Journal Home > Volume 16 , Issue 8

Luminescence is one of the most important properties for metal nanoclusters; however, clearly revealing its origin remains challenging. The different luminescence properties of the two prototypical 8e nanoclusters Au11 and Au13 remain elusive—Au11 is always nonluminescent, whereas Au13 is luminescent. In this work, by using a designed unique aromatic ligand (quinoline-2-thiol), we obtained new atomically precise phosphine-thiolate-protected neutral Au11-SH and cationic Au13-SH. In comparison with the classic phosphine-halide-protected Au11-Cl and Au13-Cl, the Cl-to-thiol alteration triggered room-temperature luminescence of the Au11 core and dramatically modulated that of the Au13 core. Ultrafast ultraviolet/infrared (UV/IR) spectroscopy, which is sensitive to organic aromatic groups, together with ultrafast transient absorption (TA) spectroscopy unprecedently revealed a relaxation process from the ligand to core state affecting the dynamics in excited states and some critical intermediate states favouring efficient room-temperature emission of these nanoclusters. This work provides some new insights into the origin of photoluminescence of metal nanoclusters and opens an avenue to modulate the dynamics of their excited states using aromatic ligands, which would have direct applications in lighting, light harvesting, and photocatalysis.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Luminescence modulation of ultrasmall gold clusters by aromatic ligands

Show Author's information Xue-Jing Zhai1,2,§Jia-Hua Hu1,§Jianxin Guan3,§Yubing Si1Xi-Yan Dong1,2( )Peng Luo2Fangfang Pan4Zhihao Yu3( )Runping Han1Shuang-Quan Zang1( )
College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003, China
College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
College of Chemistry, Central China Normal University, Wuhan 430079, China

§ Xue-Jing Zhai, Jia-Hua Hu, and Jianxin Guan contributed equally to this work.

Abstract

Luminescence is one of the most important properties for metal nanoclusters; however, clearly revealing its origin remains challenging. The different luminescence properties of the two prototypical 8e nanoclusters Au11 and Au13 remain elusive—Au11 is always nonluminescent, whereas Au13 is luminescent. In this work, by using a designed unique aromatic ligand (quinoline-2-thiol), we obtained new atomically precise phosphine-thiolate-protected neutral Au11-SH and cationic Au13-SH. In comparison with the classic phosphine-halide-protected Au11-Cl and Au13-Cl, the Cl-to-thiol alteration triggered room-temperature luminescence of the Au11 core and dramatically modulated that of the Au13 core. Ultrafast ultraviolet/infrared (UV/IR) spectroscopy, which is sensitive to organic aromatic groups, together with ultrafast transient absorption (TA) spectroscopy unprecedently revealed a relaxation process from the ligand to core state affecting the dynamics in excited states and some critical intermediate states favouring efficient room-temperature emission of these nanoclusters. This work provides some new insights into the origin of photoluminescence of metal nanoclusters and opens an avenue to modulate the dynamics of their excited states using aromatic ligands, which would have direct applications in lighting, light harvesting, and photocatalysis.

Keywords: luminescence, metal nanoclusters, ligand modification

References(68)

[1]

Jin, R. C.; Zeng, C. J.; Zhou, M.; Chen, Y. X. Atomically precise colloidal metal nanoclusters and nanoparticles: Fundamentals and opportunities. Chem. Rev. 2016, 116, 10346–10413.

[2]

Cao, Y. T.; Chen, T. K.; Yao, Q. F.; Xie, J. P. Diversification of metallic molecules through derivatization chemistry of Au25 nanoclusters. Acc. Chem. Res. 2021, 54, 4142–4153.

[3]

Zhou, M.; Higaki, T.; Li, Y. W.; Zeng, C. J.; Li, Q.; Sfeir, M. Y.; Jin, R. C. Three-stage evolution from nonscalable to scalable optical properties of thiolate-protected gold nanoclusters. J. Am. Chem. Soc. 2019, 141, 19754–19764.

[4]

Kang, X.; Zhu, M. Z. Tailoring the photoluminescence of atomically precise nanoclusters. Chem. Soc. Rev. 2019, 48, 2422–2457.

[5]

Yang, D.; Pei, W.; Zhou, S.; Zhao, J. J.; Ding, W. P.; Zhu, Y. Controllable conversion of CO2 on non-metallic gold clusters. Angew. Chem., Int. Ed. 2020, 59, 1919–1924.

