Journal Home > Volume 16 , Issue 7

Alkali and Co2+ co-modulation has seldom been investigated as a prospective strategy to achieve high-efficient microwave absorbing (MA) materials. In this work, a new alkali and Co ion exchange co-modulation strategy was first reported, leading to broadband MA capacity through simultaneous manipulating multiple factors, such as composition, micromorphology, and heterogeneous interface. And enhancements in impedance matching and magnetic–dielectric loss were synergistically realized. Consequently, the optimized FeCo alloy@porous carbon (FPC) nanocomposite with the alkali regulation delivered an effective absorption bandwidth (EAB) of 6.72 GHz, making it the merely single FeCo-based metal-organic framework derived FPC absorber with a low filler content of 15 wt.%. Interestingly, the nanocomposites by ion exchange strategy realized the switchable “on/off” states on electromagnetic response. Furthermore, the radar cross-section (RCS) reduction value of the products reached 25.6 dB·m2 under the incident angle of 0°. In brief, this work not only offers the special role of alkali and Co2+ co-modulation in composition regulation, structure design, and MA capacity, but also provides a reliable strategy to develop smart nano-absorbers to cope with electromagnetic pollution issues.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Alkali and ion exchange co-modulation strategies to design magnetic–dielectric synergistic nano-absorbers for tailoring microwave absorption

Show Author's information Yue WuShujuan Tan( )Taichen ZhangMing ZhouGang FangGuangbin Ji
School of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China

Abstract

Alkali and Co2+ co-modulation has seldom been investigated as a prospective strategy to achieve high-efficient microwave absorbing (MA) materials. In this work, a new alkali and Co ion exchange co-modulation strategy was first reported, leading to broadband MA capacity through simultaneous manipulating multiple factors, such as composition, micromorphology, and heterogeneous interface. And enhancements in impedance matching and magnetic–dielectric loss were synergistically realized. Consequently, the optimized FeCo alloy@porous carbon (FPC) nanocomposite with the alkali regulation delivered an effective absorption bandwidth (EAB) of 6.72 GHz, making it the merely single FeCo-based metal-organic framework derived FPC absorber with a low filler content of 15 wt.%. Interestingly, the nanocomposites by ion exchange strategy realized the switchable “on/off” states on electromagnetic response. Furthermore, the radar cross-section (RCS) reduction value of the products reached 25.6 dB·m2 under the incident angle of 0°. In brief, this work not only offers the special role of alkali and Co2+ co-modulation in composition regulation, structure design, and MA capacity, but also provides a reliable strategy to develop smart nano-absorbers to cope with electromagnetic pollution issues.

Keywords: microwave absorption, alkali regulation, switchable on/off mode, nano-absorbers, ion exchange strategy

References(70)

[1]

Wu, Y.; Tan, S. J.; Zhao, Y.; Liang, L. L.; Zhou, M.; Ji, G. B. Broadband multispectral compatible absorbers for radar, infrared, and visible stealth application. Prog. Mater. Sci. 2023, 135, 101088.

[2]

Liang, L. L.; Gu, W. H.; Wu, Y.; Zhang, B. S.; Wang, G. H.; Yang, Y.; Ji, G. B. Heterointerface engineering in electromagnetic absorbers: New insights and opportunities. Adv. Mater. 2022, 34, 2106195.

[3]

Mu, Z. G.; Wei, G. K.; Zhang, H.; Gao, L.; Zhao, Y.; Tang, S. L.; Ji, G. B. The dielectric behavior and efficient microwave absorption of doped nanoscale LaMnO3 at elevated temperature. Nano Res. 2022, 15, 7731–7741.

[4]

Liu, Y. J.; Wei, X. F.; He, X. X.; Yao, J. R.; Tan, R. Y.; Chen, P.; Yao, B. Y.; Zhou, J. T.; Yao, Z. J. Multifunctional shape memory composites for Joule heating, self-healing, and highly efficient microwave absorption. Adv. Funct. Mater. 2023, 33, 2211352.

[5]

Wu, Y.; Zhao, Y.; Zhou, M.; Tan, S. J.; Peymanfar, R.; Aslibeiki, B.; Ji, G. B. Ultrabroad microwave absorption ability and infrared stealth property of nano-micro CuS@rGO lightweight aerogels. Nano-Micro Lett. 2022, 14, 171.

[6]

Cheng, Z.; Wang, R. F.; Cao, Y. S.; Cai, Z. H.; Zhang, Z. W.; Huang, Y. Intelligent off/on switchable microwave absorption performance of reduced graphene oxide/VO2 composite aerogel. Adv. Funct. Mater. 2022, 32, 2205160.

