Journal Home > Volume 16 , Issue 8

All-cis-hexafluoro- and all-cis-pentafluoro-cyclohexane (PFCH) derivatives are new kinds of materials, the structures and properties of which are dominated by the highly dipolar Janus-face motif. Here, we report on the effects of integrating the PFCH groups into self-assembled monolayers (SAMs) of alkanethiolates on Au(111). Monolayers with an odd (eleven) and even (twelve) number of methylene groups were characterized in detail by several complementary experimental tools, supported by theoretical calculations. Surprisingly, all the data show a high similarity of both kinds of monolayers, nearly lacking the typically observed odd-even effects. These new monolayers have a packing density about 1/3 lower than that of non-substituted alkanethiolate monolayers, caused by the bulkiness of the PFCH moieties. The orientations of the PFCH groups and the alkyl chains could be determined independently, suggesting a conformation similar to the one found in the solid state structure of an analogous compound. Although in the SAMs the PFCH groups are slightly tilted away from the surface normal with the axial fluorine atoms pointing downwards, most of the dipole moments of the group remain oriented parallel to the surface, which is a unique feature for a SAM system. The consequences are much lower water contact angles compared to other partly fluorinated SAMs as well as rather moderate work function values. The interaction between the terminal PFCH moieties results in an enhanced stability of the PFCH-decorated SAMs toward exchange reaction with potential molecular substituents in spite of the lower packing density of these films.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Lateral dipole moments induced by all-cis-pentafluorocyclohexyl groups cause unanticipated effects in self-assembled monolayers

Show Author's information Christian Fischer1Saunak Das2Qingzhi Zhang3Yangbiao Liu2Lothar Weinhardt4,5,6David O’Hagan3( )Michael Zharnikov2( )Andreas Terfort1( )
Institute of Inorganic and Analytical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 7, 60438 Frankfurt am Main, Germany
Applied Physical Chemistry, Heidelberg University, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany
School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, UK
Institute for Photon Science and Synchrotron Radiation, Karlsruhe Institute of Technology (KIT), Hermann-v.-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstr. 18/20, 76128 Karlsruhe, Germany
Department of Chemistry and Biochemistry, University of Nevada, Las Vegas (UNLV), 4505 Maryland Parkway, Las Vegas, NV 89154-4003, USA

Abstract

All-cis-hexafluoro- and all-cis-pentafluoro-cyclohexane (PFCH) derivatives are new kinds of materials, the structures and properties of which are dominated by the highly dipolar Janus-face motif. Here, we report on the effects of integrating the PFCH groups into self-assembled monolayers (SAMs) of alkanethiolates on Au(111). Monolayers with an odd (eleven) and even (twelve) number of methylene groups were characterized in detail by several complementary experimental tools, supported by theoretical calculations. Surprisingly, all the data show a high similarity of both kinds of monolayers, nearly lacking the typically observed odd-even effects. These new monolayers have a packing density about 1/3 lower than that of non-substituted alkanethiolate monolayers, caused by the bulkiness of the PFCH moieties. The orientations of the PFCH groups and the alkyl chains could be determined independently, suggesting a conformation similar to the one found in the solid state structure of an analogous compound. Although in the SAMs the PFCH groups are slightly tilted away from the surface normal with the axial fluorine atoms pointing downwards, most of the dipole moments of the group remain oriented parallel to the surface, which is a unique feature for a SAM system. The consequences are much lower water contact angles compared to other partly fluorinated SAMs as well as rather moderate work function values. The interaction between the terminal PFCH moieties results in an enhanced stability of the PFCH-decorated SAMs toward exchange reaction with potential molecular substituents in spite of the lower packing density of these films.

Keywords: work function, X-ray photoelectron spectroscopy, infrared-reflection absorption spectroscopy, kinetic stability, odd-even-effects, self-assembled monolayer (SAM)

References(81)

[1]
Kirsch, P. Modern Fluoroorganic Chemistry: Synthesis, Reactivity, Applications, 2nd ed.; Wiley-VCH: Weinheim, 2013.
DOI
[2]

Fier, P. S.; Hartwig, J. F. Selective C–H fluorination of pyridines and diazines inspired by a classic amination reaction. Science 2013, 342, 956–960.

[3]

Müller, K.; Faeh, C.; Diederich, F. Fluorine in pharmaceuticals: Looking beyond intuition. Science 2007, 317, 1881–1886.