[6]

Song, X. R.; Zhu, W.; Ge, X. G.; Li, R. F.; Li, S. H.; Chen, X.; Song, J. B.; Xie, J. P.; Chen, X. Y.; Yang, H. H. A new class of NIR-II gold nanocluster-based protein biolabels for in vivo tumor-targeted imaging. Angew. Chem., Int. Ed. 2021, 60, 1306–1312.

[7]

Jin, Y.; Zhang, C.; Dong, X. Y.; Zang, S. Q.; Mak, T. C. W. Shell engineering to achieve modification and assembly of atomically-precise silver clusters. Chem. Soc. Rev. 2021, 50, 2297–2319.

[8]

Luo, X. M.; Gong, C. H.; Pan, F. F.; Si, Y. B.; Yuan, J. W.; Asad, M.; Dong, X. Y.; Zang, S. Q.; Mak, T. C. W. Small symmetry-breaking triggering large chiroptical responses of Ag70 nanoclusters. Nat. Commun. 2022, 13, 1177.

[9]

Yan, J. Z.; Malola, S.; Hu, C. Y.; Peng, J.; Dittrich, B.; Teo, B. K.; Häkkinen, H.; Zheng, L. S.; Zheng, N. F. Co-crystallization of atomically precise metal nanoparticles driven by magic atomic and electronic shells. Nat. Commun. 2018, 9, 3357.

[10]

Li, J. J.; Liu, Z. K.; Guan, Z. J.; Han, X. S.; Shi, W. Q.; Wang, Q. M. A 59-electron non-magic-number gold nanocluster Au99(C≡CR)40 showing unexpectedly high stability. J. Am. Chem. Soc. 2022, 144, 690–694.

[11]

Takano, S.; Tsukuda, T. Chemically modified gold/silver superatoms as artificial elements at nanoscale: Design principles and synthesis challenges. J. Am. Chem. Soc. 2021, 143, 1683–1698.

[12]

Weerawardene, K. L. D. M.; Pandeya, P.; Zhou, M.; Chen, Y. X.; Jin, R. C.; Aikens, C. M. Luminescence and electron dynamics in atomically precise nanoclusters with eight superatomic electrons. J. Am. Chem. Soc. 2019, 141, 18715–18726.

[13]

Chakraborty, I.; Pradeep, T. Atomically precise clusters of noble metals: Emerging link between atoms and nanoparticles. Chem. Rev. 2017, 117, 8208–8271.

[14]

Li, Q.; Zhou, M.; So, W. Y.; Huang, J. C.; Li, M. X.; Kauffman, D. R.; Cotlet, M.; Higaki, T.; Peteanu, L. A.; Shao, Z. Z. et al. A mono-cuboctahedral series of gold nanoclusters: Photoluminescence origin, large enhancement, wide tunability, and structure–property correlation. J. Am. Chem. Soc. 2019, 141, 5314–5325.

[15]

Walter, M.; Akola, J.; Lopez-Acevedo, O.; Jadzinsky, P. D.; Calero, G.; Ackerson, C. J.; Whetten, R. L.; Grönbeck, H.; Häkkinen, H. A unified view of ligand-protected gold clusters as superatom complexes. Proc. Natl. Acad. Sci. USA 2008, 105, 9157–9162.

[16]

Nunokawa, K.; Onaka, S.; Ito, M.; Horibe, M.; Yonezawa, T.; Nishihara, H.; Ozeki, T.; Chiba, H.; Watase, S.; Nakamoto, M. Synthesis, single crystal X-ray analysis, and TEM for a single-sized Au11 cluster stabilized by SR ligands: The interface between molecules and particles. J. Organomet. Chem. 2006, 691, 638–642.

[17]

McKenzie, L. C.; Zaikova, T. O.; Hutchison, J. E. Structurally similar triphenylphosphine-stabilized undecagolds, Au11(PPh3)7Cl3 and [Au11(PPh3)8Cl2]Cl, exhibit distinct ligand exchange pathways with glutathione. J. Am. Chem. Soc. 2014, 136, 13426–13435.