[7]

Tang, X. W.; Luo, J. T.; Hu, Z. W.; Lu, S. J.; Liu, X. Y.; Li, S. S.; Zhao, X.; Zhang, Z. H.; Lan, Q. Q.; Ma, P. M. et al. Ultrathin, flexible, and oxidation-resistant MXene/graphene porous films for efficient electromagnetic interference shielding. Nano Res. 2023, 16, 1755–1763.

[8]

Bu, F. X.; Zagho, M. M.; Ibrahim, Y.; Ma, B.; Elzatahry, A.; Zhao, D. Y. Porous MXenes: Synthesis, structures, and applications. Nano Today 2020, 30, 100803.

[9]

Wang, W. J.; Ye, W. P.; Hou, X. W.; Ran, K.; Huang, Y. L.; Zhang, Z. D.; Fang, Y.; Wang, S.; Zhao, R.; Xue, W. D. Salt-assisted pyrolysis of carbon nanosheet and carbon nanoparticle hybrids for efficient microwave absorption. J. Mater. Chem. C 2023, 11, 2941–2948.

[10]

Wu, D.; Wang, Y. Q.; Deng, S. L.; Lan, D.; Xiang, Z. N.; He, Q. C. Heterostructured CoFe@N-doped carbon porous polyhedron for efficient microwave absorption. Nano Res. 2023, 16, 1859–1868.

[11]

Cui, J.; Wang, X. H.; Huang, L.; Zhang, C. W.; Yuan, Y.; Li, Y. B. Environmentally friendly bark-derived Co-doped porous carbon composites for microwave absorption. Carbon 2022, 187, 115–125.

[12]

Wu, Y. H.; Wang, G. D.; Yuan, X. X.; Fang, G.; Li, P.; Ji, G. B. Heterointerface engineering in hierarchical assembly of the Co/Co(OH)2@carbon nanosheets composites for wideband microwave absorption. Nano Res. 2023, 16, 2611–2621.

[13]

Xu, Z. J.; He, M.; Zhou, Y. M.; Zhang, M. Y.; Feng, S. J.; Wang, Y. J.; Xu, R.; Peng, H.; Chen, X. Rime-like carbon paper@Bi2S3 hybrid structure for efficient and broadband microwave absorption. Chem. Eng. J. 2022, 428, 131127.

[14]

Ren, J. Q.; Lyu, Y. T.; Liu, Z. G.; Ahmad, M.; Zhang, Q. Y.; Zhang, B. L. Microwave absorption performance evaluation of carbonized derivatives of Fe3O4@MOF-74 with controllable morphologies. ACS Appl. Electron. Mater. 2022, 4, 5221–5233.

[15]

Chen, X. T.; Zhou, M.; Zhao, Y.; Gu, W. H.; Wu, Y.; Tang, S. L.; Ji, G. B. Morphology control of eco-friendly chitosan-derived carbon aerogels for efficient microwave absorption at thin thickness and thermal stealth. Green Chem. 2022, 24, 5280–5290.

[16]

Wan, Y. Z.; Xiao, J.; Li, C. Z.; Xiong, G. Y.; Guo, R. S.; Li, L. L.; Han, M.; Luo, H. L. Microwave absorption properties of FeCo-coated carbon fibers with varying morphologies. J. Magn. Magn. Mater. 2016, 399, 252–259.

[17]

Huang, M. Q.; Wang, L.; Pei, K.; You, W. B.; Yu, X. F.; Wu, Z. C.; Che, R. C. Multidimension-controllable synthesis of MOF-derived Co@N-doped carbon composite with magnetic–dielectric synergy toward strong microwave absorption. Small 2020, 16, 2000158.

[18]

Qiu, Y.; Yang, H. B.; Cheng, Y.; Lin, Y. MOFs derived flower-like nickel and carbon composites with controllable structure toward efficient microwave absorption. Compos. Part A Appl. Sci. Manuf. 2022, 154, 106772.

[19]

Liu, W.; Tan, S. J.; Yang, Z. H.; Ji, G. B. Enhanced low-frequency electromagnetic properties of MOF-derived cobalt through interface design. ACS Appl. Mater. Interfaces 2018, 10, 31610–31622.

[20]

Liu, W.; Shao, Q. W.; Ji, G. B.; Liang, X. H.; Cheng, Y.; Quan, B.; Du, Y. W. Metal-organic-frameworks derived porous carbon-wrapped Ni composites with optimized impedance matching as excellent lightweight electromagnetic wave absorber. Chem. Eng. J. 2017, 313, 734–744.

