Journal Home > Volume 16 , Issue 8

Single-atom catalysts (SACs) have received considerable attention in hydrogenation of nitroaromatic compounds to aromatic amines. In order to enhance the exposure of single atoms and overcome the mass transfer limitation, construction of hierarchical porous supports for single atoms is highly desirable. Herein, we report a straightforward method to synthesize Co single-atoms supported on a hollow-on-hollow structured carbon monolith (Co1/HOHC-M) by pyrolysis of α-cellulose monolith loaded with PS-core@ZnCo-zeolite imidazolate frameworks-shell nanospheres (PS@Zn-ZIFs/α-cellulose). The hollow-on-hollow structure consists of a large hollow void with a diameter of ~ 290 nm (derived from the decomposition of polystyrene (PS) nanospheres) and a thin shell with hollow spherical pores with a diameter of ~ 10 nm (derived from the evaporation of ZnO nanoparticles that are in-situ formed during pyrolysis in the presence of CO2 from α-cellulose decomposition). Benefitting from the hierarchically porous architecture, the Co1/HOHC-M exhibits excellent catalytic performance (reaction rate of 421.6 mmol·gCo−1·h−1) in the transfer hydrogenation of nitrobenzene to aniline, outperforming the powdered sample of Co1/HCS without the hollow spherical mesopores (reaction rate of 353.8 mmol·gCo−1·h−1). It is expected that this strategy could be well extended in heterogeneous catalysis, given the wide applications of porous carbon-supported single-atom catalysts.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Cobalt single atoms supported on monolithic carbon with a hollow-on-hollow architecture for efficient transfer hydrogenations

Show Author's information Xiangyi Gong1,2De-Chang Li2( )Qian Zhang2,3Wenquan Wang2,3Zhengbin Tian2Ge Su1Minghua Huang1( )Guang-Hui Wang2,3( )
School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

Single-atom catalysts (SACs) have received considerable attention in hydrogenation of nitroaromatic compounds to aromatic amines. In order to enhance the exposure of single atoms and overcome the mass transfer limitation, construction of hierarchical porous supports for single atoms is highly desirable. Herein, we report a straightforward method to synthesize Co single-atoms supported on a hollow-on-hollow structured carbon monolith (Co1/HOHC-M) by pyrolysis of α-cellulose monolith loaded with PS-core@ZnCo-zeolite imidazolate frameworks-shell nanospheres (PS@Zn-ZIFs/α-cellulose). The hollow-on-hollow structure consists of a large hollow void with a diameter of ~ 290 nm (derived from the decomposition of polystyrene (PS) nanospheres) and a thin shell with hollow spherical pores with a diameter of ~ 10 nm (derived from the evaporation of ZnO nanoparticles that are in-situ formed during pyrolysis in the presence of CO2 from α-cellulose decomposition). Benefitting from the hierarchically porous architecture, the Co1/HOHC-M exhibits excellent catalytic performance (reaction rate of 421.6 mmol·gCo−1·h−1) in the transfer hydrogenation of nitrobenzene to aniline, outperforming the powdered sample of Co1/HCS without the hollow spherical mesopores (reaction rate of 353.8 mmol·gCo−1·h−1). It is expected that this strategy could be well extended in heterogeneous catalysis, given the wide applications of porous carbon-supported single-atom catalysts.

Keywords: nitrobenzene, transfer hydrogenation, hollow-on-hollow, Co single-atoms

References(64)

[1]

Zhang, L. L.; Zhou, M. X.; Wang, A. Q.; Zhang, T. Selective hydrogenation over supported metal catalysts: From nanoparticles to single atoms. Chem. Rev. 2020, 120, 683–733.

[2]

Guan, Q. Q.; Zhu, C. W.; Lin, Y.; Vovk, E. I.; Zhou, X. H.; Yang, Y.; Yu, H. C.; Cao, L. N.; Wang, H. W.; Zhang, X. H. et al. Bimetallic monolayer catalyst breaks the activity-selectivity trade-off on metal particle size for efficient chemoselective hydrogenations. Nat. Catal. 2021, 4, 840–849.

[3]

Wang, Y.; Qin, R. X.; Wang, Y. K.; Ren, J.; Zhou, W. T.; Li, L. Y.; Ming, J.; Zhang, W. Y.; Fu, G.; Zheng, N. F. Chemoselective hydrogenation of nitroaromatics at the nanoscale iron(III)-OH-platinum interface. Angew. Chem., Int. Ed. 2020, 59, 12736–12740.

