Journal Home > Volume 16 , Issue 10

Carbon source precursor is a critical factor governing chemical vapor deposition growth of graphene films. Methane (CH4), has been the most commonly used precursor in the last decade, but it presents challenges in terms of decomposition efficiency and growth rate. Here we thoroughly evaluated acetylene (C2H2), a precursor that is probably for providing carbon dimer (C2) species, for fast growth of large-scale graphene films. We find that the graphene growth behaviors fueled by C2H2 exhibit unconventional localized growth behavior with significant advantages in terms of high growth rate, which mainly ascribe to the as-decomposed C2 species. Therefore, a C2-fueled scanning growth strategy is proposed, and the fast scanning growth rate of 40 cm/min was experimentally demonstrated. This growth strategy is compatible with the approach of unidirectional growth of single-crystal graphene films, and the as-grown graphene films are of high-quality. This work demonstrates a reliable and promising strategy for the rapid synthesis of high-quality graphene film and may pave the avenue to cost-effective mass production of graphene materials in the roll-to-roll system.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Fast scanning growth of high-quality graphene films on Cu foils fueled by dimeric carbon precursor

Show Author's information Heng Chen1,2,§Xiucai Sun1,2,§Xiaofeng Song2,3Buhang Chen2,4Ziteng Ma1,2Wanjian Yin2,4( )Luzhao Sun2( )Zhongfan Liu1,2,4( )
Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
Beijing Graphene Institute, Beijing 100095, China
College of Materials Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
College of Energy, Soochow Institute for Energy and Materials InnovationS (SIEMIS), Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, SUDA-BGI Collaborative Innovation Center, Soochow University, Suzhou 215006, China

§ Heng Chen and Xiucai Sun contributed equally to this work.

Abstract

Carbon source precursor is a critical factor governing chemical vapor deposition growth of graphene films. Methane (CH4), has been the most commonly used precursor in the last decade, but it presents challenges in terms of decomposition efficiency and growth rate. Here we thoroughly evaluated acetylene (C2H2), a precursor that is probably for providing carbon dimer (C2) species, for fast growth of large-scale graphene films. We find that the graphene growth behaviors fueled by C2H2 exhibit unconventional localized growth behavior with significant advantages in terms of high growth rate, which mainly ascribe to the as-decomposed C2 species. Therefore, a C2-fueled scanning growth strategy is proposed, and the fast scanning growth rate of 40 cm/min was experimentally demonstrated. This growth strategy is compatible with the approach of unidirectional growth of single-crystal graphene films, and the as-grown graphene films are of high-quality. This work demonstrates a reliable and promising strategy for the rapid synthesis of high-quality graphene film and may pave the avenue to cost-effective mass production of graphene materials in the roll-to-roll system.

Keywords: graphene film, chemical vapor deposition, fast growth, carbon dimer, roll-to-roll production

References(42)

[1]

Novoselov, K. S.; Fal’ko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K. A roadmap for graphene. Nature 2012, 490, 192–200.

[2]

Chang, C.; Chen, W.; Chen, Y.; Chen, Y. H.; Chen, Y.; Ding, F.; Fan, C. H.; Fan, H. J.; Fan, Z. X.; Gong, C. et al. Recent progress on two-dimensional materials. Acta Phys. Chim. Sin. 2021, 37, 2108017.

[3]

Lin, L.; Peng, H. L.; Liu, Z. F. Synthesis challenges for graphene industry. Nat. Mater. 2019, 18, 520–524.

[4]

Lin, L.; Deng, B.; Sun, J. Y.; Peng, H. L.; Liu, Z. F. Bridging the gap between reality and ideal in chemical vapor deposition growth of graphene. Chem. Rev. 2018, 118, 9281–9343.

[5]

Sun, L. Z.; Yuan, G. W.; Gao, L. B.; Yang, J.; Chhowalla, M.; Gharahcheshmeh, M. H.; Gleason, K. K.; Choi, Y. S.; Hong, B. H.; Liu, Z. F. Chemical vapour deposition. Nat. Rev. Methods Primers 2021, 1, 5.

