Journal Home > Volume 16 , Issue 8

It is of great significance to develop high-temperature anhydrous proton conducting materials. Herein, we report a new strategy to significantly enhance the proton conductivity of covalent organic frameworks (COFs) through expanding the dimensionality of proton conduction. Three COF-based composites, COF-1@PA, COF-2@PA, and COF-3@PA (PA: phosphoric acid), are prepared by PA doping of three COFs with similar pore sizes but different amounts of hydrophilic groups. With the increase of hydrophilic groups, COFs can load more PA because of the enhanced hydrogen–bonding interactions between PA and the frameworks. powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), and two-dimensional (2D) solid-state nuclear magnetic resonance (NMR) analyses show that PA can not only enter the channels of COF-3, but also insert into its 2D interlayers. This expands the proton conduction pathways from one-dimensional (1D) to three-dimensional (3D), which greatly improves the proton conductivity of COF-3. Meanwhile, the confinement effect of 1D channels and 2D layers of COF-3 also makes the hydrogen-bonded networks more orderly in COF-3@PA-30 (30 μL of PA loaded on COF-3). At 150 °C, COF-3@PA-30 exhibits an ultrahigh anhydrous proton conductivity of 1.4 S·cm−1, which is a record of anhydrous proton conductivity reported to date. This work develops a new strategy for increasing the proton conductivity of 2D COF materials.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Expanding the dimensionality of proton conduction enables ultrahigh anhydrous proton conductivity of phosphoric acid-doped covalent-organic frameworks

Show Author's information Qianqian Yang2Xinyu Li1Changsong Xie1Ning Liu2Jianjian Yang1Zhihui Kong1Zixi Kang1Rongming Wang1,2( )Xiyou Li1,2( )Daofeng Sun1( )
School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China

Abstract

It is of great significance to develop high-temperature anhydrous proton conducting materials. Herein, we report a new strategy to significantly enhance the proton conductivity of covalent organic frameworks (COFs) through expanding the dimensionality of proton conduction. Three COF-based composites, COF-1@PA, COF-2@PA, and COF-3@PA (PA: phosphoric acid), are prepared by PA doping of three COFs with similar pore sizes but different amounts of hydrophilic groups. With the increase of hydrophilic groups, COFs can load more PA because of the enhanced hydrogen–bonding interactions between PA and the frameworks. powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), and two-dimensional (2D) solid-state nuclear magnetic resonance (NMR) analyses show that PA can not only enter the channels of COF-3, but also insert into its 2D interlayers. This expands the proton conduction pathways from one-dimensional (1D) to three-dimensional (3D), which greatly improves the proton conductivity of COF-3. Meanwhile, the confinement effect of 1D channels and 2D layers of COF-3 also makes the hydrogen-bonded networks more orderly in COF-3@PA-30 (30 μL of PA loaded on COF-3). At 150 °C, COF-3@PA-30 exhibits an ultrahigh anhydrous proton conductivity of 1.4 S·cm−1, which is a record of anhydrous proton conductivity reported to date. This work develops a new strategy for increasing the proton conductivity of 2D COF materials.

Keywords: doping, covalent organic framework, proton conductors, anhydrous proton conduction, phosphoric acid (PA)

References(59)

[1]

Wee, J. H. Applications of proton exchange membrane fuel cell systems. Renew. Sust. Energy Rev. 2007, 11, 1720–1738.

[2]

Shin, D. W.; Guiver, M. D.; Lee, Y. M. Hydrocarbon-based polymer electrolyte membranes: Importance of morphology on ion transport and membrane stability. Chem. Rev. 2017, 117, 4759–4805.

[3]

Feng, K.; Liu, L.; Tang, B. B.; Li, N. W.; Wu, P. Y. Nafion-initiated ATRP of 1-vinylimidazole for preparation of proton exchange membranes. ACS Appl. Mater. Interfaces 2016, 8, 11516–11525.

[4]

Sarango-Ramírez, M. K.; Lim, D. W.; Kolokolov, D. I.; Khudozhitkov, A. E.; Stepanov, A. G.; Kitagawa, H. Superprotonic conductivity in metal-organic framework via solvent-free coordinative urea insertion. J. Am. Chem. Soc. 2020, 142, 6861–6865.