[4]

Yang, F.; Wang, M. J.; Liu, W.; Yang, B.; Wang, Y.; Luo, J.; Tang, Y. S.; Hou, L. Q.; Li, Y.; Li, Z. H. et al. Atomically dispersed Ni as the active site towards selective hydrogenation of nitroarenes. Green Chem. 2019, 21, 704–711.

[5]

Guo, C. Y.; Liang, C. H.; Qin, X. P.; Gu, Y. J.; Gao, P.; Shao, M. H.; Wong, W. T. Zeolitic imidazolate framework cores decorated with Pd nanoparticles and coated further with metal-organic framework shells (ZIF-8@Pd@MOF-74) as nanocatalysts for chemoselective hydrogenation reactions. ACS Appl. Nano Mater. 2020, 3, 7242–7251.

[6]

Tian, S. B.; Hu, M.; Xu, Q.; Gong, W. B.; Chen, W. X.; Yang, J. R.; Zhu, Y. Q.; Chen, C.; He, J.; Liu, Q. et al. Single-atom Fe with Fe1N3 structure showing superior performances for both hydrogenation and transfer hydrogenation of nitrobenzene. Sci. China Mater. 2021, 64, 642–650.

[7]

Li, L. Y.; Li, Y. X.; Jiao, L.; Liu, X. S.; Ma, Z. T.; Zeng, Y. J.; Zheng, X. S.; Jiang, H. L. Light-induced selective hydrogenation over PdAg nanocages in hollow MOF microenvironment. J. Am. Chem. Soc. 2022, 144, 17075–17085.

[8]

Li, T. B.; Jian, X. Z.; Jiang, Q. K.; Qiao, B. T. Selective hydrogenation of nitroarenes by single-atom Pt catalyst through hydrogen transfer reaction. Top. Catal. 2022, 65, 1604–1608.

[9]

Neeli, C. K. P.; Puthiaraj, P.; Lee, Y. R.; Chung, Y. M.; Baeck, S. H.; Ahn, W. S. Transfer hydrogenation of nitrobenzene to aniline in water using Pd nanoparticles immobilized on amine-functionalized UiO-66. Catal. Today 2018, 303, 227–234.

[10]

Wu, W.; Zhang, W.; Long, Y.; Qin, J. H.; Ma, J. T. Different transfer hydrogenation pathways of halogenated nitrobenzenes catalyzed by Fe-, Co-, or Ni-based species confined in nitrogen doped carbon. Mol. Catal. 2020, 497, 111226.

[11]

Chen, Z. X.; Song, J. T.; Zhang, R. R.; Li, R. L.; Hu, Q. K.; Wei, P. P.; Xi, S. B.; Zhou, X.; Nguyen, P. T. T.; Duong, H. M. et al. Addressing the quantitative conversion bottleneck in single-atom catalysis. Nat. Commun. 2022, 13, 2807.

[12]

Jin, H. Q.; Li, P. P.; Cui, P. X.; Shi, J. A.; Zhou, W.; Yu, X. H.; Song, W. G.; Cao, C. Y. Unprecedentedly high activity and selectivity for hydrogenation of nitroarenes with single atomic Co1-N3P1 sites. Nat. Commun. 2022, 13, 723.

[13]

Zhang, G. J.; Tang, F. Y.; Wang, X.; Wang, L. Q.; Liu, Y. N. Atomically dispersed Co-S-N active sites anchored on hierarchically porous carbon for efficient catalytic hydrogenation of nitro compounds. ACS Catal. 2022, 12, 5786–5794.

[14]

Cai, G. R.; Yan, P.; Zhang, L. L.; Zhou, H. C.; Jiang, H. L. Metal-organic framework-based hierarchically porous materials: Synthesis and applications. Chem. Rev. 2021, 121, 12278–12326.

[15]

Sun, L. Z.; Lv, H.; Feng, J.; Guselnikova, O.; Wang, Y. Z.; Yamauchi, Y.; Liu, B. Noble-metal-based hollow mesoporous nanoparticles: Synthesis strategies and applications. Adv. Mater. 2022, 34, 2201954.