[6]

Li, X. S.; Cai, W. W.; An, J.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312–1314.

[7]

Kairi, M. I.; Khavarian, M.; Abu Bakar, S.; Vigolo, B.; Mohamed, A. R. Recent trends in graphene materials synthesized by CVD with various carbon precursors. J. Mater. Sci. 2018, 53, 851–879.

[8]

Li, P.; Li, Z. Y. Theoretical insights into the thermodynamics and kinetics of graphene growth on copper surfaces. J. Phys. Chem. C 2020, 124, 16233–16247.

[9]

Wang, X. L.; Yuan, Q. H.; Li, J.; Ding, F. The transition metal surface dependent methane decomposition in graphene chemical vapor deposition growth. Nanoscale 2017, 9, 11584–11589.

[10]

Li, Z. C.; Zhang, W. H.; Fan, X. D.; Wu, P.; Zeng, C. G.; Li, Z. Y.; Zhai, X. F.; Yang, J. L.; Hou, J. G. Graphene thickness control via gas-phase dynamics in chemical vapor deposition. J. Phys. Chem. C 2012, 116, 10557–10562.

[11]

Sun, L. Z.; Chen, B. H.; Wang, W. D.; Li, Y. L. Z.; Zeng, X. Z.; Liu, H. Y.; Liang, Y.; Zhao, Z. Y.; Cai, A. L.; Zhang, R. et al. Toward epitaxial growth of misorientation-free graphene on Cu(111) foils. ACS Nano 2022, 16, 285–294.

[12]

Deng, B.; Xin, Z. W.; Xue, R. W.; Zhang, S. S.; Xu, X. Z.; Gao, J.; Tang, J. L.; Qi, Y.; Wang, Y. N.; Zhao, Y. et al. Scalable and ultrafast epitaxial growth of single-crystal graphene wafers for electrically tunable liquid-crystal microlens arrays. Sci. Bull. 2019, 64, 659–668.

[13]

Wu, T. R.; Zhang, X. F.; Yuan, Q. H.; Xue, J. C.; Lu, G. Y.; Liu, Z. H.; Wang, H. S.; Wang, H. M.; Ding, F.; Yu, Q. K. et al. Fast growth of inch-sized single-crystalline graphene from a controlled single nucleus on Cu-Ni alloys. Nat. Mater. 2016, 15, 43–47.

[14]

Liu, C.; Xu, X. Z.; Qiu, L.; Wu, M. H.; Qiao, R. X.; Wang, L.; Wang, J. H.; Niu, J. J.; Liang, J.; Zhou, X. et al. Kinetic modulation of graphene growth by fluorine through spatially confined decomposition of metal fluorides. Nat. Chem. 2019, 11, 730–736.

[15]

Xu, X. Z.; Zhang, Z. H.; Qiu, L.; Zhuang, J. N.; Zhang, L.; Wang, H.; Liao, C. N.; Song, H. D.; Qiao, R. X.; Gao, P. et al. Ultrafast growth of single-crystal graphene assisted by a continuous oxygen supply. Nat. Nanotechnol. 2016, 11, 930–935.

[16]

Mohsin, A.; Liu, L.; Liu, P. Z.; Deng, W.; Ivanov, I. N.; Li, G. L.; Dyck, O. E.; Duscher, G.; Dunlap, J. R.; Xiao, K. et al. Synthesis of millimeter-size hexagon-shaped graphene single crystals on resolidified copper. ACS Nano 2013, 7, 8924–8931.

[17]

Geng, D. C.; Wu, B.; Guo, Y. L.; Huang, L. P.; Xue, Y. Z.; Chen, J. Y.; Yu, G.; Jiang, L.; Hu, W. P.; Liu, Y. Q. Uniform hexagonal graphene flakes and films grown on liquid copper surface. Proc. Natl. Acad. Sci. USA 2012, 109, 7992–7996.

[18]

Chen, Z. L.; Xie, C. Y.; Wang, W. D.; Zhao, J. P.; Liu, B. Y.; Shan, J. Y.; Wang, X. Y.; Hong, M.; Lin, L.; Huang, L. et al. Direct growth of wafer-scale highly oriented graphene on sapphire. Sci. Adv. 2021, 7, eabk0115.

