Journal Home > Volume 16 , Issue 7

Two-dimensional (2D) materials with reversible phase transformation are appealing for their rich physics and potential applications in information storage. However, up to now, reversible phase transitions in 2D materials that can be driven by facile nondestructive methods, such as temperature, are still rare. Here, we introduce ultrathin Cu9S5 crystals grown by chemical vapor deposition (CVD) as an exemplary case. For the first time, their basic electrical properties were investigated based on Hall measurements, showing a record high hole carrier density of ~ 1022 cm−3 among 2D semiconductors. Besides, an unusual and repeatable conductivity switching behavior at ~ 250 K were readily observed in a wide thickness range of CVD-grown Cu9S5 (down to 2 unit-cells). Confirmed by in-situ selected area electron diffraction, this unusual behavior can be ascribed to the reversible structural phase transition between the room-temperature hexagonal β phase and low-temperature β’ phase with a superstructure. Our work provides new insights to understand the physical properties of ultrathin Cu9S5 crystals, and brings new blood to the 2D materials family with reversible phase transitions.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Temperature-driven reversible structural transformation and conductivity switching in ultrathin Cu9S5 crystals

Show Author's information Lei Zhang1,§Zeya Li2,§Ying Deng3Li Li4Zhansheng Gao1Jiabiao Chen1Zhengyang Zhou5Junwei Huang2Weigao Xu4Xuewen Fu3( )Hongtao Yuan2( )Feng Luo1Jinxiong Wu1( )
Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Smart Sensor Interdisciplinary Science Center, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
Ultrafast Electron Microscopy Laboratory, The Ministry of Education (MOE) Key Laboratory of Weak-Light Nonlinear Photonics, School of Physics, Nankai University, Tianjin 300071, China
School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200093, China

§ Lei Zhang and Zeya Li contributed equally to this work.

Abstract

Two-dimensional (2D) materials with reversible phase transformation are appealing for their rich physics and potential applications in information storage. However, up to now, reversible phase transitions in 2D materials that can be driven by facile nondestructive methods, such as temperature, are still rare. Here, we introduce ultrathin Cu9S5 crystals grown by chemical vapor deposition (CVD) as an exemplary case. For the first time, their basic electrical properties were investigated based on Hall measurements, showing a record high hole carrier density of ~ 1022 cm−3 among 2D semiconductors. Besides, an unusual and repeatable conductivity switching behavior at ~ 250 K were readily observed in a wide thickness range of CVD-grown Cu9S5 (down to 2 unit-cells). Confirmed by in-situ selected area electron diffraction, this unusual behavior can be ascribed to the reversible structural phase transition between the room-temperature hexagonal β phase and low-temperature β’ phase with a superstructure. Our work provides new insights to understand the physical properties of ultrathin Cu9S5 crystals, and brings new blood to the 2D materials family with reversible phase transitions.

Keywords: chemical vapor deposition, reversible phase transition, ultrathin Cu9S5 crystals, ultrahigh carrier density, conductivity switching

References(46)

[1]

Cowley, R. A. Structural phase transitions I. Landau theory. Adv. Phys. 1980, 29, 1–110.

[2]

Zhao, P. L.; Guan, X. X.; Zheng, H.; Jia, S. F.; Li, L.; Liu, H. H.; Zhao, L. L.; Sheng, H. P.; Meng, W. W.; Zhuang, Y. L. et al. Surface- and strain-mediated reversible phase transformation in quantum-confined ZnO nanowires. Phys. Rev. Lett. 2019, 123, 216101.

[3]

Lu, N. P.; Zhang, P. F.; Zhang, Q. H.; Qiao, R. M.; He, Q.; Li, H. B.; Wang, Y. J.; Guo, J. W.; Zhang, D.; Duan, Z. et al. Electric-field control of tri-state phase transformation with a selective dual-ion switch. Nature 2017, 546, 124–128.

[4]

Chen, C.; Shi, M. J.; Zhao, Y.; Yang, C.; Zhao, L. P.; Yan, C. Al-intercalated MnO2 cathode with reversible phase transition for aqueous Zn-Ion batteries. Chem. Eng. J. 2021, 422, 130375.

[5]

Delaney, M.; Zeimpekis, I.; Lawson, D.; Hewak, D. W.; Muskens, O. L. A new family of ultralow loss reversible phase-change materials for photonic integrated circuits: Sb2S3 and Sb2Se3. Adv. Funct. Mater. 2020, 30, 2002447.