[5]

Liang, H. Q.; Guo, Y.; Shi, Y. S.; Peng, X. S.; Liang, B.; Chen, B. L. A light-responsive metal-organic framework hybrid membrane with high on/off photoswitchable proton conductivity. Angew. Chem., Int. Ed. 2020, 59, 7732–7737.

[6]

Ye, Y. X.; Gong, L. S.; Xiang, S. C.; Zhang, Z. J.; Chen, B. L. Metal-organic frameworks as a versatile platform for proton conductors. Adv. Mater. 2020, 32, 1907090.

[7]

Li, X. Y.; Zhang, H. C.; Hou, J.; Ou, R. W.; Zhu, Y. L.; Zhao, C.; Qian, T. Y.; Easton, C. D.; Selomulya, C.; Hill, M. R. et al. Sulfonated sub-1-nm metal-organic framework channels with ultrahigh proton selectivity. J. Am. Chem. Soc. 2020, 142, 9827–9833.

[8]

Xue, W. L.; Deng, W. H.; Chen, H.; Liu, R. H.; Taylor, J. M.; Li, Y. K.; Wang, L.; Deng, Y. H.; Li, W. H.; Wen, Y. Y. et al. MOF-directed synthesis of crystalline ionic liquids with enhanced proton conduction. Angew. Chem., Int. Ed. 2021, 60, 1290–1297.

[9]

Fan, W. D.; Ying, Y. P.; Peh, S. B.; Yuan, H. Y.; Yang, Z. Q.; Yuan, Y. D.; Shi, D. C.; Yu, X.; Kang, C. J.; Zhao, D. Multivariate polycrystalline metal-organic framework membranes for CO2/CH4 separation. J. Am. Chem. Soc. 2021, 143, 17716–17723.

[10]

Fan, W. D.; Yuan, S.; Wang, W. J.; Feng, L.; Liu, X. P.; Zhang, X. R.; Wang, X.; Kang, Z. X.; Dai, F. N.; Yuan, D. Q. et al. Optimizing multivariate metal-organic frameworks for efficient C2H2/CO2 separation. J. Am. Chem. Soc. 2020, 142, 8728–8737.

[11]

Yang, F.; Xu, G.; Dou, Y. B.; Wang, B.; Zhang, H.; Wu, H.; Zhou, W.; Li, J. R.; Chen, B. L. A flexible metal-organic framework with a high density of sulfonic acid sites for proton conduction. Nat. Energy 2017, 2, 877–883.

[12]

Xing, G. L.; Yan, T. T.; Das, S.; Ben, T.; Qiu, S. L. Synthesis of crystalline porous organic salts with high proton conductivity. Angew. Chem., Int. Ed. 2018, 57, 5345–5349.

[13]

Haubenreisser, S.; Wöste, T. H.; Martínez, C.; Ishihara, K.; Muñiz, K. Strukturell definierte molekulare hypervalente Iod-Katalysatoren für intermolekulare enantioselektive Reaktionen. Angew. Chem. 2016, 128, 422–426.

[14]

Luo, J.; Wang, J. W.; Zhang, J. H.; Lai, S.; Zhong, D. C. Hydrogen-bonded organic frameworks: Design, structures and potential applications. CrystEngComm 2018, 20, 5884–5898.

[15]

Hisaki, I.; Xin, C.; Takahashi, K.; Nakamura, T. Designing hydrogen-bonded organic frameworks (HOFs) with permanent porosity. Angew. Chem., Int. Ed. 2019, 58, 11160–11170.

[16]

Zhang, F. M.; Dong, L. Z.; Qin, J. S.; Guan, W.; Liu, J.; Li, S. L.; Lu, M.; Lan, Y. Q.; Su, Z. M.; Zhou, H. C. Effect of imidazole arrangements on proton-conductivity in metal-organic frameworks. J. Am. Chem. Soc. 2017, 139, 6183–6189.

[17]

Kim, S.; Joarder, B.; Hurd, J. A.; Zhang, J. F.; Dawson, K. W.; Gelfand, B. S.; Wong, N. E.; Shimizu, G. K. H. Achieving superprotonic conduction in metal-organic frameworks through iterative design advances. J. Am. Chem. Soc. 2018, 140, 1077–1082.