[16]

Brown, C. M.; Lundberg, D. J.; Lamb, J. R.; Kevlishvili, I.; Kleinschmidt, D.; Alfaraj, Y. S.; Kulik, H. J.; Ottaviani, M. F.; Oldenhuis, N. J.; Johnson, J. A. Endohedrally functionalized metal-organic cage-cross-linked polymer gels as modular heterogeneous catalysts. J. Am. Chem. Soc. 2022, 144, 13276–13284.

[17]

Tian, Z. B.; Dong, C.; Yu, Q.; Ye, R. P.; Duyar, M. S.; Liu, J.; Jiang, H. Q.; Wang, G. H. A universal nanoreactor strategy for scalable supported ultrafine bimetallic nanoparticles synthesis. Mater. Today 2020, 40, 72–81.

[18]

Zhang, F. W.; Li, J. J.; Liu, P. Z.; Li, H.; Chen, S.; Li, Z. H.; Zan, W. Y.; Guo, J. J.; Zhang, X. M. Ultra-high loading single CoN3 sites in N-doped graphene-like carbon for efficient transfer hydrogenation of nitroaromatics. J. Catal. 2021, 400, 40–49.

[19]

Fan, Y. F.; Zhuang, C. F.; Li, S. J.; Wang, Y.; Zou, X. Q.; Liu, X. T.; Huang, W. M.; Zhu, G. S. Efficient single-atom Ni for catalytic transfer hydrogenation of furfural to furfuryl alcohol. J. Mater. Chem. A 2021, 9, 1110–1118.

[20]

Chen, Y. J.; Ji, S. F.; Wang, Y. G.; Dong, J. C.; Chen, W. X.; Li, Z.; Shen, R. A.; Zheng, L. R.; Zhuang, Z. B.; Wang, D. S. et al. Isolated single iron atoms anchored on N-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2017, 56, 6937–6941.

[21]

Li, Y. X.; Lu, X. F.; Xi, S. B.; Luan, D. Y.; Wang, X.; Lou, X. W. Synthesis of N-doped highly graphitic carbon urchin-like hollow structures loaded with single-Ni atoms towards efficient CO2 electroreduction. Angew. Chem., Int. Ed. 2022, 61, e202201491.

[22]

Liu, W.; Feng, H. S.; Yang, Y. S.; Niu, Y. M.; Wang, L.; Yin, P.; Hong, S.; Zhang, B. S.; Zhang, X.; Wei, M. Highly-efficient RuNi single-atom alloy catalysts toward chemoselective hydrogenation of nitroarenes. Nat. Commun. 2022, 13, 3188.

[23]

Sun, T.; Zang, W. J.; Yan, H.; Li, J.; Zhang, Z. Q.; Bu, Y. F.; Chen, W.; Wang, J.; Lu, J.; Su, C. L. Engineering the coordination environment of single cobalt atoms for efficient oxygen reduction and hydrogen evolution reactions. ACS Catal. 2021, 11, 4498–4509.

[24]

Wu, F.; Pan, C.; He, C. T.; Han, Y. H.; Ma, W. J.; Wei, H.; Ji, W. L.; Chen, W. X.; Mao, J. J.; Yu, P. et al. Single-atom Co-N4 electrocatalyst enabling four-electron oxygen reduction with enhanced hydrogen peroxide tolerance for selective sensing. J. Am. Chem. Soc. 2020, 142, 16861–16867.

[25]

Zhang, J.; Zheng, C. Y.; Zhang, M. L.; Qiu, Y. J.; Xu, Q.; Cheong, W. C.; Chen, W. X.; Zheng, L. R.; Gu, L.; Hu, Z. P. et al. Controlling N-doping type in carbon to boost single-atom site Cu catalyzed transfer hydrogenation of quinoline. Nano Res. 2020, 13, 3082–3087.

[26]

Zhao, C. X.; Liu, J. N.; Wang, J.; Wang, C. D.; Guo, X.; Li, X. Y.; Chen, X.; Song, L.; Li, B. Q.; Zhang, Q. A clicking confinement strategy to fabricate transition metal single-atom sites for bifunctional oxygen electrocatalysis. Sci. Adv. 2022, 8, eabn5091.

[27]

Zhao, X.; Wang, F. L.; Kong, X. P.; Fang, R. Q.; Li, Y. W. Dual-metal hetero-single-atoms with different coordination for efficient synergistic catalysis. J. Am. Chem. Soc. 2021, 143, 16068–16077.