[6]

Hao, J. N.; Zhang, J.; Xia, G. L.; Liu, Y. J.; Zheng, Y.; Zhang, W. C.; Tang, Y. B.; Pang, W. K.; Guo, Z. P. Heterostructure manipulation via in situ localized phase transformation for high-rate and highly durable lithium ion storage. ACS Nano 2018, 12, 10430–10438.

[7]

Liu, Y. T.; Li, X. B.; Zheng, H.; Chen, N. K.; Wang, X. P.; Zhang, X. L.; Sun, H. B.; Zhang, S. B. High-throughput screening for phase-change memory materials. Adv. Funct. Mater. 2021, 31, 2009803.

[8]

Salinga, M.; Kersting, B.; Ronneberger, I.; Jonnalagadda, V. P.; Vu, X. T.; Le Gallo, M.; Giannopoulos, I.; Cojocaru-Mirédin, O.; Mazzarello, R.; Sebastian, A. Monatomic phase change memory. Nat. Mater. 2018, 17, 681–685.

[9]

Zou, C.; Zheng, J. J.; Chang, C.; Majumdar, A.; Lin, L. Y. Nonvolatile rewritable photomemory arrays based on reversible phase-change perovskite for optical information storage. Adv. Opt. Mater. 2019, 7, 1900558.

[10]

Li, W. B.; Qian, X. F.; Li, J. Phase transitions in 2D materials. Nat. Rev. Mater. 2021, 6, 829–846.

[11]

Wang, X. S.; Song, Z. G.; Wen, W.; Liu, H. N.; Wu, J. X.; Dang, C. H.; Hossain, M.; Iqbal, M. A.; Xie, L. M. Potential 2D materials with phase transitions: Structure, synthesis, and device applications. Adv. Mater. 2019, 31, 1804682.

[12]

Yin, X. M.; Tang, C. S.; Zheng, Y.; Gao, J.; Wu, J.; Zhang, H.; Chhowalla, M.; Chen, W.; Wee, A. T. S. Recent developments in 2D transition metal dichalcogenides: Phase transition and applications of the (quasi-) metallic phases. Chem. Soc. Rev. 2021, 50, 10087–10115.

[13]

Sun, L. F.; Yan, X. X.; Zheng, J. Y.; Yu, H. D.; Lu, Z. X.; Gao, S. P.; Liu, L. N.; Pan, X. Q.; Wang, D.; Wang, Z. G. et al. Layer-dependent chemically induced phase transition of two-dimensional MoS2. Nano Lett. 2018, 18, 3435–3440.

[14]

Wang, Y.; Xiao, J.; Zhu, H. Y.; Li, Y.; Alsaid, Y.; Fong, K. Y.; Zhou, Y.; Wang, S. Q.; Shi, W.; Wang, Y. et al. Structural phase transition in monolayer MoTe2 driven by electrostatic doping. Nature 2017, 550, 487–491.

[15]

Yang, H.; Kim, S. W.; Chhowalla, M.; Lee, Y. H. Structural and quantum-state phase transitions in van der Waals layered materials. Nat. Phys. 2017, 13, 931–937.

[16]

Zhang, F.; Wang, Z.; Dong, J. Y.; Nie, A. M.; Xiang, J. Y.; Zhu, W. G.; Liu, Z. Y.; Tao, C. G. Atomic-scale observation of reversible thermally driven phase transformation in 2D In2Se3. ACS Nano 2019, 13, 8004–8011.

[17]

Johnson, V. L.; Anilao, A.; Koski, K. J. Pressure-dependent phase transition of 2D layered silicon telluride (Si2Te3) and manganese intercalated silicon telluride. Nano Res. 2019, 12, 2373–2377.

[18]

Coughlan, C.; Ibáñez, M.; Dobrozhan, O.; Singh, A.; Cabot, A.; Ryan, K. M. Compound copper chalcogenide nanocrystals. Chem. Rev. 2017, 117, 5865–6109.

[19]

Nair, M. T. S.; Guerrero, L.; Nair, P. K. Conversion of chemically deposited CuS thin films to Cu1.8S and Cu1.96S by annealing. Semicond. Sci. Technol. 1998, 13, 1164–1169.

[20]

Okamoto, K.; Kawai, S. Electrical conduction and phase transition of copper sulfides. Jpn. J. Appl. Phys. 1973, 12, 1130–1138.

[21]

Will, G.; Hinze, E.; Abdelrahman, A. R. M. Crystal structure analysis and refinement of digenite, Cu1.8S, in the temperature range 20 to 500 C under controlled sulfur partial pressure. Eur. J. Mineral. 2002, 14, 591–598.

