sulfide as peroxymonosulfate activator for levofloxacin degradation: An electron-transfer dominated and radical/nonradical coupling process. J. Environ. Sci. 2023, 130, 197–211.

[61]

Shi, P. H.; Dai, X. F.; Zheng, H.; Li, D. X.; Yao, W. F.; Hu, C. Y. Synergistic catalysis of Co3O4 and graphene oxide on Co3O4/GO catalysts for degradation of Orange II in water by advanced oxidation technology based on sulfate radicals. Chem. Eng. J. 2014, 240, 264–270.

[62]

Zhang, W.; Tay, H. L.; Lim, S. S.; Wang, Y. S.; Zhong, Z. Y.; Xu, R. Supported cobalt oxide on MgO: Highly efficient catalysts for degradation of organic dyes in dilute solutions. Appl. Catal. B: Environ. 2010, 95, 93–99.

[63]

Bicalho, H. A.; Rios, R. D. F.; Binatti, I.; Ardisson, J. D.; Howarth, A. J.; Lago, R. M.; Teixeira, A. P. C. Efficient activation of peroxymonosulfate by composites containing iron mining waste and graphitic carbon nitride for the degradation of acetaminophen. J. Hazard. Mater. 2020, 400, 123310.

[64]

Rodríguez-Narvaez, O. M.; Rajapaksha, R. D.; Ranasinghe, M. I.; Bai, X. L.; Peralta-Hernández, J. M.; Bandala, E. R. Peroxymonosulfate decomposition by homogeneous and heterogeneous Co: Kinetics and application for the degradation of acetaminophen. J. Environ. Sci. 2020, 93, 30–40.

[65]

Li, Z. L.; Wang, M.; Jin, C. Y.; Kang, J.; Liu, J.; Yang, H. R.; Zhang, Y. Q.; Pu, Q. Y.; Zhao, Y.; You, M. Y. et al. Synthesis of novel Co3O4 hierarchical porous nanosheets via corn stem and MOF-Co templates for efficient oxytetracycline degradation by peroxymonosulfate activation. Chem. Eng. J. 2020, 392, 123789.

[66]

Zhao, X. F.; Niu, C. G.; Zhang, L.; Guo, H.; Wen, X. J.; Liang, C.; Zeng, G. M. Co-Mn layered double hydroxide as an effective heterogeneous catalyst for degradation of organic dyes by activation of peroxymonosulfate. Chemosphere 2018, 204, 11–21.

File
12274_2023_5819_MOESM1_ESM.pdf (1,013.1 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 07 March 2023
Revised: 23 April 2023
Accepted: 07 May 2023
Published: 12 July 2023
Issue date: August 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 22274149, 22074137, 22274147 and 21721003) and Jilin Province Science and Technology Development Plan Project (No. 20210506012ZP)

Return