[18]

Guo, T. T.; Cheng, D. M.; Yang, J.; Xu, X. X.; Ma, J. F. Calix[4]resorcinarene-based [Co16] coordination cages mediated by isomorphous auxiliary ligands for enhanced proton conduction. Chem. Commun. 2019, 55, 6277–6280.

[19]

Luo, H. B.; Ren, Q.; Wang, P.; Zhang, J.; Wang, L. F.; Ren, X. M. High proton conductivity achieved by encapsulation of imidazole molecules into proton-conducting MOF-808. ACS Appl. Mater. Interfaces 2019, 11, 9164–9171.

[20]

Yusran, Y.; Fang, Q. R.; Qiu, S. L. Postsynthetic covalent modification in covalent organic frameworks. Isr. J. Chem. 2018, 58, 971–984.

[21]

Lohse, M. S.; Bein, T. Covalent organic frameworks: Structures, synthesis, and applications. Adv. Funct. Mater. 2018, 28, 1705553.

[22]

Jiao, J. J.; Gong, W.; Wu, X. W.; Yang, S. P.; Cui, Y. Multivariate crystalline porous materials: Synthesis, property and potential application. Coord. Chem. Rev. 2019, 385, 174–190.

[23]

Guo, Z. C.; Shi, Z. Q.; Wang, X. Y.; Li, Z. F.; Li, G. Proton conductive covalent organic frameworks. Coord. Chem. Rev. 2020, 422, 213465.

[24]

Geng, K. Y.; Arumugam, V.; Xu, H. J.; Gao, Y. N.; Jiang, D. L. Covalent organic frameworks: Polymer chemistry and functional design. Prog. Polym. Sci. 2020, 108, 101288.

[25]

Guo, J.; Jiang, D. L. Covalent organic frameworks for heterogeneous catalysis: Principle, current status, and challenges. ACS Cent. Sci. 2020, 6, 869–879.

[26]

Cui, D. L.; Perepichka, D. F.; MacLeod, J. M.; Rosei, F. Surface-confined single-layer covalent organic frameworks: Design, synthesis and application. Chem. Soc. Rev. 2020, 49, 2020–2038.

[27]

Beuerle, F.; Gole, B. Covalent organic frameworks and cage compounds: Design and applications of polymeric and discrete organic scaffolds. Angew. Chem., Int. Ed. 2018, 57, 4850–4878.

[28]

Alahakoon, S. B.; Diwakara, S. D.; Thompson, C. M.; Smaldone, R. A. Supramolecular design in 2D covalent organic frameworks. Chem. Soc. Rev. 2020, 49, 1344–1356.

[29]

Yang, C. H.; Chang, J. S.; Lee, D. J. Chemically stable covalent organic framework as adsorbent from aqueous solution: A mini-review. J. Taiwan Inst. Chem. Eng. 2020, 110, 79–91.

[30]

Su, Y.; Wan, Y. J.; Xu, H.; Otake, K. I.; Tang, X. H.; Huang, L. B.; Kitagawa, S.; Gu, C. Crystalline and stable benzofuran-linked covalent organic frameworks from irreversible cascade reactions. J. Am. Chem. Soc. 2020, 142, 13316–13321.

[31]

Huang, X.; Sun, C.; Feng, X. Crystallinity and stability of covalent organic frameworks. Sci. China Chem. 2020, 63, 1367–1390.

[32]

Guo, Y.; Zou, X. Y.; Li, W. Z.; Hu, Y.; Jin, Z. Y.; Sun, Z.; Gong, S. C.; Guo, S. Y.; Yan, F. High-density sulfonic acid-grafted covalent organic frameworks with efficient anhydrous proton conduction. J. Mater. Chem. A 2022, 10, 6499–6507.

[33]

Lu, Z. W.; Yang, C. Y.; He, L.; Hong, J.; Huang, C. H.; Wu, T.; Wang, X.; Wu, Z. F.; Liu, X. H.; Miao, Z. X. et al. Asymmetric hydrophosphonylation of imines to construct highly stable covalent organic frameworks with efficient intrinsic proton conductivity. J. Am. Chem. Soc. 2022, 144, 9624–9633.

[34]

Sahoo, R.; Mondal, S.; Pal, S. C.; Mukherjee, D.; Das, M. C. Covalent-organic frameworks (COFs) as proton conductors. Adv. Energy Mater. 2021, 11, 2102300.

