Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Immobilization of D-amino acid dehydrogenase (DAADH) by the assembly of peptide linker was studied for the biosynthesis of D-phenylalanine. Hybrid material of zeolitic imidazolate framework-8 (ZIF-8) combined with reduced graphene oxide (RGO) was applied for the immobilization of DAADH from Ureibacillus thermosphaericus. The recovery rate of DAADH/ZIF-8/RGO was 165.6%. DAADH/ZIF-8/RGO remained 53.4% of its initial activity at 50 °C for 10 h while the free enzyme was inactivated. DAADH/ZIF-8/RGO maintained 70.5% activity in hyperalkaline solution with pH 12. Kinetic parameters indicated that DAADH/ZIF-8/RGO had greater affinity of phenylpyruvate as Vmax/Km of DAADH/ZIF-8/RGO was 1.27-fold than free enzyme. After seven recycles, the activity of DAADH/ZIF-8/RGO remained 64.3%. Furthermore, one-step separation and in situ immobilization of DAADH by ZIF-8/RGO/Ni was carried out with 1.5-fold activity enhancement. Combining peptide linker and metal-organic framework (MOF) immobilization, thermostability and activity of the immobilized DAADH were significantly improved.
Pollegioni L.; Rosini E.; Molla G. Advances in enzymatic synthesis of D-amino acids. Int. J. Mol. Sci. 2020, 21, 3206.
Genchi G. An overview on D-amino acids. Amino Acids 2017, 49, 1521–1533.
Masuda, K.; Koizumi, A.; Misaka, T.; Hatanaka, Y.; Abe, K.; Tanaka, T.; Ishiguro, M.; Hashimoto, M. Photoactive ligands probing the sweet taste receptor. Design and synthesis of highly potent diazirinyl D-phenylalanine derivatives. Bioorg. Med. Chem. Lett. 2010, 20, 1081–1083.
Lu, C.; Zhang, S.; Song, W.; Liu, J.; Chen, X. L.; Liu, L. M.; Wu, J. Efficient synthesis of D-phenylalanine from L-phenylalanine via a tri-enzymatic cascade pathway. ChemCatChem 2021, 13, 3165–3173.
Gao, X. Z.; Ma, Q. Y.; Zhu, H. L. Distribution, industrial applications, and enzymatic synthesis of D-amino acids. Appl. Microbiol. Biotechnol. 2015, 99, 3341–3349.
Fan, A. W.; Li, J. R.; Yu, Y. Q.; Zhang, D. P.; Nie, Y.; Xu, Y. Enzymatic cascade systems for D-amino acid synthesis: Progress and perspectives. Syst. Microbiol. Biomanuf. 2021, 1, 397–410.
Vedha-Peters, K.; Gunawardana, M.; Rozzell, J. D.; Novick, S. J. Creation of a broad-range and highly stereoselective D-amino acid dehydrogenase for the one-step synthesis of D-amino acids. J. Am. Chem. Soc. 2006, 128, 10923–10929.
Hayashi, J.; Seto, T.; Akita, H.; Watanabe, M.; Hoshino, T.; Yoneda, K.; Ohshima, T.; Sakuraba, H. Structure-based engineering of an artificially generated NADP+-dependent D-amino acid dehydrogenase. Appl. Environ. Microbiol. 2017, 83, e00491–17.
Gao, X. Z.; Ma, Q. Y.; Chen, M. L.; Dong, M. M.; Pu, Z. J.; Zhang, X. H.; Song, Y. D. Insight into the highly conserved and differentiated cofactor-binding sites of meso-diaminopimelate dehydrogenase StDAPDH. J. Chem. Inf. Model. 2019, 59, 2331–2338.
Akita, H.; Hayashi, J.; Sakuraba, H.; Ohshima, T. Artificial thermostable D-amino acid dehydrogenase: Creation and application. Front. Microbiol. 2018, 9, 1760.
Wang, S. Y.; Duan, L. X.; Jiang, L.; Liu, K. L.; Wang, S. Z. Assembly of peptide linker to amino acid dehydrogenase and immobilized with metal-organic framework. J. Chem. Technol. Biotechnol. 2022, 97, 741–748.
Song, Z.; Li, Y.; Teng, H.; Ding, C. F.; Xu, G. Y.; Luo, X. L. Designed zwitterionic peptide combined with sacrificial Fe-MOF for low fouling and highly sensitive electrochemical detection of T4 polynucleotide kinase. Sens. Actuat B: Chem. 2020, 305, 127329.
Zernia, S.; Frank, R.; Weiße, R. H. J.; Jahnke, H. G.; Bellmann-Sickert, K.; Prager, A.; Abel, B.; Sträter, N.; Robitzki, A.; Beck-Sickinger, A. G. Surface-binding peptide facilitates electricity-driven NADPH-free cytochrome P450 catalysis. ChemCatChem 2018, 10, 525–530.
Liang, S.; Wu, X. L.; Xiong, J.; Zong, M. H.; Lou, W. Y. Metal-organic frameworks as novel matrices for efficient enzyme immobilization: An update review. Coord. Chem. Rev. 2020, 406, 213149.
Liang, J. Y.; Mazur, F.; Tang, C. Y.; Ning, X. N.; Chandrawati, R.; Liang, K. Peptide-induced super-assembly of biocatalytic metal-organic frameworks for programmed enzyme cascades. Chem. Sci. 2019, 10, 7852–7858.
