AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Graphene aerogel-based vibration sensor with high sensitivity and wide frequency response range

Zibo Wang1,2Zhuojian Xiao1,2Jie Mei1,2Yanchun Wang1,4Xiao Zhang1,2,3,4Xiaojun Wei1,2,3,4Huaping Liu1,2,3,4Sishen Xie1,2,3,4Weiya Zhou1,2,3,4( )
Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
School of Physical Sciences and College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
Songshan Lake Materials Laboratory, Dongguan 523808, China
Beijing Key Laboratory for Advanced Functional Materials and Structure Research, Beijing 100190, China
Show Author Information

Graphical Abstract

The graphene aerogel-based accelerometer is capable of detecting not only static pressure, but also vibrations in a wide frequency range of 2 Hz−10 kHz. With no hysteresis, excellent repeatability, high cycle stability and marked linearity, it is expected to meet the broader functional requirements of related fields in practical applications.

Abstract

Compared with piezoresistive sensors, pressure sensors based on the contact resistance effect are proven to have higher sensitivity and the ability to detect ultra-low pressure, thus attracting extensive research interest in wearable devices and artificial intelligence systems. However, most studies focus on static or low-frequency pressure detection, and there are few reports on high-frequency dynamic pressure detection. Limited by the viscoelasticity of polymers (necessary materials for traditional vibration sensors), the development of vibration sensors with high frequency response remains a great challenge. Here, we report a graphene aerogel-based vibration sensor with higher sensitivity and wider frequency response range (2 Hz–10 kHz) than both conventional piezoresistive and similar sensors. By modulating the microscopic morphology and mechanical properties, the super-elastic graphene aerogels suitable for vibration sensing have been prepared successfully. Meanwhile, the mechanism of the effect of density on the vibration sensor’s sensitivity is studied in detail. On this basis, the sensitivity, signal fidelity and signal-to-noise ratio of the sensor are further improved by optimizing the structure configuration. The developed sensor exhibits remarkable repeatability, excellent stability, high resolution (0.0039 g) and good linearity (non-linearity error < 0.8%) without hysteresis. As demos, the sensor can not only monitor low-frequency physiological signals and motion of the human body, but also respond to the high-frequency vibrations of rotating machines. In addition, the sensor can also detect static pressure. We expect the vibration sensor to meet a wider range of functional needs in wearable devices, smart robots, and industrial equipment.

Electronic Supplementary Material

Download File(s)
12274_2023_5802_MOESM1_ESM.pdf (3.7 MB)

References

[1]

Pang, K.; Song, X.; Xu, Z.; Liu, X. T.; Liu, Y. J.; Zhong, L.; Peng, Y. X.; Wang, J. X.; Zhou, J. Z.; Meng, F. X. et al. Hydroplastic foaming of graphene aerogels and artificially intelligent tactile sensors. Sci. Adv. 2020, 6, eabd4045.

[2]

Liang, B. H.; Huang, B. F.; He, J. K.; Yang, R. L.; Zhao, C. C.; Yang, B. R.; Cao, A. Y.; Tang, Z. K.; Gui, X. C. Direct stamping multifunctional tactile sensor for pressure and temperature sensing. Nano Res. 2022, 15, 3614–3620.

[3]

Wang, X. W.; Gu, Y.; Xiong, Z. P.; Cui, Z.; Zhang, T. Silk-molded flexible, ultrasensitive, and highly stable electronic skin for monitoring human physiological signals. Adv. Mater. 2014, 26, 1336–1342.

[4]

Pan, L. J.; Chortos, A.; Yu, G. H.; Wang, Y. Q.; Isaacson, S.; Allen, R.; Shi, Y.; Dauskardt, R.; Bao, Z. A. An ultra-sensitive resistive pressure sensor based on hollow-sphere microstructure induced elasticity in conducting polymer film. Nat. Commun. 2014, 5, 3002.

[5]

Li, Y. X.; Wang, R. R.; Wang, G. E.; Feng, S. Y.; Shi, W. E.; Cheng, Y.; Shi, L. J.; Fu, K. Y.; Sun, J. Mutually noninterfering flexible pressure-temperature dual-modal sensors based on conductive metal-organic framework for electronic skin. ACS Nano 2022, 16, 473–484.

[6]

Li, H. W.; Wu, K. J.; Xu, Z. Y.; Wang, Z. W.; Meng, Y. C.; Li, L. Q. Ultrahigh-sensitivity piezoresistive pressure sensors for detection of tiny pressure. ACS Appl. Mater. Interfaces 2018, 10, 20826–20834.