[35]

Zhong, H.; Fu, Z. H.; Taylor, J. M.; Xu, G.; Wang, R. H. Inorganic acid-impregnated covalent organic gels as high-performance proton-conductive materials at subzero temperatures. Adv. Funct. Mater. 2017, 27, 1701465.

[36]

Yang, Y.; He, X. Y.; Zhang, P. H.; Andaloussi, Y. H.; Zhang, H. L.; Jiang, Z. Y.; Chen, Y.; Ma, S. Q.; Cheng, P.; Zhang, Z. J. Combined intrinsic and extrinsic proton conduction in robust covalent organic frameworks for hydrogen fuel cell applications. Angew. Chem., Int. Ed. 2020, 59, 3678–3684.

[37]

Meng, Z.; Aykanat, A.; Mirica, K. A. Proton conduction in 2D aza-fused covalent organic frameworks. Chem. Mater. 2019, 31, 819–825.

[38]

Chandra, S.; Kundu, T.; Kandambeth, S.; Babarao, R.; Marathe, Y.; Kunjir, S. M.; Banerjee, R. Phosphoric acid loaded azo (−N=N−) based covalent organic framework for proton conduction. J. Am. Chem. Soc. 2014, 136, 6570–6573.

[39]

Xu, H.; Tao, S. S.; Jiang, D. L. Proton conduction in crystalline and porous covalent organic frameworks. Nat. Mater. 2016, 15, 722–726.

[40]

Li, S.; Liu, Y. Z.; Li, L.; Liu, C. X.; Li, J. N.; Ashraf, S.; Li, P. F.; Wang, B. Enhanced proton conductivity of imidazole-doped thiophene-based covalent organic frameworks via subtle hydrogen bonding modulation. ACS Appl. Mater. Interfaces 2020, 12, 22910–22916.

[41]

Chandra, S.; Kundu, T.; Dey, K.; Addicoat, M.; Heine, T.; Banerjee, R. Interplaying intrinsic and extrinsic proton conductivities in covalent organic frameworks. Chem. Mater. 2016, 28, 1489–1494.

[42]

Tao, S. S.; Zhai, L. P.; Dinga Wonanke, A. D.; Addicoat, M. A.; Jiang, Q. H.; Jiang, D. L. Confining H3PO4 network in covalent organic frameworks enables proton super flow. Nat. Commun. 2020, 11, 1981.

[43]

Chai, S. C.; Xu, F. R.; Zhang, R. C.; Wang, X. L.; Zhai, L.; Li, X.; Qian, H. J.; Wu, L. X.; Li, H. L. Hybrid liquid-crystalline electrolytes with high-temperature-stable channels for anhydrous proton conduction. J. Am. Chem. Soc. 2021, 143, 21433–21442.

[44]

Chen, S. H.; Wu, Y.; Zhang, Y.; Zhang, W. X.; Fu, Y.; Huang, W. B.; Yan, T.; Ma, H. P. Tuning proton dissociation energy in proton carrier doped 2D covalent organic frameworks for anhydrous proton conduction at elevated temperature. J. Mater. Chem. A 2020, 8, 13702–13709.

[45]

Fu, Y.; Wu, Y.; Chen, S. H.; Zhang, W. X.; Zhang, Y.; Yan, T.; Yang, B. L.; Ma, H. P. Zwitterionic covalent organic frameworks: Attractive porous host for gas separation and anhydrous proton conduction. ACS Nano 2021, 15, 19743–19755.

[46]

Li, J.; Wu, Z. Z.; Li, H.; Liang, H.; Li, S. S. Layered-structure microporous poly(benzimidazole)-loaded imidazole for non-aqueous proton conduction. New J. Chem. 2018, 42, 1604–1607.

[47]

Shinde, D. B.; Aiyappa, H. B.; Bhadra, M.; Biswal, B. P.; Wadge, P.; Kandambeth, S.; Garai, B.; Kundu, T.; Kurungot, S.; Banerjee, R. A mechanochemically synthesized covalent organic framework as a proton-conducting solid electrolyte. J. Mater. Chem. A 2016, 4, 2682–2690.

[48]

Wu, X. W.; Hong, Y. L.; Xu, B. Q.; Nishiyama, Y.; Jiang, W.; Zhu, J. W.; Zhang, G.; Kitagawa, S.; Horike, S. Perfluoroalkyl-functionalized covalent organic frameworks with superhydrophobicity for anhydrous proton conduction. J. Am. Chem. Soc. 2020, 142, 14357–14364.