[4]

Sandford, G. Elemental fluorine in organic chemistry (1997–2006). J. Fluorine Chem. 2007, 128, 90–104.

[5]

Dawood, K. M. Electrolytic fluorination of organic compounds. Tetrahedron 2004, 60, 1435–1451.

[6]

Zhu, W. W.; Zhen, X.; Wu, J. Y.; Cheng, Y. P.; An, J. K.; Ma, X. Y.; Liu, J. K.; Qin, Y. J.; Zhu, H.; Xue, J. J. et al. Catalytic asymmetric nucleophilic fluorination using BF3·Et2O as fluorine source and activating reagent. Nat. Commun. 2021, 12, 3957.

[7]

Scheidt, F.; Schäfer, M.; Sarie, J. C.; Daniliuc, C. G.; Molloy, J. J.; Gilmour, R. Enantioselective, catalytic vicinal difluorination of alkenes. Angew. Chem., Int. Ed. 2018, 57, 16431–16435.

[8]

O’Hagan, D. Understanding organofluorine chemistry. An introduction to the C–F bond. Chem. Soc. Rev. 2008, 37, 308–319.

[9]

Biffinger, J. C.; Kim, H. W.; DiMagno, S. G. The polar hydrophobicity of fluorinated compounds. ChemBioChem 2004, 5, 622–627.

[10]

Keddie, N. S.; Slawin, A. M. Z.; Lebl, T.; Philp, D.; O’Hagan, D. All-cis 1,2,3,4,5,6-hexafluorocyclohexane is a facially polarized cyclohexane. Nat. Chem. 2015, 7, 483–488.

[11]

Wiesenfeldt, M. P.; Nairoukh, Z.; Li, W.; Glorius, F. Hydrogenation of fluoroarenes: Direct access to all-cis-(multi)fluorinated cycloalkanes. Science 2017, 357, 908–912.

[12]

Wei, Y.; Rao, B.; Cong, X. F.; Zeng, X. M. Highly selective hydrogenation of aromatic ketones and phenols enabled by cyclic (amino)(alkyl)carbene rhodium complexes. J. Am. Chem. Soc. 2015, 137, 9250–9253.

[13]

Shyshov, O.; Siewerth, K. A.; von Delius, M. Evidence for anion-binding of all-cis hexafluorocyclohexane in solution and solid state. Chem. Commun. 2018, 54, 4353–4355.

[14]

Shyshov, O.; Haridas, S. V.; Pesce, L.; Qi, H. Y.; Gardin, A.; Bochicchio, D.; Kaiser, U.; Pavan, G. M.; von Delius, M. Living supramolecular polymerization of fluorinated cyclohexanes. Nat. Commun. 2021, 12, 3134.

[15]

Clark, J. L.; Neyyappadath, R. M.; Yu, C. H.; Slawin, A. M. Z.; Cordes, D. B.; O’Hagan, D. Janus all-cis 2,3,4,5,6-pentafluoro-cyclohexyl building blocks applied to medicinal chemistry and bioactives discovery chemistry. Chem. -Eur. J. 2021, 27, 16000–16005.

[16]

Wang, Y.; Lee, W.; Chen, Y. C.; Zhou, Y. H.; Plise, E.; Migliozzi, M.; Crawford, J. J. Turning the other cheek: Influence of the cis-tetrafluorocyclohexyl motif on physicochemical and metabolic properties. ACS Med. Chem. Lett. 2022, 13, 1517–1523.

[17]

Clark, J. L.; Taylor, A.; Geddis, A.; Neyyappadath, R. M.; Piscelli, B. A.; Yu, C. H.; Cordes, D. B.; Slawin, A. M. Z.; Cormanich, R. A.; Guldin, S. et al. Supramolecular packing of alkyl substituted Janus face all-cis-2,3,4,5,6-pentafluorocyclohexyl motifs. Chem. Sci. 2021, 12, 9712–9719.

[18]

Poskin, T. J.; Piscelli, B. A.; Yoshida, K.; Cordes, D. B.; Slawin, A. M. Z.; Cormanich, R. A.; Yamada, S.; O’Hagan, D. Janus faced fluorocyclohexanes for supramolecular assembly: Synthesis and solid state structures of equatorial mono-, di- and tri-alkylated cyclohexanes and with tri-axial C–F bonds to impart polarity. Chem. Commun. 2022, 58, 7968–7971.