[18]

Huang, T. H.; Zhao, F. Z.; Hu, Q. L.; Liu, Q.; Wu, T. C.; Zheng, D.; Kang, T. Y.; Gui, L. C.; Chen, J. Bisphosphine-stabilized gold nanoclusters with the crown/birdcage-shaped Au11 cores: Structures and optical properties. Inorg. Chem. 2020, 59, 16027–16034.

[19]

Zhou, M.; Jin, R. X.; Sfeir, M. Y.; Chen, Y. X.; Song, Y. B.; Jin, R. C. Electron localization in rod-shaped triicosahedral gold nanocluster. Proc. Natl. Acad. Sci. USA 2017, 114, E4697–E4705.

[20]

Gutrath, B. S.; Englert, U.; Wang, Y. T.; Simon, U. A missing link in undecagold cluster chemistry: Single-crystal X-ray analysis of [Au11(PPh3)7Cl3]. Eur. J. Org. Chem. 2013, 2013, 2002–2006.

[21]

Shichibu, Y.; Konishi, K. HCl-induced nuclearity convergence in diphosphine-protected ultrasmall gold clusters: A novel synthetic route to “magic-number” Au13 clusters. Small 2010, 6, 1216–1220.

[22]

Yanagimoto, Y.; Negishi, Y.; Fujihara, H.; Tsukuda, T. Chiroptical activity of BINAP-stabilized undecagold clusters. J. Phys. Chem. B 2006, 110, 11611–11614.

[23]

Zhang, S. S.; Feng, L.; Senanayake, R. D.; Aikens, C. M.; Wang, X. P.; Zhao, Q. Q.; Tung, C. H.; Sun, D. Diphosphine-protected ultrasmall gold nanoclusters: Opened icosahedral Au13 and heart-shaped Au8 clusters. Chem. Sci. 2018, 9, 1251–1258.

[24]

Shinjo, N.; Takano, S.; Tsukuda, T. Effects of π-electron systems on optical activity of Au11 clusters protected by chiral diphosphines. Bull. Korean Chem. Soc. 2021, 42, 1265–1268.

[25]

Si, W. D.; Li, Y. Z.; Zhang, S. S.; Wang, S. N.; Feng, L.; Gao, Z. Y.; Tung, C. H.; Sun, D. Toward controlled syntheses of diphosphine-protected homochiral gold nanoclusters through precursor engineering. ACS Nano 2021, 15, 16019–16029.

[26]

Gao, Y. L.; Bi, S. Q.; Wang, Y. F.; Li, J.; Su, T.; Gao, X. C. Co-ligand triphenylphosphine/alkynyl-stabilized undecagold nanocluster with a capped crown structure. RSC Adv. 2022, 12, 11047–11051.

[27]

Sugiuchi, M.; Shichibu, Y.; Nakanishi, T.; Hasegawa, Y.; Konishi, K. Cluster-π electronic interaction in a superatomic Au13 cluster bearing σ-bonded acetylide ligands. Chem. Commun. 2015, 51, 13519–13522.

[28]

Li, Y. Z.; Ganguly, R.; Hong, K. Y.; Li, Y. X.; Tessensohn, M. E.; Webster, R.; Leong, W. K. Stibine-protected Au13 nanoclusters: Syntheses, properties and facile conversion to GSH-protected Au25 nanocluster. Chem. Sci. 2018, 9, 8723–8730.

[29]

Patty, J. B.; Havenridge, S.; Tietje-Mckinney, D.; Siegler, M. A.; Singh, K. K.; Hajy Hosseini, R.; Ghabin, M.; Aikens, C. M.; Das, A. Crystal structure and optical properties of a chiral mixed thiolate/stibine-protected Au18 cluster. J. Am. Chem. Soc. 2022, 144, 478–484.

[30]

Kang, X.; Song, Y. B.; Deng, H. J.; Zhang, J.; Liu, B. J.; Pan, C. S.; Zhu, M. Z. Ligand-induced change of the crystal structure and enhanced stability of the Au11 nanocluster. RSC Adv. 2015, 5, 66879–66885.

[31]

Narouz, M. R.; Osten, K. M.; Unsworth, P. J.; Man, R. W. Y.; Salorinne, K.; Takano, S.; Tomihara, R.; Kaappa, S.; Malola, S.; Dinh, C. T. et al. N-heterocyclic carbene-functionalized magic-number gold nanoclusters. Nat. Chem. 2019, 11, 419–425.