[22]

Xu, Q.; Huang, B.; Zhao, Y. F.; Yan, Y. F.; Noufi, R.; Wei, S. H. Crystal and electronic structures of CuxS solar cell absorbers. Appl. Phys. Lett. 2012, 100, 061906.

[23]

Buerger, M. J.; Wuensch, B. J. Distribution of atoms in high chalcocite, Cu2S. Science 1963, 141, 276–277.

[24]

Li, B.; Huang, L.; Zhao, G. Y.; Wei, Z. M.; Dong, H. L.; Hu, W. P.; Wang, L. W.; Li, J. B. Large-size 2D β-Cu2S nanosheets with giant phase transition temperature lowering (120 K) synthesized by a novel method of super-cooling chemical-vapor-deposition. Adv. Mater. 2016, 28, 8271–8276.

[25]

Lukashev, P.; Lambrecht, W. R. L.; Kotani, T.; Van Schilfgaarde, M. Electronic and crystal structure of Cu2–xS: Full-potential electronic structure calculations. Phys. Rev. B 2007, 76, 195202.

[26]

Romdhane, F. B.; Cretu, O.; Debbichi, L.; Eriksson, O.; Lebègue, S.; Banhart, F. Quasi-2D Cu2S crystals on graphene: In-situ growth and ab-initio calculations. Small 2015, 11, 1253–1257.

[27]

Wang, J.; Gao, J. P.; Chou, M. Y.; Landman, U. Structure relaxation and liquidlike enhanced Cu diffusion at the surface of β-Cu2S chalcocite. Nano Lett. 2021, 21, 8895–8900.

[28]

Zheng, H. M.; Rivest, J. B.; Miller, T. A.; Sadtler, B.; Lindenberg, A.; Toney, M. F.; Wang, L. W.; Kisielowski, C.; Alivisatos, A. P. Observation of transient structural-transformation dynamics in a Cu2S Nanorod. Science 2011, 333, 206–209.

[29]

Peng, Z.; Li, S. B.; Weng, M. Y.; Zhang, M. J.; Xin, C.; Du, Z.; Zheng, J. X.; Pan, F. First-principles study of Cu9S5: A novel p-type conductive semiconductor. J. Phys. Chem. C 2017, 121, 23317–23323.

[30]

Van Der Stam, W.; Gudjonsdottir, S.; Evers, W. H.; Houtepen, A. J. Switching between plasmonic and fluorescent copper sulfide nanocrystals. J. Am. Chem. Soc. 2017, 139, 13208–13217.

[31]

Itzhak, A.; Teblum, E.; Girshevitz, O.; Okashy, S.; Turkulets, Y.; Burlaka, L.; Cohen-Taguri, G.; Shawat Avraham, E.; Noked, M.; Shalish, I. et al. Digenite (Cu9S5): Layered p-type semiconductor grown by reactive annealing of copper. Chem. Mater. 2018, 30, 2379–2388.

[32]

Fang, Y. J.; Yu, X. Y.; Lou, X. W. Bullet-like Cu9S5 hollow particles coated with nitrogen-doped carbon for sodium-ion batteries. Angew. Chem., Int. Ed. 2019, 58, 7744–7748.

[33]

Luo, X. L.; Hu, H. T.; Pan, Z.; Pei, F.; Qian, H. M.; Miao, K. K.; Guo, S. F.; Wang, W.; Feng, G. D. Efficient and stable catalysis of hollow Cu9S5 nanospheres in the Fenton-like degradation of organic dyes. J. Hazard. Mater. 2020, 396, 122735.

[34]

Tian, Q. W.; Jiang, F. R.; Zou, R. J.; Liu, Q.; Chen, Z. G.; Zhu, M. F.; Yang, S. P.; Wang, J. L.; Wang, J. H.; Hu, J. Q. Hydrophilic Cu9S5 nanocrystals: A photothermal agent with a 25.7% heat conversion efficiency for photothermal ablation of cancer cells in vivo. ACS Nano 2011, 5, 9761–9771.

[35]

Xu, D. M.; Yang, Y. F.; Le, K.; Wang, G. W.; Ouyang, A. C.; Li, B.; Liu, W.; Wu, L. L.; Wang, Z.; Liu, J. R. et al. Bifunctional Cu9S5/C octahedral composites for electromagnetic wave absorption and supercapacitor applications. Chem. Eng. J. 2021, 417, 129350.

[36]

Yang, D. R.; Zuo, S. W.; Yang, H. Z.; Wang, X. Single-unit-cell catalysis of CO2 electroreduction over sub-1 nm Cu9S5 nanowires. Adv. Energy Mater. 2021, 11, 2100272.