[19]

MacLeod, B. A.; Horwitz, N. E.; Ratcliff, E. L.; Jenkins, J. L.; Armstrong, N. R.; Giordano, A. J.; Hotchkiss, P. J.; Marder, S. R.; Campbell, C. T.; Ginger, D. S. Built-in potential in conjugated polymer diodes with changing anode work function: Interfacial states and deviation from the Schottky-Mott limit. J. Phys. Chem. Lett. 2012, 3, 1202–1207.

[20]

Zojer, E.; Terfort, A.; Zharnikov, M. Concept of embedded dipoles as a versatile tool for surface engineering. Acc. Chem. Res. 2022, 55, 1857–1867.

[21]

Liu, Y. B.; Katzbach, S.; Asyuda, A.; Das, S.; Terfort, A.; Zharnikov, M. Effect of substitution on the charge transport properties of oligophenylenethiolate self-assembled monolayers. Phys. Chem. Chem. Phys. 2022, 24, 27693–27704.

[22]

Liu, Y. B.; Zeplichal, M.; Katzbach, S.; Wiesner, A.; Das, S.; Terfort, A.; Zharnikov, M. Aromatic self-assembled monolayers with pentafluoro-λ6-sulfanyl (-SF5) termination: Molecular organization and charge transport properties. Nano Res. 2023, 16, 7991–8000.

[23]

Raiber, K.; Terfort, A.; Benndorf, C.; Krings, N.; Strehblow, H. H. Removal of self-assembled monolayers of alkanethiolates on gold by plasma cleaning. Surf. Sci. 2005, 595, 56–63.

[24]
Nefedov, A.; Wöll, C. Advanced applications of NEXAFS spectroscopy for functionalized surfaces. In Surface Science Techniques. Bracco, G.; Holst, B., Eds.; Springer: Berlin, 2013; pp 277–303.
DOI
[25]

Frey, S.; Heister, K.; Zharnikov, M.; Grunze, M. Modification of semifluorinated alkanethiolate monolayers by low energy electron irradiation. Phys. Chem. Chem. Phys. 2000, 2, 1979–1987.

[26]

Chesneau, F.; Schüpbach, B.; Szelągowska-Kunstman, K.; Ballav, N.; Cyganik, P.; Terfort, A.; Zharnikov, M. Self-assembled monolayers of perfluoroterphenyl-substituted alkanethiols: Specific characteristics and odd-even effects. Phys. Chem. Chem. Phys. 2010, 12, 12123–12127.

[27]
Moulder, J. F.; Stickle, W. E.; Sobol, P. E.; Bomben, K. D. Handbook of X-Ray Photoelectron Spectroscopy; Perkin-Elmer Corporation: Eden Prairie, 1992.
[28]
Stöhr, J. NEXAFS Spectroscopy (Springer series in surface sciences); Springer: Berlin, 2003.
[29]

Batson, P. E. Carbon 1s near-edge-absorption fine structure in graphite. Phys. Rev. B 1993, 48, 2608–2610.

[30]
Hermann, K.; Pettersson, L. G. M.; Casida, M. E.; Daul, C.; Goursot, A.; Koester, A.; Proynov, E.; St-Amant, A.; Salahub, D. R.; et al. StoBe-deMon, version 3.1, 2011.
[31]

Perdew, J. P. Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys. Rev. B 1986, 33, 8822–8824.

[32]

Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 1988, 38, 3098–3100.

[33]

Perdew, J. P. Erratum: Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys. Rev. B 1986, 34, 7406.

[34]

Pettersson, L. G. M.; Wahlgren, U.; Gropen, O. Effective core potential parameters for first- and second-row atoms. J. Chem. Phys. 1987, 86, 2176–2184.

[35]
Kutzelnigg, W.; Fleischer, U.; Schindler, M. The IGLO-method: Ab-initio calculation and interpretation of NMR chemical shifts and magnetic susceptibilities. In Deuterium and Shift Calculation. Fleischer, U.; Kutzelnigg, W.; Limbach, H. H.; Martin, G. J.; Martin, M. L.; Schindler, M., Eds.; Springer: Berlin, 1991; pp 165–262.
[36]

Triguero, L.; Pettersson, L. G. M.; Ågren, H. Calculations of near-edge X-ray-absorption spectra of gas-phase and chemisorbed molecules by means of density-functional and transition-potential theory. Phys. Rev. B 1998, 58, 8097–8110.