[28]

Chen, Y. J.; Gao, R.; Ji, S. F.; Li, H. J.; Tang, K.; Jiang, P.; Hu, H. B.; Zhang, Z. D.; Hao, H. G.; Qu, Q. Y. et al. Atomic-level modulation of electronic density at cobalt single-atom sites derived from metal-organic frameworks: Enhanced oxygen reduction performance. Angew. Chem., Int. Ed. 2021, 60, 3212–3221.

[29]

Chen, Y. J.; Jiang, B.; Hao, H. G.; Li, H. J.; Qiu, C. Y.; Liang, X.; Qu, Q. Y.; Zhang, Z. D.; Gao, R.; Duan, D. M. et al. Atomic-level regulation of cobalt single-atom nanozymes: Engineering high-efficiency catalase mimics. Angew. Chem., Int. Ed. 2023, 62, e202301879.

[30]

Li, W. H.; Ye, B. C.; Yang, J. R.; Wang, Y.; Yang, C. J.; Pan, Y. M.; Tang, H. T.; Wang, D. S.; Li, Y. D. A single-atom cobalt catalyst for the fluorination of acyl chlorides at parts-per-million catalyst loading. Angew. Chem., Int. Ed. 2022, 61, e202209749.

[31]

Chen, Y. Z.; Wang, C. M.; Wu, Z. Y.; Xiong, Y. J.; Xu, Q.; Yu, S. H.; Jiang, H. L. From bimetallic metal-organic framework to porous carbon: High surface area and multicomponent active dopants for excellent electrocatalysis. Adv. Mater. 2015, 27, 5010–5016.

[32]

Guo, Y. C.; Liu, F.; Feng, L.; Wang, X. M.; Zhang, X.; Liang, J. S. Single Co atoms anchored on nitrogen-doped hierarchically ordered porous carbon for selective hydrogenation of quinolines and efficient oxygen reduction. Chem. Eng. J. 2022, 429, 132150.

[33]

Han, X. P.; Ling, X. F.; Wang, Y.; Ma, T. Y.; Zhong, C.; Hu, W. B.; Deng, Y. D. Generation of nanoparticle, atomic-cluster, and single-atom cobalt catalysts from zeolitic imidazole frameworks by spatial isolation and their use in zinc-air batteries. Angew. Chem., Int. Ed. 2019, 58, 5359–5364.

[34]

Li, L.; Chen, Y. J.; Xing, H. R.; Li, N.; Xia, J. W.; Qian, X. Y.; Xu, H.; Li, W. Z.; Yin, F. X.; He, G. Y. et al. Single-atom Fe-N5 catalyst for high-performance zinc-air batteries. Nano Res. 2022, 15, 8056–8064.

[35]

Wang, Z.; Zhu, C.; Tan, H.; Liu, J.; Xu, L. L.; Zhang, Y. Q.; Liu, Y. P.; Zou, X. X.; Liu, Z.; Lu, X. H. Understanding the synergistic effects of cobalt single atoms and small nanoparticles: Enhancing oxygen reduction reaction catalytic activity and stability for zinc-air batteries. Adv. Funct. Mater. 2021, 31, 2104735.

[36]

Wu, C.; Zhu, C. Y.; Liu, K. K.; Yang, S. W.; Sun, Y.; Zhu, K.; Cao, Y. L.; Zhang, S.; Zhuo, S. F.; Zhang, M. et al. Nano-pyramid-type Co-ZnO/NC for hydrogen transfer cascade reaction between alcohols and nitrobenzene. Appl. Catal. B 2022, 300, 120288.

[37]

Zhou, B. J.; Liu, Y. Y.; Wu, X. L.; Liu, H.; Liu, T.; Wang, Y.; Mehdi, S.; Jiang, J. C.; Li, B. J. Wood-derived integrated air electrode with Co-N sites for rechargeable zinc-air batteries. Nano Res. 2022, 15, 1415–1423.

[38]

Li, X.; Surkus, A. E.; Rabeah, J.; Anwar, M.; Dastigir, S.; Junge, H.; Brückner, A.; Beller, M. Cobalt single-atom catalysts with high stability for selective dehydrogenation of formic acid. Angew. Chem., Int. Ed. 2020, 59, 15849–15854.

[39]

Wang, X. X.; Cullen, D. A.; Pan, Y. T.; Hwang, S.; Wang, M. Y.; Feng, Z. X.; Wang, J. Y.; Engelhard, M. H.; Zhang, H. G.; He, Y. H. et al. Nitrogen-coordinated single cobalt atom catalysts for oxygen reduction in proton exchange membrane fuel cells. Adv. Mater. 2018, 30, 1706758.