[19]

Li, X. S.; Cai, W. W.; Colombo, L.; Ruoff, R. S. Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano Lett. 2009, 9, 4268–4272.

[20]

Shu, H. B.; Tao, X. M.; Ding, F. What are the active carbon species during graphene chemical vapor deposition growth. Nanoscale 2015, 7, 1627–1634.

[21]

Li, P.; Li, Z. Y.; Yang, J. L. Dominant kinetic pathways of graphene growth in chemical vapor deposition: The role of hydrogen. J. Phys. Chem. C 2017, 121, 25949–25955.

[22]

Sun, X. C.; Su, Z.; Zhang, J.; Liu, X. Z.; Li, Y. L.; Yu, F. P.; Cheng, X. F.; Zhao, X. Graphene nucleation preference at CuO defects rather than Cu2O on Cu(111): A combination of DFT calculation and experiment. ACS Appl. Mater. Interfaces 2018, 10, 43156–43165.

[23]

Wu, P.; Zhang, Y.; Cui, P.; Li, Z. Y.; Yang, J. L.; Zhang, Z. Y. Carbon dimers as the dominant feeding species in epitaxial growth and morphological phase transition of graphene on different Cu substrates. Phys. Rev. Lett. 2015, 114, 216102.

[24]

Wang, L.; Zhang, X. Y.; Chan, H. L. W.; Yan, F.; Ding, F. Formation and healing of vacancies in graphene chemical vapor deposition (CVD) growth. J. Am. Chem. Soc. 2013, 135, 4476–4482.

[25]

Sun, X. C.; Luo, X. Y.; Li, Y. L.; Yu, F. P.; Zhao, X. Effect and mechanism of hydrogen-assisted sulfur intercalation for decoupling graphene from Cu(111) substrate: A first-principles study. Appl. Surf. Sci. 2021, 567, 150866.

[26]

Hao, Y. F.; Bharathi, M. S.; Wang, L.; Liu, Y. Y.; Chen, H.; Nie, S.; Wang, X. H.; Chou, H.; Tan, C.; Fallahazad, B. et al. The role of surface oxygen in the growth of large single-crystal graphene on copper. Science 2013, 342, 720–723.

[27]

Hesjedal, T. Continuous roll-to-roll growth of graphene films by chemical vapor deposition. Appl. Phys. Lett. 2011, 98, 133106.

[28]

Yamada, T.; Ishihara, M.; Kim, J.; Hasegawa, M.; Iijima, S. A roll-to-roll microwave plasma chemical vapor deposition process for the production of 294 mm width graphene films at low temperature. Carbon 2012, 50, 2615–2619.

[29]

Kobayashi, T.; Bando, M.; Kimura, N.; Shimizu, K.; Kadono, K.; Umezu, N.; Miyahara, K.; Hayazaki, S.; Nagai, S.; Mizuguchi, Y. et al. Production of a 100-m-long high-quality graphene transparent conductive film by roll-to-roll chemical vapor deposition and transfer process. Appl. Phys. Lett. 2013, 102, 023112.

[30]

Polsen, E. S.; McNerny, D. Q.; Viswanath, B.; Pattinson, S. W.; Hart, A. J. High-speed roll-to-roll manufacturing of graphene using a concentric tube CVD reactor. Sci. Rep. 2015, 5, 10257.

[31]

Chandrashekar, B. N.; Deng, B.; Smitha, A. S.; Chen, Y. B.; Tan, C. W.; Zhang, H. X.; Peng, H. L.; Liu, Z. F. Roll-to-roll green transfer of CVD graphene onto plastic for a transparent and flexible triboelectric nanogenerator. Adv. Mater. 2015, 27, 5210–5216.

[32]

Zhong, G. F.; Wu, X. Y.; D’Arsie, L.; Teo, K. B. K.; Rupesinghe, N. L.; Jouvray, A.; Robertson, J. Growth of continuous graphene by open roll-to-roll chemical vapor deposition. Appl. Phys. Lett. 2016, 109, 193103.