[37]

Weigend, F. Accurate coulomb-fitting basis sets for H to Rn. Phys. Chem. Chem. Phys. 2006, 8, 1057–1065.

[38]

Neese, F.; Wennmohs, F.; Becker, U.; Riplinger, C. The ORCA quantum chemistry program package. J. Chem. Phys. 2020, 152, 224108.

[39]

Cabarcos, O. M.; Schuster, S.; Hehn, I.; Zhang, P. P.; Maitani, M. M.; Sullivan, N.; Giguère, J. B.; Morin, J. F.; Weiss, P. S.; Zojer, E. et al. Effects of embedded dipole layers on electrostatic properties of alkanethiolate self-assembled monolayers. J. Phys. Chem. C 2017, 121, 15815–15830.

[40]

Piserchia, A.; Zerbetto, M.; Salvia, M. V.; Salassa, G.; Gabrielli, L.; Mancin, F.; Rastrelli, F.; Frezzato, D. Conformational mobility in monolayer-protected nanoparticles: From torsional free energy profiles to NMR relaxation. J. Phys. Chem. C 2015, 119, 20100–20110.

[41]
Zharnikov, M. High-resolution X-ray photoelectron spectroscopy in studies of self-assembled organic monolayers. J. Electron Spectrosc. Relat. Phenom. 2010, 178–179, 380–393.
DOI
[42]
Ratner, B. D.; Castner, D. G. Electron spectroscopy for chemical analysis. In Surface Analysis—The Principal Techniques. Vickerman, J., Ed.; Wiley: Chichester, 1997.
[43]

Heister, K.; Johansson, L. S. O.; Grunze, M.; Zharnikov, M. A detailed analysis of the C 1s photoemission of n-alkanethiolate films on noble metal substrates. Surf. Sci. 2003, 529, 36–46.

[44]

Asyuda, A.; Das, S.; Zharnikov, M. Thermal stability of alkanethiolate and aromatic thiolate self-assembled monolayers on Au(111): An X-ray photoelectron spectroscopy study. J. Phys. Chem. C 2021, 125, 21754–21763.

[45]

Lamont, C. L. A.; Wilkes, J. Attenuation length of electrons in self-assembled monolayers of n-alkanethiols on gold. Langmuir 1999, 15, 2037–2042.

[46]

Schreiber, F. Structure and growth of self-assembling monolayers. Prog. Surf. Sci. 2000, 65, 151–256.

[47]

Zharnikov, M.; Frey, S.; Rong, H.; Yang, Y. J.; Heister, K.; Buck, M.; Grunze, M. The effect of sulfur–metal bonding on the structure of self-assembled monolayers. Phys. Chem. Chem. Phys. 2000, 2, 3359–3362.

[48]

Lee, S.; Puck, A.; Graupe, M.; Colorado, R.; Shon, Y. S.; Lee, T. R.; Perry, S. S. Structure, wettability, and frictional properties of phenyl-terminated self-assembled monolayers on gold. Langmuir 2001, 17, 7364–7370.

[49]

Rong, H. T.; Frey, S.; Yang, Y. J.; Zharnikov, M.; Buck, M.; Wühn, M.; Wöll, C.; Helmchen, G. On the importance of the headgroup substrate bond in thiol monolayers: A study of biphenyl-based thiols on gold and silver. Langmuir 2001, 17, 1582–1593.

[50]

Cyganik, P.; Buck, M.; Azzam, W.; Wöll, C. Self-assembled monolayers of ω-biphenylalkanethiols on Au(111): Influence of spacer chain on molecular packing. J. Phys. Chem. B 2004, 108, 4989–4996.

[51]

Tao, F.; Bernasek, S. L. Understanding odd-even effects in organic self-assembled monolayers. Chem. Rev. 2007, 107, 1408–1453.

[52]

Bagus, P. S.; Weiss, K.; Schertel, A.; Wöll, C.; Braun, W.; Hellwig, C.; Jung, C. Identification of transitions into Rydberg states in the X-ray absorption spectra of condensed long-chain alkanes. Chem. Phys. Lett. 1996, 248, 129–135.

[53]

Väterlein, P.; Fink, R.; Umbach, E.; Wurth, W. Analysis of the X-ray absorption spectra of linear saturated hydrocarbons using the Xα scattered-wave method. J. Chem. Phys. 1998, 108, 3313–3320.