[40]

Xie, W. F.; Song, Y. K.; Li, S. J.; Li, J. B.; Yang, Y. S.; Liu, W.; Shao, M. F.; Wei, M. Single-atomic-Co electrocatalysts with self-supported architecture toward oxygen-involved reaction. Adv. Funct. Mater. 2019, 29, 1906477.

[41]

Yin, P. Q.; Yao, T.; Wu, Y.; Zheng, L. R.; Lin, Y.; Liu, W.; Ju, H. X.; Zhu, J. F.; Hong, X.; Deng, Z. X. et al. Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts. Angew. Chem., Int. Ed. 2016, 55, 10800–10805.

[42]

Doustkhah, E.; Hassandoost, R.; Khataee, A.; Luque, R.; Assadi, M. H. N. Hard-templated metal-organic frameworks for advanced applications. Chem. Soc. Rev. 2021, 50, 2927–2953.

[43]

Feng, B. B.; Guo, R.; Cai, Q. L.; Song, Y. P.; Li, N.; Fu, Y. H.; Chen, D. L.; Zhang, J. W.; Zhu, W. D.; Zhang, F. M. Construction of isolated Ni sites on nitrogen-doped hollow carbon spheres with Ni-N3 configuration for enhanced reduction of nitroarenes. Nano Res. 2022, 15, 6001–6009.

[44]

Guan, B. Y.; Yu, L.; Lou, X. W. Formation of single-holed cobalt/N-doped carbon hollow particles with enhanced electrocatalytic activity toward oxygen reduction reaction in alkaline media. Adv. Sci. 2017, 4, 1700247.

[45]

Yang, H. Z.; Wang, X. Secondary-component incorporated hollow MOFs and derivatives for catalytic and energy-related applications. Adv. Mater. 2019, 31, 1800743.

[46]

Yang, Q. H.; Yang, C. C.; Lin, C. H.; Jiang, H. L. Metal-organic-framework-derived hollow N-doped porous carbon with ultrahigh concentrations of single Zn atoms for efficient carbon dioxide conversion. Angew. Chem., Int. Ed. 2019, 58, 3511–3515.

[47]

Ye, C. L.; Chen, X. J.; Li, S. S.; Feng, B. B.; Fu, Y. H.; Zhang, F. M.; Chen, D. L.; Zhu, W. D. PdZn intermetallic compound stabilized on ZnO/nitrogen-decorated carbon hollow spheres for catalytic semihydrogenation of alkynols. Nano Res. 2022, 15, 3090–3098.

[48]

Zhang, F.; Wei, Y. Y.; Wu, X. T.; Jiang, H. Y.; Wang, W.; Li, H. X. Hollow zeolitic imidazolate framework nanospheres as highly efficient cooperative catalysts for [3 + 3] cycloaddition reactions. J. Am. Chem. Soc. 2014, 136, 13963–13966.

[49]

Li, J. J.; Xia, W.; Tang, J.; Gao, Y.; Jiang, C.; Jia, Y. N.; Chen, T.; Hou, Z. F.; Qi, R. J.; Jiang, D. et al. Metal-organic framework-derived graphene mesh: A robust scaffold for highly exposed Fe-N4 active sites toward an excellent oxygen reduction catalyst in acid media. J. Am. Chem. Soc. 2022, 144, 9280–9291.

[50]

Han, X.; Zhang, T. Y.; Wang, X. H.; Zhang, Z. D.; Li, Y. P.; Qin, Y. J.; Wang, B. Q.; Han, A. J.; Liu, J. F. Hollow mesoporous atomically dispersed metal-nitrogen-carbon catalysts with enhanced diffusion for catalysis involving larger molecules. Nat. Commun. 2022, 13, 2900.

[51]

Lee, G.; Na, W.; Kim, J.; Lee, S.; Jang, J. Improved electrochemical performances of MOF-derived Ni-Co layered double hydroxide complexes using distinctive hollow-in-hollow structures. J. Mater. Chem. A 2019, 7, 17637–17647.

[52]

Yu, L.; Yang, J. F.; Lou, X. W. Formation of CoS2 nanobubble hollow prisms for highly reversible lithium storage. Angew. Chem., Int. Ed. 2016, 55, 13422–13426.