[37]

Zhang, Z.; Sun, J. Y.; Mo, S. D.; Kim, J.; Guo, D. G.; Ju, J.; Yu, Q. L.; Liu, M. Y. Constructing a highly efficient CuS/Cu9S5 heterojunction with boosted interfacial charge transfer for near-infrared photocatalytic disinfection. Chem. Eng. J. 2022, 431, 134287.

[38]

Yang, S. J.; Liu, K. L.; Han, W.; Li, L.; Wang, F. K.; Zhou, X.; Li, H. Q.; Zhai, T. Y. Salt-assisted growth of p-type Cu9S5 nanoflakes for P–N heterojunction photodetectors with high responsivity. Adv. Funct. Mater. 2020, 30, 1908382.

[39]

Yin, L.; Cheng, R. Q.; Wen, Y.; Zhai, B. X.; Jiang, J.; Wang, H.; Liu, C. S.; He, J. High-performance memristors based on ultrathin 2D copper chalcogenides. Adv. Mater. 2022, 34, 2108313.

[40]

Yang, S. J.; Pi, L. J.; Li, L.; Liu, K. L.; Pei, K.; Han, W.; Wang, F. K.; Zhuge, F. W.; Li, H. Q.; Cheng, G. et al. 2D Cu9S5/PtS2/WSe2 double heterojunction bipolar transistor with high current gain. Adv. Mater. 2021, 33, 2106537.

[41]

Zhao, T. R.; Hasegawa, M.; Takei, H. Crystal growth and characterization of cuprous ferrite (CuFeO2). J. Cryst. Growth 1996, 166, 408–413.

[42]

Jiang, C. M.; Reyes-Lillo, S. E.; Liang, Y. F.; Liu, Y. S.; Liu, G. J.; Toma, F. M.; Prendergast, D.; Sharp, I. D.; Cooper, J. K. Electronic structure and performance bottlenecks of CuFeO2 photocathodes. Chem. Mater. 2019, 31, 2524–2534.

[43]

Han, D.; Wu, C. C.; Zhang, Q. H.; Wei, S. Y.; Qi, X.; Zhao, Y. B.; Chen, Y.; Chen, Y. H.; Xiao, L. X.; Zhao, Z. Q. Solution-processed Cu9S5 as a hole transport layer for efficient and stable perovskite solar cells. ACS Appl. Mater. Interfaces 2018, 10, 31535–31540.

[44]

Yu, Y. J.; Yang, F. Y.; Lu, X. F.; Yan, Y. J.; Cho, Y. H.; Ma, L. G.; Niu, X. H.; Kim, S.; Son, Y. W.; Feng, D. L. et al. Gate-tunable phase transitions in thin flakes of 1T-TaS2. Nat. Nanotechnol. 2015, 10, 270–276.

[45]

Li, J.; Zhang, Y.; Zhang, J. R.; Chu, J. W.; Xie, L.; Yu, W. Z.; Zhao, X. X.; Chen, C.; Dong, Z.; Huang, L. Y. et al. Chemical vapor deposition of quaternary 2D BiCuSeO p-type semiconductor with intrinsic degeneracy. Adv. Mater. 2022, 34, 2207796.

[46]

Morales-García, A.; Soares, A. L.; Dos Santos, E. C.; De Abreu, H. A.; Duarte, H. A. First-principles calculations and electron density topological analysis of covellite (CuS). J. Phys. Chem. A 2014, 118, 5823–5831.

File
12274_2023_5805_MOESM1_ESM.pdf (2.2 MB)
12274_2023_5805_MOESM2_ESM.pdf (343.4 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 06 March 2023
Revised: 24 April 2023
Accepted: 03 May 2023
Published: 01 June 2023
Issue date: July 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

J. X. W. acknowledges financial support from the National Natural Science Foundation of China (NSFC) (No. 92064005) and Opening Project of State Key Laboratory of High Performance Ceramics and Superfine Microstructure (No. SKL202211SIC). H. T. Y. acknowledges the support from the NSFC (Nos. 51861145201, 52072168, and 21733001) and the National Key Research and Development Program of China (No. 2018YFA0306200). J. W. H. acknowledges the support from the National Key Research and Development Program of China (No. 2021YFA1202901). X. W. F. acknowledges financial support from the NSFC at grant (Nos. 11974191 and 2217830), the National Key Research and Development Program of China at grant (No. 2020YFA0309300), the Natural Science Foundation of Tianjin at grant (Nos. 20JCZDJC00560 and 20JCJQJC00210), and the 111 Project (No. B23045).

Return