[54]

Weiss, K.; Bagus, P. S.; Wöll, C. Rydberg transitions in X-ray absorption spectroscopy of alkanes: The importance of matrix effects. J. Chem. Phys. 1999, 111, 6834–6845.

[55]

Schöll, A.; Fink, R.; Umbach, E.; Mitchell, G. E.; Urquhart, S. G.; Ade, H. Towards a detailed understanding of the NEXAFS spectra of bulk polyethylene copolymers and related alkanes. Chem. Phys. Lett. 2003, 370, 834–841.

[56]

Perera, S. D.; Shokatian, S.; Wang, J.; Urquhart, S. G. Temperature dependence in the NEXAFS spectra of n-alkanes. J. Phys. Chem. A 2018, 122, 9512–9517.

[57]

Shokatian, S.; Urquhart, S. Near edge X-ray absorption fine structure spectra of linear n-alkanes: Variation with chain length. J. Electron Spectrosc. Relat. Phenom. 2019, 236, 18–26.

[58]

Feulner, P.; Zharnikov, M. High-resolution X-ray absorption spectroscopy of alkanethiolate self-assembled monolayers on Au(111) and Ag(111). J. Electron Spectrosc. Relat. Phenom. 2021, 248, 147057.

[59]

Zharnikov, M.; Küller, A.; Shaporenko, A.; Schmidt, E.; Eck, W. Aromatic self-assembled monolayers on hydrogenated silicon. Langmuir 2003, 19, 4682–4687.

[60]

Zharnikov, M.; Frey, S.; Heister, K.; Grunze, M. Modification of alkanethiolate monolayers by low energy electron irradiation: Dependence on the substrate material and on the length and isotopic composition of the alkyl chains. Langmuir 2000, 16, 2697–2705.

[61]

Hähner, G.; Kinzler, M.; Thümmler, C.; Wöll, C.; Grunze, M. Structure of self-organizing organic films: A near edge X-ray absorption fine structure investigation of thiol layers adsorbed on gold. J. Vac. Sci. Technol. A 1992, 10, 2758–2763.

[62]

Greenler, R. G. Infrared study of adsorbed molecules on metal surfaces by reflection techniques. J. Chem. Phys. 1966, 44, 310–315.

[63]

Pearce, H. A.; Sheppard, N. Possible importance of a “metal-surface selection rule” in the interpretation of the infrared spectra of molecules adsorbed on particulate metals; infrared spectra from ethylene chemisorbed on silica-supported metal catalysts. Surf. Sci. 1976, 59, 205–217.

[64]

Snyder, R. G.; Strauss, H. L.; Elliger, C. A. Carbon−hydrogen stretching modes and the structure of n-alkyl chains. 1. Long, disordered chains. J. Phys. Chem. 1982, 86, 5145–5150.

[65]

MacPhail, R. A.; Strauss, H. L.; Snyder, R. G.; Elliger, C. A. Carbon-hydrogen stretching modes and the structure of n-alkyl chains. 2. Long, all-trans chains. J. Phys. Chem. 1984, 88, 334–341.

[66]

Colorado, R.; Lee, T. R. Wettabilities of self-assembled monolayers on gold generated from progressively fluorinated alkanethiols. Langmuir 2003, 19, 3288–3296.

[67]

Yu, T. L.; Marquez, M. D.; Zenasni, O.; Lee, T. R. Mimicking polymer surfaces using cyclohexyl- and perfluorocyclohexyl-terminated self-assembled monolayers. ACS Appl. Nano Mater. 2019, 2, 5809–5816.

[68]

Gärtner, M.; Sauter, E.; Nascimbeni, G.; Petritz, A.; Wiesner, A.; Kind, M.; Abu-Husein, T.; Bolte, M.; Stadlober, B.; Zojer, E. et al. Understanding the properties of tailor-made self-assembled monolayers with embedded dipole moments for interface engineering. J. Phys. Chem. C 2018, 122, 28757–28774.

[69]

Kang, J. F.; Ulman, A.; Liao, S.; Jordan, R.; Yang, G. H.; Liu, G. Y. Self-assembled rigid monolayers of 4′-substituted-4-mercapto-biphenyls on gold and silver surfaces. Langmuir 2001, 17, 95–106.