[53]

Zhang, J. T.; Zhang, L. P.; Wang, X. D.; Zhu, W.; Zhuang, Z. B. A hierarchical hollow-on-hollow NiCoP electrocatalyst for efficient hydrogen evolution reaction. Chem. Commun. 2020, 56, 90–93.

[54]

Zhang, X. F.; Wang, Z. G.; Ding, M. L.; Feng, Y.; Yao, J. F. Advances in cellulose-metal organic framework composites: Preparation and applications. J. Mater. Chem. A 2021, 9, 23353–23363.

[55]

Cui, J.; Xu, X. R.; Yang, L. Y.; Chen, C. T.; Qian, J. S.; Chen, X.; Sun, D. P. Soft foam-like UiO-66/polydopamine/bacterial cellulose composite for the removal of aspirin and tetracycline hydrochloride. Chem. Eng. J. 2020, 395, 125174.

[56]

Chen, M. W.; Liu, T.; Zhang, X. B.; Zhang, R. Q.; Tang, S.; Yuan, Y. H.; Xie, Z. J.; Liu, Y. J.; Wang, H.; Fedorovich, K. V. et al. Photoinduced enhancement of uranium extraction from seawater by MOF/black phosphorus quantum dots heterojunction anchored on cellulose nanofiber aerogel. Adv. Funct. Mater. 2021, 31, 2100106.

[57]

Abramova, A.; Couzon, N.; Leloire, M.; Nerisson, P.; Cantrel, L.; Royer, S.; Loiseau, T.; Volkringer, C.; Dhainaut, J. Extrusion-spheronization of UiO-66 and UiO-66_NH2 into robust-shaped solids and their use for gaseous molecular iodine, xenon, and krypton adsorption. ACS Appl. Mater. Interfaces 2022, 14, 10669–10680.

[58]

Ni, W. P.; Liu, Z. X.; Guo, X. G.; Zhang, Y.; Ma, C.; Deng, Y. J.; Zhang, S. G. Dual single-cobalt atom-based carbon electrocatalysts for efficient CO2-to-syngas conversion with industrial current densities. Appl. Catal. B 2021, 291, 120092.

[59]

Wu, J. B.; Zhou, H.; Li, Q.; Chen, M.; Wan, J.; Zhang, N.; Xiong, L. K.; Li, S.; Xia, B. Y.; Feng, G. et al. Densely populated isolated single Co-N site for efficient oxygen electrocatalysis. Adv. Energy Mater. 2019, 9, 1900149.

[60]

Zhang, F.; Ma, J.; Tan, Y.; Yu, G.; Qin, H. X.; Zheng, L. R.; Liu, H. B.; Li, R. Construction of porphyrin porous organic cage as a support for single cobalt atoms for photocatalytic oxidation in visible light. ACS Catal. 2022, 12, 5827–5833.

[61]

Zhu, Y. Q.; Sun, W. M.; Chen, W. X.; Cao, T.; Xiong, Y.; Luo, J.; Dong, J. C.; Zheng, L. R.; Zhang, J.; Wang, X. L. et al. Scale-up biomass pathway to cobalt single-site catalysts anchored on N-doped porous carbon nanobelt with ultrahigh surface area. Adv. Funct. Mater. 2018, 28, 1802167.

[62]

Fei, H. F.; Long, Y. D.; Yu, H. J.; Yavitt, B. M.; Fan, W.; Ribbe, A.; Watkins, J. J. Bimodal mesoporous carbon spheres with small and ultra-large pores fabricated using amphiphilic brush block copolymer micelle templates. ACS Appl. Mater. Interfaces 2020, 12, 57322–57329.

[63]

Shen, W. Z.; Hu, T. P.; Fan, W. B. Cellulose generated-microporous carbon nanosheets with nitrogen doping. RSC Adv. 2014, 4, 9126–9132.

[64]
Wang, F. X.; Liang, L.; Shi, L.; Liu, M. S.; Sun, J. M. CO2-assisted synthesis of mesoporous carbon/C-doped ZnO composites for enhanced photocatalytic performance under visible light. Dalton Trans. 2014, 43, 16441–16449.
DOI
File
12274_2023_5813_MOESM1_ESM.pdf (3.9 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 28 February 2023
Revised: 03 May 2023
Accepted: 06 May 2023
Published: 29 June 2023
Issue date: August 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 52100169) and the Natural Science Foundation of Shandong Province (Nos. ZR2020QB196, ZR2022ZD30, and ZR2020QB053).

Return