[33]

Kidambi, P. R.; Mariappan, D. D.; Dee, N. T.; Vyatskikh, A.; Zhang, S.; Karnik, R.; Hart, A. J. A scalable route to nanoporous large-area atomically thin graphene membranes by roll-to-roll chemical vapor deposition and polymer support casting. ACS Appl. Mater. Interfaces 2018, 10, 10369–10378.

[34]

Jo, I.; Park, S.; Kim, D.; Moon, J. S.; Park, W. B.; Kim, T. H.; Kang, J. H.; Lee, W.; Kim, Y.; Lee, D. N. et al. Tension-controlled single-crystallization of copper foils for roll-to-roll synthesis of high-quality graphene films. 2D Mater. 2018, 5, 024002.

[35]

Liang, M. H.; Qian, L. X.; Hou, Y. T.; Li, J.; Shen, C. Q.; Qing, F.; Li, X. S. Investigation on graphene growth by roll-to-roll chemical vapor deposition. Sci. China Mater. 2022, 65, 1042–1048.

[36]

Dong, J. C.; Zhang, L. N.; Dai, X. Y.; Ding, F. The epitaxy of 2D materials growth. Nat. Commun. 2020, 11, 5862.

[37]

Yao, W. Q.; Zhang, J. N.; Ji, J.; Yang, H.; Zhou, B. B.; Chen, X.; Bøggild, P.; Jepsen, P. U.; Tang, J. L.; Wang, F. Y. et al. Bottom–up-etching-mediated synthesis of large-scale pure monolayer graphene on cyclic-polishing-annealed Cu(111). Adv. Mater. 2022, 34, 2108608.

[38]

Luo, D.; Wang, M. H.; Li, Y. Q.; Kim, C.; Yu, K. M.; Kim, Y.; Han, H. J.; Biswal, M.; Huang, M.; Kwon, Y. et al. Adlayer-free large-area single crystal graphene grown on a Cu(111) foil. Adv. Mater. 2019, 31, 1903615.

[39]

Lee, J. H.; Lee, E. K.; Joo, W. J.; Jang, Y.; Kim, B. S.; Lim, J. Y.; Choi, S. H.; Ahn, S. J.; Ahn, J. R.; Park, M. H. et al. Wafer-scale growth of single-crystal monolayer graphene on reusable hydrogen-terminated germanium. Science 2014, 344, 286–289.

[40]

Sun, L. Z.; Wang, Z. H.; Wang, Y. C.; Zhao, L.; Li, Y. L. Z.; Chen, B. H.; Huang, S. H.; Zhang, S. S.; Wang, W. D.; Pei, D. et al. Hetero-site nucleation for growing twisted bilayer graphene with a wide range of twist angles. Nat. Commun. 2021, 12, 2391.

[41]

Nguyen, V. L.; Shin, B. G.; Duong, D. L.; Kim, S. T.; Perello, D.; Lim, Y. J.; Yuan, Q. H.; Ding, F.; Jeong, H. Y.; Shin, H. S. et al. Seamless stitching of graphene domains on polished copper (111) foil. Adv. Mater. 2015, 27, 1376–1382.

[42]

Xu, X. Z.; Zhang, Z. H.; Dong, J. C.; Yi, D.; Niu, J. J.; Wu, M. H.; Lin, L.; Yin, R. K.; Li, M. Q.; Zhou, J. Y. et al. Ultrafast epitaxial growth of metre-sized single-crystal graphene on industrial Cu foil. Sci. Bull. 2017, 62, 1074–1080.

File
12274_2023_5814_MOESM1_ESM.pdf (3.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 28 February 2023
Revised: 20 April 2023
Accepted: 07 May 2023
Published: 22 June 2023
Issue date: October 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. T2188101) and the Beijing National Laboratory for Molecular Science (No. BNLMS-CXTD-202001). The authors thank Vacuum Interconnected Nanotech Workstation (NANO-X) of Suzhou Institute of Nano-Tech and Nano-Bionics for the help of characterization of samples with LEED.

Return