[32]

Luo, P.; Bai, S.; Wang, X.; Zhao, J.; Yan, Z. N.; Han, Y. F.; Zang, S. Q.; Mak, T. C. W. Tuning the magic sizes and optical properties of atomically precise bidentate N-heterocyclic carbene-protected gold nanoclusters via subtle change of N-substituents. Adv. Optical Mater. 2021, 9, 2001936.

[33]

Narouz, M. R.; Takano, S.; Lummis, P. A.; Levchenko, T. I.; Nazemi, A.; Kaappa, S.; Malola, S.; Yousefalizadeh, G.; Calhoun, L. A.; Stamplecoskie, K. G. et al. Robust, highly luminescent Au13 superatoms protected by N-heterocyclic carbenes. J. Am. Chem. Soc. 2019, 141, 14997–15002.

[34]

Yi, H.; Osten, K. M.; Levchenko, T. I.; Veinot, A. J.; Aramaki, Y.; Ooi, T.; Nambo, M.; Crudden, C. M. Synthesis and enantioseparation of chiral Au13 nanoclusters protected by bis-N-heterocyclic carbene ligands. Chem. Sci. 2021, 12, 10436–10440.

[35]

Takano, S.; Hirai, H.; Nakashima, T.; Iwasa, T.; Taketsugu, T.; Tsukuda, T. Photoluminescence of doped superatoms M@Au12 (M = Ru, Rh, Ir) homoleptically capped by (Ph2)PCH2P(Ph2): Efficient room-temperature phosphorescence from Ru@Au12. J. Am. Chem. Soc. 2021, 143, 10560–10564.

[36]

Chen, J.; Zhang, Q. F.; Bonaccorso, T. A.; Williard, P. G.; Wang, L. S. Controlling gold nanoclusters by diphospine ligands. J. Am. Chem. Soc. 2014, 136, 92–95.

[37]

Li, J. J.; Guan, Z. J.; Lei, Z.; Hu, F.; Wang, Q. M. Same magic number but different arrangement: Alkynyl-protected Au25 with D3 symmetry. Angew. Chem., Int. Ed. 2019, 58, 1083–1087.

[38]

Jin, R. X.; Liu, C.; Zhao, S.; Das, A.; Xing, H. Z.; Gayathri, C.; Xing, Y.; Rosi, N. L.; Gil, R. R.; Jin, R. C. Tri-icosahedral gold nanocluster [Au37(PPh3)10(SC2H4Ph)10X2]+: Linear assembly of icosahedral building blocks. ACS Nano 2015, 9, 8530–8536.

[39]

Song, Y. B.; Fu, F. Y.; Zhang, J.; Chai, J. S.; Kang, X.; Li, P.; Li, S. L.; Zhou, H. P.; Zhu, M. Z. The magic Au60 nanocluster: A new cluster-assembled material with five Au13 building blocks. Angew. Chem., Int. Ed. 2015, 54, 8430–8434.

[40]

Senanayake, R. D.; Akimov, A. V.; Aikens, C. M. Theoretical investigation of electron and nuclear dynamics in the [Au25(SH)18]−1 thiolate-protected gold nanocluster. J. Phys. Chem. C 2017, 121, 10653–10662.

[41]

Zheng, K.; Zhang, J. W.; Zhao, D.; Yang, Y.; Li, Z. M.; Li, G. Motif-mediated Au25(SPh)5(PPh3)10X2 nanorods with conjugated electron delocalization. Nano Res. 2019, 12, 501–507.

[42]

Qin, Z. X.; Hu, S.; Han, W. H.; Li, Z. W.; Xu, W. W.; Zhang, J. J.; Li, G. Tailoring optical and photocatalytic properties by single-Ag-atom exchange in Au13Ag12(PPh3)10Cl8 nanoclusters. Nano Res. 2022, 15, 2971–2976.

[43]

Song, Y. B.; Li, Y. W.; Zhou, M.; Liu, X.; Li, H.; Wang, H.; Shen, Y. H.; Zhu, M. Z.; Jin, R. C. Ultrabright Au@Cu14 nanoclusters: 71.3% phosphorescence quantum yield in non-degassed solution at room temperature. Sci. Adv. 2021, 7, eabd2091.