[7]

Choong, C. L.; Shim, M. B.; Lee, B. S.; Jeon, S.; Ko, D. S.; Kang, T. H.; Bae, J.; Lee, S. H.; Byun, K. E.; Im, J. et al. Highly stretchable resistive pressure sensors using a conductive elastomeric composite on a micropyramid array. Adv. Mater. 2014, 26, 3451–3458.

[8]

Ma, C.; Xu, D.; Huang, Y. C.; Wang, P. Q.; Huang, J.; Zhou, J. Y.; Liu, W. F.; Li, S. T.; Huang, Y.; Duan, X. F. Robust flexible pressure sensors made from conductive micropyramids for manipulation tasks. ACS Nano 2020, 14, 12866–12876.

[9]

Liu, Y. F.; Liu, Q.; Li, Y. Q.; Huang, P.; Yao, J. Y.; Hu, N.; Fu, S. Y. Spider-inspired ultrasensitive flexible vibration sensor for multifunctional sensing. ACS Appl. Mater. Interfaces 2020, 12, 30871–30881.

[10]

Huang, J. R.; Yang, X. X.; Liu, J. T.; Her, S. C.; Guo, J. Q.; Gu, J. F.; Guan, L. H. Vibration monitoring based on flexible multi-walled carbon nanotube/polydimethylsiloxane film sensor and the application on motion signal acquisition. Nanotechnology 2020, 31, 335504.

[11]

Schwartz, G.; Tee, B. C. K.; Mei, J. G.; Appleton, A. L.; Kim, D. H.; Wang, H. L.; Bao, Z. A. Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring. Nat. Commun. 2013, 4, 1859.

[12]

Qiu, L.; Bulut Coskun, M.; Tang, Y.; Liu, J. Z.; Alan, T.; Ding, J.; Truong, V. T.; Li, D. Ultrafast dynamic piezoresistive response of graphene-based cellular elastomers. Adv. Mater. 2016, 28, 194–200.

[13]

Pang, C.; Lee, G. Y.; Kim, T. I.; Kim, S. M.; Kim, H. N.; Ahn, S. H.; Suh, K. Y. A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres. Nat. Mater. 2012, 11, 795–801.

[14]

Tao, L. Q.; Zhang, K. N.; Tian, H.; Liu, Y.; Wang, D. Y.; Chen, Y. Q.; Yang, Y.; Ren, T. L. Graphene-paper pressure sensor for detecting human motions. ACS Nano 2017, 11, 8790–8795.

[15]

Xiao, Z. J.; Zhou, W. Y.; Zhang, N.; Zhang, Q.; Xia, X. G.; Gu, X. G.; Wang, Y. C.; Xie, S. S. All-carbon pressure sensors with high performance and excellent chemical resistance. Small 2019, 15, 1804779.

[16]

Qiao, Y. C.; Li, X. S.; Wang, J. B.; Ji, S. R.; Hirtz, T.; Tian, H.; Jian, J. M.; Cui, T. R.; Dong, Y.; Xu, X. W. et al. Intelligent and multifunctional graphene nanomesh electronic skin with high comfort. Small 2022, 18, 2104810.

[17]

Chen, X. P.; Luo, F.; Yuan, M.; Xie, D. L.; Shen, L.; Zheng, K.; Wang, Z. P.; Li, X. D.; Tao, L. Q. A dual-functional graphene-based self-alarm health-monitoring e-skin. Adv. Funct. Mater. 2019, 29, 1904706.

[18]

Zhang, Y.; Yang, J. L.; Hou, X. Y.; Li, G.; Wang, L.; Bai, N. N.; Cai, M. K.; Zhao, L. Y.; Wang, Y.; Zhang, J. M. et al. Highly stable flexible pressure sensors with a quasi-homogeneous composition and interlinked interfaces. Nat. Commun. 2022, 13, 1317.

[19]

Lipomi, D. J.; Vosgueritchian, M.; Tee, B. C. K.; Hellstrom, S. L.; Lee, J. A.; Fox, C. H.; Bao, Z. A. Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat. Nanotechnol. 2011, 6, 788–792.

[20]

Wu, Q.; Qiao, Y. C.; Guo, R.; Naveed, S.; Hirtz, T.; Li, X. S.; Fu, Y. X.; Wei, Y. H.; Deng, G.; Yang, Y. et al. Triode-mimicking graphene pressure sensor with positive resistance variation for physiology and motion monitoring. ACS Nano 2020, 14, 10104–10114.

[21]

Jian, M. Q.; Xia, K. L.; Wang, Q.; Yin, Z.; Wang, H. M.; Wang, C. Y.; Xie, H. H.; Zhang, M. C.; Zhang, Y. Y. Flexible and highly sensitive pressure sensors based on bionic hierarchical structures. Adv. Funct. Mater. 2017, 27, 1606066.