[49]

Shao, Z. C.; Xue, X. J.; Gao, K. X.; Chen, J. S.; Zhai, L. P.; Wen, T. Y.; Xiong, S. L.; Hou, H. W.; Mi, L. W. Sulfonated covalent organic framework packed nafion membrane with high proton conductivity for H2/O2 fuel cell applications. J. Mater. Chem. A 2023, 11, 3446–3453.

[50]

Zhang, Q. N.; Dong, S. D.; Shao, P. P.; Zhu, Y. H.; Mu, Z. J.; Sheng, D. F.; Zhang, T.; Jiang, X.; Shao, R. W.; Ren, Z. X. et al. Covalent organic framework-based porous ionomers for high-performance fuel cells. Science 2022, 378, 181–186.

[51]

Zhai, S. X.; Lu, Z. R.; Ai, Y. N.; Jia, X. Y.; Yang, Y. M.; Liu, X.; Tian, M.; Bian, X. M.; Lin, J.; He, S. J. High performance nanocomposite proton exchange membranes based on the nanohybrids formed by chemically bonding phosphotungstic acid with covalent organic frameworks. J. Power Sources 2023, 554, 232332.

[52]

Das, S. K.; Krishna Chandra, B.; Molla, R. A.; Sengupta, M.; Islam, S. M.; Majee, A.; Bhaumik, A. Cuo grafted triazine functionalized covalent organic framework as an efficient catalyst for C–C homo coupling reaction. Mol. Catal. 2020, 480, 110650.

[53]

Bai, L. Y.; Phua, S. Z. F.; Lim, W. Q.; Jana, A.; Luo, Z.; Tham, H. P.; Zhao, L. Z.; Gao, Q.; Zhao, Y. L. Nanoscale covalent organic frameworks as smart carriers for drug delivery. Chem. Commun. 2016, 52, 4128–4131.

[54]

Mancheño, M. J.; Royuela, S.; de la Peña, A.; Ramos, M.; Zamora, F.; Segura, J. L. Introduction to covalent organic frameworks: An advanced organic chemistry experiment. J. Chem. Educ. 2019, 96, 1745–1751.

[55]

Reitzel, K.; Jensen, H. S.; Flindt, M.; Andersen, F. Ø. Identification of dissolved nonreactive phosphorus in freshwater by precipitation with aluminum and subsequent 31P NMR analysis. Environ. Sci. Technol. 2009, 43, 5391–5397.

[56]
Develay, S.; Tripier, R.; Le Baccon, M.; Patinec, V.; Serratrice, G.; Handel, H. Host–guest interaction between cyclen based macrotricyclic ligands and phosphate anions. A potentiometric investigation. Dalton Trans. 2006, 3418–3426.
DOI
[57]

Huang, W. B.; Li, B.; Wu, Y.; Zhang, Y.; Zhang, W. X.; Chen, S. H.; Fu, Y.; Yan, T.; Ma, H. P. In situ-doped superacid in the covalent triazine framework membrane for anhydrous proton conduction in a wide temperature range from subzero to elevated temperature. ACS Appl. Mater. Interfaces 2021, 13, 13604–13612.

[58]

Dong, C.; Xu, X.; Zhang, J.; Wang, H. N.; Xiang, Y.; Zhu, H. J.; Forsyth, M.; Lu, S. F. Proton transport of porous triazole-grafted polysulfone membranes for high temperature polymer electrolyte membrane fuel cell. Int. J. Hydrogen Energy 2022, 47, 8492–8501.

[59]

Huang, G. Y.; Zhu, H. J.; Porcarelli, L.; García, Y.; O'Dell, L. A.; Forsyth, M. Study of ion transport in novel protic polymerized ionic liquids and composites. Macromol. Chem. Phys. 2022, 223, 2200124.

File
12274_2023_5812_MOESM1_ESM.pdf (5.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 04 January 2023
Revised: 27 April 2023
Accepted: 07 May 2023
Published: 05 July 2023
Issue date: August 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

We are grateful for financial support from the National Natural Science Foundation of China (Nos. 21771193 and 22275210) and Key Research and Development Projects of Shandong Province (No. 2019JZZY010331).

Return