[44]

Zhang, M. M.; Dong, X. Y.; Wang, Z. Y.; Luo, X. M.; Huang, J. H.; Zang, S. Q.; Mak, T. C. W. Alkynyl-stabilized superatomic silver clusters showing circularly polarized luminescence. J. Am. Chem. Soc. 2021, 143, 6048–6053.

[45]

Xie, M. C.; Han, C. M.; Liang, Q. Q.; Zhang, J.; Xie, G. H.; Xu, H. Highly efficient sky blue electroluminescence from ligand-activated copper iodide clusters: Overcoming the limitations of cluster light-emitting diodes. Sci. Adv. 2019, 5, eaav9857.

[46]

Han, Z.; Dong, X. Y.; Luo, P.; Li, S.; Wang, Z. Y.; Zang, S. Q.; Mak, T. C. W. Ultrastable atomically precise chiral silver clusters with more than 95% quantum efficiency. Sci. Adv. 2020, 6, eaay0107.

[47]

Si, W. D.; Zhang, C. K.; Zhou, M.; Tian, W. D.; Wang, Z.; Hu, Q. S.; Song, K. P.; Feng, L.; Huang, X. Q.; Gao, Z. Y. et al. Two triplet emitting states in one emitter: Near-infrared dual-phosphorescent Au20 nanocluster. Sci. Adv. 2023, 9, eadg3587.

[48]
Luo, P.; Zhai, X. J.; Bai, S.; Si, Y. B.; Dong, X. Y.; Han, Y. F.; Zang, S. Q. Highly efficient circularly polarized luminescence from chiral Au13 clusters stabilized by enantiopure monodentate NHC ligands. Angew. Chem., Int. Ed., in press, https://doi.org/10.1002/anie.202219017.
DOI
[49]

Guan, J. X.; Wei, R.; Prlj, A.; Peng, J.; Lin, K. H.; Liu, J. T.; Han, H.; Corminboeuf, C.; Zhao, D. H.; Yu, Z. H. et al. Direct observation of aggregation-induced emission mechanism. Angew. Chem., Int. Ed. 2020, 59, 14903–14909.

[50]

Wen, X. W.; Chen, H. L.; Wu, T. M.; Yu, Z. H.; Yang, Q. R.; Deng, J. W.; Liu, Z. T.; Guo, X.; Guan, J. X.; Zhang, X. et al. Ultrafast probes of electron–hole transitions between two atomic layers. Nat. Commun. 2018, 9, 1859.

[51]

Kong, J.; Zhang, W.; Wu, Y. Z.; Zhou, M. Optical Properties of gold nanoclusters constructed from Au13 units. Aggregate 2022, 3, e207.

[52]

Wu, B.; Hu, J. H.; Cui, P.; Jiang, L.; Chen, Z. W.; Zhang, Q.; Wang, C. R.; Luo, Y. Visible-light photoexcited electron dynamics of scandium endohedral metallofullerenes: The cage symmetry and substituent effects. J. Am. Chem. Soc. 2015, 137, 8769–8774.

[53]

Liu, X.; Xu, W. W.; Huang, X. Y.; Wang, E. D.; Cai, X.; Zhao, Y.; Li, J.; Xiao, M.; Zhang, C. F.; Gao, Y. et al. De novo design of Au36(SR)24 nanoclusters. Nat. Commun. 2020, 11, 3349.

[54]

Liu, Y. J.; Kim, J.; Seo, H.; Park, S.; Chae, J. Copper(II)-catalyzed single-step synthesis of aryl thiols from aryl halides and 1, 2-ethanedithiol. Adv. Synth. Catal. 2015, 357, 2205–2212.

[55]

Yao, Q. F.; Liu, L. M.; Malola, S.; Ge, M.; Xu, H. Y.; Wu, Z. N.; Chen, T. K.; Cao, Y. T.; Matus, M. F.; Pihlajamäki, A. et al. Supercrystal engineering of atomically precise gold nanoparticles promoted by surface dynamics. Nat. Chem. 2023, 15, 230–239.

[56]

Liu, H. L.; Li, Y. H.; Sun, S.; Xin, Q.; Liu, S. H.; Mu, X. Y.; Yuan, X.; Chen, K.; Wang, H.; Varga, K. et al. Catalytically potent and selective clusterzymes for modulation of neuroinflammation through single-atom substitutions. Nat. Commun. 2021, 12, 114.