[22]

Lv, L. X.; Zhang, P. P.; Xu, T.; Qu, L. T. Ultrasensitive pressure sensor based on an ultralight sparkling graphene block. ACS Appl. Mater. Interfaces 2017, 9, 22885–22892.

[23]

Qiu, L.; Liu, J. Z.; Chang, S. L. Y.; Wu, Y. Z.; Li, D. Biomimetic superelastic graphene-based cellular monoliths. Nat. Commun. 2012, 3, 1241.

[24]

Ding, Y. C.; Xu, T.; Onyilagha, O.; Fong, H.; Zhu, Z. T. Recent advances in flexible and wearable pressure sensors based on piezoresistive 3D monolithic conductive sponges. ACS Appl. Mater. Interfaces 2019, 11, 6685–6704.

[25]

Zhuo, H.; Hu, Y. J.; Tong, X.; Chen, Z. H.; Zhong, L. X.; Lai, H. H.; Liu, L. X.; Jing, S. S.; Liu, Q. Z.; Liu, C. F. et al. A supercompressible, elastic, and bendable carbon aerogel with ultrasensitive detection limits for compression strain, pressure, and bending angle. Adv. Mater. 2018, 30, 1706705.

[26]

Coskun, M. B.; Qiu, L.; Arefin, S.; Neild, A.; Yuce, M.; Li, D.; Alan, T. Detecting subtle vibrations using graphene-based cellular elastomers. ACS Appl. Mater. Interfaces 2017, 9, 11345–11349.

[27]

Liu, S. B.; Wu, X.; Zhang, D. D.; Guo, C. W.; Wang, P.; Hu, W. D.; Li, X. M.; Zhou, X. F.; Xu, H. J.; Luo, C.; Zhang, J.; Chu, J. H. Ultrafast dynamic pressure sensors based on graphene hybrid structure. ACS Appl. Mater. Interfaces 2017, 9, 24148–24154.

[28]

Lee, J. I.; Eun, Y.; Choi, J.; Kwon, D. S.; Kim, J. Using confined self-adjusting carbon nanotube arrays as high-sensitivity displacement sensing element. ACS Appl. Mater. Interfaces 2014, 6, 10181–10187.

[29]

Chen, H. L.; Xiao, Z. J.; Zhang, N.; Xiao, S. Q.; Xia, X. G.; Xi, W.; Wang, Y. C.; Zhou, W. Y.; Xie, S. S. Free-standing, curled and partially reduced graphene oxide network as sulfur host for high-performance lithium-sulfur batteries. Chin. Phys. B 2018, 27, 068101.

[30]

Li, Q.; Li, Z. J.; Chen, M. R.; Fang, Y. Real-time study of graphene’s phase transition in polymer matrices. Nano Lett. 2009, 9, 2129–2132.

[31]

Xu, Z.; Zheng, B. N.; Chen, J. W.; Gao, C. Highly efficient synthesis of neat graphene nanoscrolls from graphene oxide by well-controlled lyophilization. Chem. Mater. 2014, 26, 6811–6818.

[32]

Schaedler, T. A.; Jacobsen, A. J.; Torrents, A.; Sorensen, A. E.; Lian, J.; Greer, J. R.; Valdevit, L.; Carter, W. B. Ultralight metallic microlattices. Science 2011, 334, 962–965.

[33]
Thomson, W. T. Theory of vibration with applications; CRC Press: London, 1993.
[34]

Yao, H. C.; Li, P. J.; Cheng, W.; Yang, W. D.; Yang, Z. J.; Ali, H. P. A.; Guo, H. C.; Tee, B. C. K. Environment-resilient graphene vibrotactile sensitive sensors for machine intelligence. ACS Mater. Lett. 2020, 2, 986–992.

[35]

Pang, C.; Koo, J. H.; Nguyen, A.; Caves, J. M.; Kim, M. G.; Chortos, A.; Kim, K.; Wang, P. J.; Tok, J. B. H.; Bao, Z. A. Highly skin-conformal microhairy sensor for pulse signal amplification. Adv. Mater. 2015, 27, 634–640.

Nano Research
Pages 11342-11349
Cite this article:
Wang Z, Xiao Z, Mei J, et al. Graphene aerogel-based vibration sensor with high sensitivity and wide frequency response range. Nano Research, 2023, 16(8): 11342-11349. https://doi.org/10.1007/s12274-023-5802-z
Topics:

908

Views

1

Crossref

2

Web of Science

2

Scopus

0

CSCD

Altmetrics

Received: 11 April 2023
Revised: 29 April 2023
Accepted: 02 May 2023
Published: 14 June 2023
© Tsinghua University Press 2023
Return