Sha, F. R.; Chen, Y. J.; Drout, R. J.; Idrees, K. B.; Zhang, X.; Farha, O. K. Stabilization of an enzyme cytochrome c in a metal-organic framework against denaturing organic solvents. Iscience 2021, 24, 102641.
Gascón, V.; Carucci, C.; Jiménez, M. B.; Blanco, R. M.; Sánchez-Sánchez, M.; Magner, E. Rapid in situ immobilization of enzymes in metal-organic framework supports under mild conditions. ChemCatChem 2017, 9, 1182–1186.
Yao, Y.; Hou, C. Y.; Zhang, X. Construct α-FeOOH-reduced graphene oxide aerogel as a carrier for glucose oxidase electrode. Membranes 2022, 12, 447.
Liang, H. C.; Liu, X. Y.; Gao, D. L.; Ni, J. F.; Li, Y. Reduced graphene oxide decorated with Bi2O2.33 nanodots for superior lithium storage. Nano Res. 2017, 10, 3690–3697.
Kaffash, A.; Zare, H. R.; Rostami, K. Highly sensitive biosensing of phenol based on the adsorption of the phenol enzymatic oxidation product on the surface of an electrochemically reduced graphene oxide-modified electrode. Analy. Methods 2018, 10, 2731–2739.
Shen, L.; Ying, J.; Ren, L.; Yao, Y.; Lu, Y.; Dong, Y.; Tian, G.; Yang, X. Y.; Su, B. L. 3D graphene-based macro-mesoporous frameworks as enzymatic electrodes. J. Phys. Chem. Solids 2019, 130, 1–5.
Liu, K. L.; Wang, S. Y.; Duan, L. X.; Jiang, L.; Wang, S. Z. Effect of ionic liquids on catalytic characteristics of hyperthermophilic and halophilic phenylalanine dehydrogenase and mechanism study. Biochem. Eng. J. 2021, 176, 108175.
Calderón, C.; Contreras, R.; Campodónico, R. Surfactant-mediated enzymatic superactivity in water/ionic liquid mixtures, evaluated on a model hydrolytic reaction catalyzed by α-chymotrypsin. J. Mol. Liq. 2019, 283, 522–531.
Meneely, K. M.; Sundlov, J. A.; Gulick, A. M.; Moran, G. R.; Lamb, A. L. An open and shut case: The interaction of magnesium with MST enzymes. J. Am. Chem. Soc. 2016, 138, 9277–9293.
Kokkonen, P.; Bednar, D.; Pinto, G.; Prokop, Z.; Damborsky, J. Engineering enzyme access tunnels. Biotechnol. Adv. 2019, 37, 107386.
Banerjee, P. C.; Lobo, D. E.; Middag, R.; Ng, W. K.; Shaibani, M. E.; Majumder, M. Electrochemical capacitance of Ni-doped metal organic framework and reduced graphene oxide composites: More than the sum of its parts. ACS Appl. Mater. Interfaces 2015, 7, 3655–3664.
Zhang, Y.; Zhang, J. Y.; Huang, X. L.; Zhou, X. J.; Wu, H. X.; Guo, S. W. Assembly of graphene oxide-enzyme conjugates through hydrophobic interaction. Small 2012, 8, 154–159.
Singh, K.; Mishra, A.; Sharma, D.; Singh, K. Nanotechnology in enzyme immobilization: An overview on enzyme immobilization with nanoparticle matrix. Curr. Nanosci. 2019, 15, 234–241.
Zhang, J.; Jin, N.; Ji, N.; Chen, X. Y.; Shen, Y.; Pan, T.; Li, L.; Li, S.; Zhang, W. N.; Huo, F. W. The encounter of biomolecules in metal-organic framework micro/nano reactors. ACS Appl. Mater. Interfaces 2021, 13, 52215–52233.
Huang, S. M.; Kou, X. X.; Shen, J.; Chen, G. S.; Ouyang, G. F. “Armor-plating” enzymes with metal-organic frameworks (MOFs). Angew. Chem., Int. Ed. 2020, 59, 8786–8798.
Yang, X. G.; Zhang, J. R.; Tian, X. K.; Qin, J. H.; Zhang, X. Y.; Ma, L. F. Enhanced activity of enzyme immobilized on hydrophobic ZIF-8 modified by Ni2+ ions. Angew. Chem., Int. Ed. 2023, 62, e202216699.
Patel, S. K. S.; Choi, H.; Lee, J. K. Multimetal-based inorganic–protein hybrid system for enzyme immobilization. ACS Sustainable Chem. Eng. 2019, 7, 13633–13638.
Zhao, M.; Han, J.; Wu, J. C.; Li, Y. Y.; Zhou, Y.; Wang, L.; Wang, Y. One-step separation and immobilization of his-tagged enzyme directly from cell lysis solution by biomimetic mineralization approach. Biochem. Eng. J. 2021, 167, 107893.
Li, Y. M.; Yuan, J.; Ren, H.; Ji, C. Y.; Tao, Y.; Wu, Y. H.; Chou, L. Y.; Zhang, Y. B.; Cheng, L. Fine-tuning the micro-environment to optimize the catalytic activity of enzymes immobilized in multivariate metal-organic frameworks. J. Am. Chem. Soc. 2021, 143, 15378–15390.
Adnan, M.; Li, K.; Xu, L.; Yan, Y. J. X-shaped ZIF-8 for immobilization Rhizomucor miehei lipase via encapsulation and its application toward biodiesel production. Catalysts 2018, 8, 96.