[70]

Yu, T. L.; Marquez, M. D.; Lee, T. R. SAMs on gold derived from adsorbates having phenyl and cyclohexyl tail groups mixed with their phase-incompatible fluorinated analogues. Langmuir 2022, 38, 13488–13496.

[71]

Rodil, A.; Bosisio, S.; Ayoup, M. S.; Quinn, L.; Cordes, D. B.; Slawin, A. M. Z.; Murphy, C. D.; Michel, J.; O’Hagan, D. Metabolism and hydrophilicity of the polarised ‘Janus face’ all-cis tetrafluorocyclohexyl ring, a candidate motif for drug discovery. Chem. Sci. 2018, 9, 3023–3028.

[72]

Benneckendorf, F. S.; Hillebrandt, S.; Ullrich, F.; Rohnacher, V.; Hietzschold, S.; Jänsch, D.; Freudenberg, J.; Beck, S.; Mankel, E.; Jaegermann, W. et al. Structure–property relationship of phenylene-based self-assembled monolayers for record low work function of indium tin oxide. J. Phys. Chem. Lett. 2018, 9, 3731–3737.

[73]

Derry, G. N.; Kern, M. E.; Worth, E. H. Recommended values of clean metal surface work functions. J. Vac. Sci. Technol. A 2015, 33, 060801.

[74]

Ford, W. E.; Gao, D. Q.; Knorr, N.; Wirtz, R.; Scholz, F.; Karipidou, Z.; Ogasawara, K.; Rosselli, S.; Rodin, V.; Nelles, G. et al. Organic dipole layers for ultralow work function electrodes. ACS Nano 2014, 8, 9173–9180.

[75]

Alloway, D. M.; Hofmann, M.; Smith, D. L.; Gruhn, N. E.; Graham, A. L.; Colorado, R. Jr.; Wysocki, V. H.; Lee, T. R.; Lee, P. A.; Armstrong, N. R. Interface dipoles arising from self-assembled monolayers on gold: UV-photoemission studies of alkanethiols and partially fluorinated alkanethiols. J. Phys. Chem. B 2003, 107, 11690–11699.

[76]

Boudinet, D.; Benwadih, M.; Qi, Y. B.; Altazin, S.; Verilhac, J. M.; Kroger, M.; Serbutoviez, C.; Gwoziecki, R.; Coppard, R.; Le Blevennec, G. et al. Modification of gold source and drain electrodes by self-assembled monolayer in staggered n- and p-channel organic thin film transistors. Org. Electron. 2010, 11, 227–237.

[77]

Lee, H. J.; Jamison, A. C.; Lee, T. R. Surface dipoles: A growing body of evidence supports their impact and importance. Acc. Chem. Res. 2015, 48, 3007–3015.

[78]

Zenasni, O.; Marquez, M. D.; Jamison, A. C.; Lee, H. J.; Czader, A.; Lee, T. R. Inverted surface dipoles in fluorinated self-assembled monolayers. Chem. Mater. 2015, 27, 7433–7446.

[79]

Pratik, S. M.; Nijamudheen, A.; Datta, A. Janus all-cis-1, 2, 3, 4, 5, 6-hexafluorocyclohexane: A molecular motif for aggregation-induced enhanced polarization. ChemPhysChem 2016, 17, 2373–2381.

[80]

Schlenoff, J. B.; Li, M.; Ly, H. Stability and self-exchange in alkanethiol monolayers. J. Am. Chem. Soc. 1995, 117, 12528–12536.

[81]

Dauselt, J.; Zhao, J. L.; Kind, M.; Binder, R.; Bashir, A.; Terfort, A.; Zharnikov, M. Compensation of the odd-even effects in araliphatic self-assembled monolayers by nonsymmetric attachment of the aromatic part. J. Phys. Chem. C 2011, 115, 2841–2854.

File
12274_2023_5818_MOESM1_ESM.pdf (5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 03 March 2021
Revised: 30 April 2023
Accepted: 07 May 2023
Published: 26 June 2023
Issue date: August 2023

Copyright

© The author(s) 2023

Acknowledgements

C. F. and A. T. thank the Fonds der Chemischen Industrie (FCI) for providing a PhD stipend. S. D., Y. B. L. and M. Z. thank the Helmholtz Zentrum Berlin for the allocation of synchrotron radiation beamtime at BESSY II and financial support. Y. L. thanks the China Scholarship Council (CSC) for financial support.

Return