[21]

Li, X. A.; Qu, X. Y.; Xu, Z.; Dong, W. Q.; Wang, F. Y.; Guo, W. C.; Wang, H. Y.; Du, Y. C. Fabrication of three-dimensional flower-like heterogeneous Fe3O4/Fe particles with tunable chemical composition and microwave absorption performance. ACS Appl. Mater. Interfaces 2019, 11, 19267–19276.

[22]

Cheng, T. T.; Guo, Y. Y.; Xie, Y. X.; Zhao, L. B.; Wang, T.; Meng, A. L.; Li, Z. J.; Zhang, M. Customizing the structure and chemical composition of ultralight carbon foams for superior microwave absorption performance. Carbon 2023, 206, 181–191.

[23]

Wu, Z. C.; Hu, W.; Huang, T.; Lan, P.; Tian, K.; Xie, F.; Li, L. Hierarchically porous carbons with controlled structures for efficient microwave absorption. J. Mater. Chem. C 2018, 6, 8839–8845.

[24]

Gao, S.; Zhang, G. Z.; Wang, Y.; Han, X. P.; Huang, Y.; Liu, P. B. MOFs derived magnetic porous carbon microspheres constructed by core–shell Ni@C with high-performance microwave absorption. J. Mater. Sci. Technol. 2021, 88, 56–65.

[25]

Jia, Z. R.; Kong, M. Y.; Yu, B. W.; Ma, Y. Z.; Pan, J. Y.; Wu, G. L. Tunable Co/ZnO/C@MWCNTs based on carbon nanotube-coated MOF with excellent microwave absorption properties. J. Mater. Sci. Technol. 2022, 127, 153–163.

[26]

Xu, X. Q.; Ran, F. T.; Fan, Z. M.; Cheng, Z. J.; Lv, T.; Shao, L.; Xie, Z. M.; Liu, Y. Y. Acidified bimetallic MOFs constructed Co/N co-doped low dimensional hybrid carbon networks for high-efficiency microwave absorption. Carbon 2021, 171, 211–220.

[27]

Xu, H. X.; Zhang, G. Z.; Wang, Y.; Ning, M. Q.; Ouyang, B.; Zhao, Y.; Huang, Y.; Liu, P. B. Size-dependent oxidation-induced phase engineering for MOFs derivatives via spatial confinement strategy toward enhanced microwave absorption. Nano-Micro Lett. 2022, 14, 102.

[28]

Wang, L.; Xing, H. L.; Gao, S. T.; Ji, X. L.; Shen, Z. Y. Porous flower-like NiO@graphene composites with superior microwave absorption properties. J. Mater. Chem. C 2017, 5, 2005–2014.

[29]

Shu, R. W.; Wu, Y.; Li, X. H.; Li, N. N.; Shi, J. J. Fabrication of bimetallic metal-organic frameworks derived cobalt iron alloy@carbon–carbon nanotubes composites as ultrathin and high-efficiency microwave absorbers. J. Colloid Interface Sci. 2022, 613, 477–487.

[30]

Wei, Y.; Liu, H. J.; Liu, S. C.; Zhang, M. M.; Shi, Y. P.; Zhang, J. W.; Zhang, L.; Gong, C. H. Waste cotton-derived magnetic porous carbon for high-efficiency microwave absorption. Compos. Commun. 2018, 9, 70–75.

[31]

Wu, J. Z.; Zhao, Y. H.; Zhao, X. Y.; Nan, H. Y.; Lu, Q. Q.; Chen, Q. Core–shell nanowires comprising silver@polypyrrole-derived pyrolytic carbon for high-efficiency microwave absorption. J. Mater. Sci. 2022, 57, 20672–20684.

[32]

Wang, F. Y.; Sun, Y. Q.; Li, D. R.; Zhong, B.; Wu, Z. G.; Zuo, S. Y.; Yan, D.; Zhuo, R. F.; Feng, J. J.; Yan, P. X. Microwave absorption properties of 3D cross-linked Fe/C porous nanofibers prepared by electrospinning. Carbon 2018, 134, 264–273.

[33]

Li, Y. X.; Liu, R. G.; Pang, X. Y.; Zhao, X. N.; Zhang, Y. H.; Qin, G. W.; Zhang, X. F. Fe@C nanocapsules with substitutional sulfur heteroatoms in graphitic shells for improving microwave absorption at gigahertz frequencies. Carbon 2018, 126, 372–381.

[34]

Su, X. G.; Wang, J.; Zhang, X. X.; Huo, S. Q.; Dai, W.; Zhang, B. Synergistic effect of polyhedral iron-cobalt alloys and graphite nanosheets with excellent microwave absorption performance. J. Alloys Compd. 2020, 829, 154426.