[57]

Chen, T. K.; Yao, Q. F.; Nasaruddin, R. R.; Xie, J. P. Electrospray ionization mass spectrometry: A powerful platform for noble-metal nanocluster analysis. Angew. Chem., Int. Ed. 2019, 58, 11967–11977.

[58]

Wu, Z. K.; Lanni, E.; Chen, W. Q.; Bier, M. E.; Ly, D.; Jin, R. C. High yield, large scale synthesis of thiolate-protected Ag7 clusters. J. Am. Chem. Soc. 2009, 131, 16672–16674.

[59]

Zhang, J. W.; Zhou, Y.; Zheng, K.; Abroshan, H.; Kauffman, D. R.; Sun, J. L.; Li, G. Diphosphine-induced chiral propeller arrangement of gold nanoclusters for singlet oxygen photogeneration. Nano Res. 2018, 11, 5787–5798.

[60]

Caspar, J. V.; Kober, E. M.; Sullivan, B. P.; Meyer, T. J. Application of the energy gap law to the decay of charge-transfer excited states. J. Am. Chem. Soc. 1982, 104, 630–632.

[61]

Hirai, H.; Takano, S.; Nakashima, T.; Iwasa, T.; Taketsugu, T.; Tsukuda, T. Doping-mediated energy-level engineering of M@Au12 superatoms (M = Pd, Pt, Rh, Ir) for efficient photoluminescence and photocatalysis. Angew. Chem., Int. Ed. 2022, 61, e202207290.

[62]

Dunstan, P. O. Thermochemistry of adducts of Tin(IV) bromide with heterocyclic bases. Thermochim. Acta 2003, 404, 117–123.

[63]

Chen, H. L.; Chen, X.; Deng, J. W.; Zheng, J. R. Isotropic ordering of ions in ionic liquids on the sub-nanometer scale. Chem. Sci. 2018, 9, 1464–1472.

[64]

Pensack, R. D.; Banyas, K. M.; Barbour, L. W.; Hegadorn, M.; Asbury, J. B. Ultrafast vibrational spectroscopy of charge-carrier dynamics in organic photovoltaic materials. Phys. Chem. Chem. Phys. 2009, 11, 2575–2591.

[65]

Pensack, R. D.; Asbury, J. B. Barrierless free carrier formation in an organic photovoltaic material measured with ultrafast vibrational spectroscopy. J. Am. Chem. Soc. 2009, 131, 15986–15987.

[66]

Xiao, D. Q.; Prémont-Schwarz, M.; Nibbering, E. T. J.; Batista, V. S. Ultrafast vibrational frequency shifts induced by electronic excitations: Naphthols in low dielectric media. J. Phys. Chem. A 2012, 116, 2775–2790.

[67]

Li, J.; Wang, P.; Pei, Y. Ligand shell isomerization induces different fluorescence origins of two Au28 nanoclusters. J. Phys. Chem. Lett. 2022, 13, 3718–3725.

[68]

Dong, X. Y.; Si, Y. B.; Yang, J. S.; Zhang, C.; Han, Z.; Luo, P.; Wang, Z. Y.; Zang, S. Q.; Mak, T. C. W. Ligand engineering to achieve enhanced ratiometric oxygen sensing in a silver cluster-based metal-organic framework. Nat. Commun. 2020, 11, 3678.

File
12274_2023_5817_MOESM1_ESM.pdf (4.5 MB)
12274_2023_5817_MOESM2_ESM.pdf (118.1 KB)
12274_2023_5817_MOESM3_ESM.pdf (141.3 KB)
12274_2023_5817_MOESM4_ESM.pdf (91.9 KB)
12274_2023_5817_MOESM5_ESM.cif (3 MB)
12274_2023_5817_MOESM6_ESM.cif (3.6 MB)
12274_2023_5817_MOESM7_ESM.cif (622.9 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 28 March 2023
Revised: 04 May 2023
Accepted: 07 May 2023
Published: 22 June 2023
Issue date: August 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. U21A20277, 92061201, 21825106, 21975065, 12174012, 22203006, and 22103072) and Zhengzhou University. The authors thank for the support of parallel high performance computing of National Supercomputing Center in Zhengzhou.

Return