Journal Home > Volume 16 , Issue 8

All-cis-hexafluoro- and all-cis-pentafluoro-cyclohexane (PFCH) derivatives are new kinds of materials, the structures and properties of which are dominated by the highly dipolar Janus-face motif. Here, we report on the effects of integrating the PFCH groups into self-assembled monolayers (SAMs) of alkanethiolates on Au(111). Monolayers with an odd (eleven) and even (twelve) number of methylene groups were characterized in detail by several complementary experimental tools, supported by theoretical calculations. Surprisingly, all the data show a high similarity of both kinds of monolayers, nearly lacking the typically observed odd-even effects. These new monolayers have a packing density about 1/3 lower than that of non-substituted alkanethiolate monolayers, caused by the bulkiness of the PFCH moieties. The orientations of the PFCH groups and the alkyl chains could be determined independently, suggesting a conformation similar to the one found in the solid state structure of an analogous compound. Although in the SAMs the PFCH groups are slightly tilted away from the surface normal with the axial fluorine atoms pointing downwards, most of the dipole moments of the group remain oriented parallel to the surface, which is a unique feature for a SAM system. The consequences are much lower water contact angles compared to other partly fluorinated SAMs as well as rather moderate work function values. The interaction between the terminal PFCH moieties results in an enhanced stability of the PFCH-decorated SAMs toward exchange reaction with potential molecular substituents in spite of the lower packing density of these films.

File
12274_2023_5818_MOESM1_ESM.pdf (5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 03 March 2021
Revised: 30 April 2023
Accepted: 07 May 2023
Published: 26 June 2023
Issue date: August 2023

Copyright

© The author(s) 2023

Acknowledgements

C. F. and A. T. thank the Fonds der Chemischen Industrie (FCI) for providing a PhD stipend. S. D., Y. B. L. and M. Z. thank the Helmholtz Zentrum Berlin for the allocation of synchrotron radiation beamtime at BESSY II and financial support. Y. L. thanks the China Scholarship Council (CSC) for financial support.

Return