[35]

He, G. H.; Duan, Y. P.; Pang, H. F. Microwave absorption of crystalline Fe/MnO@C nanocapsules embedded in amorphous carbon. Nano-Micro Lett. 2020, 12, 57.

[36]

Guo, S. Y.; Bao, Y. F.; Li, Y.; Guan, H. L.; Lei, D. Y.; Zhao, T. J.; Zhong, B. M.; Li, Z. H. Super broadband absorbing hierarchical CoFe alloy/porous carbon@carbon nanotubes nanocomposites derived from metal-organic frameworks. J. Mater. Sci. Technol. 2022, 118, 218–228.

[37]

Fang, G.; Liu, C. Y.; Yang, Y.; Peng, K. S.; Cao, Y. F.; Jiang, T.; Zhang, Y. T.; Zhang, Y. J. Regulating percolation threshold via dual conductive phases for high-efficiency microwave absorption performance in C and X bands. ACS Appl. Mater. Interfaces 2021, 13, 37517–37526.

[38]

Yao, Z. Q.; Xu, S. Q.; Zhang, X. K.; Yuan, J. J.; Rong, C. C.; Xiong, Z. Z.; Zhu, X. R.; Yu, Y.; Yu, H. J.; Kang, S. Y. et al. CuCo nanocube/N-doped carbon nanotube composites for microwave absorption. ACS Appl. Nano Mater. 2023, 6, 1325–1338.

[39]

Fang, G.; Liu, C. Y.; Yang, Y.; Peng, K. S.; Cao, Y. F.; Xu, G. Y.; Zhang, Y. J. High-efficiency microwave absorbing performance originating from sufficient magnetic exchange coupling interaction and impressive dielectric loss. J. Mater. Chem. C 2021, 9, 1936–1944.

[40]

Zhou, X. F.; Jia, Z. R.; Feng, A. L.; Wang, X. X.; Liu, J. J.; Zhang, M.; Cao, H. J.; Wu, G. L. Synthesis of fish skin-derived 3D carbon foams with broadened bandwidth and excellent electromagnetic wave absorption performance. Carbon 2019, 152, 827–836.

[41]

Wu, H. J.; Wu, G. L.; Wang, L. D. Peculiar porous α-Fe2O3, γ-Fe2O3, and Fe3O4 nanospheres: Facile synthesis and electromagnetic properties. Powder Technol. 2015, 269, 443–451.

[42]

Wu, G. L.; Zhang, H. X.; Luo, X. X.; Yang, L. J.; Lv, H. L. Investigation and optimization of Fe/ZnFe2O4 as a wide-band electromagnetic absorber. J. Colloid Interface Sci. 2019, 536, 548–555.

[43]

Liu, Y.; Zhou, X. F.; Jia, Z. R.; Wu, H. J.; Wu, G. L. Oxygen vacancy-induced dielectric polarization prevails in the electromagnetic wave-absorbing mechanism for Mn-based MOFs-derived composites. Adv. Funct. Mater. 2022, 32, 2204499.

[44]

Lv, H. L.; Zhou, X. D.; Wu, G. L.; Kara, U. I.; Wang, X. G. Engineering defects in 2D g-C3N4 for wideband, efficient electromagnetic absorption at elevated temperature. J. Mater. Chem. A 2021, 9, 19710–19718.

[45]

Lv, H. L.; Yao, Y. X.; Li, S. C.; Wu, G. L.; Zhao, B.; Zhou, X. D.; Dupont, R. L.; Kara, U. I.; Zhou, Y. M.; Xi, S. B. et al. Staggered circular nanoporous graphene converts electromagnetic waves into electricity. Nat. Commun. 2023, 14, 1982.

[46]

Siddiki, S. H.; Verma, K.; Chakraborty, B.; Das, S.; Thakur, V. K.; Nayak, G. C. Defect dipole-induced HfO2-coated Ti3C2Tx MXene/nickel ferrite nanocomposites for enhanced microwave absorption. ACS Appl. Nano Mater. 2023, 6, 1839–1848.

[47]

Zhang, Y.; Tan, S. J.; Zhou, Z. T.; Guan, X. M.; Liao, Y.; Li, C.; Ji, G. B. Construction of Co2NiO4@MnCo2O4.5 nanoparticles with multiple hetero-interfaces for enhanced electromagnetic wave absorption. Particuology 2023, 81, 86–97.

[48]

Li, X. A.; Zhang, B.; Ju, C. H.; Han, X. J.; Du, Y. C.; Xu, P. Morphology-controlled synthesis and electromagnetic properties of porous Fe3O4 nanostructures from iron alkoxide precursors. J. Phys. Chem. C 2011, 115, 12350–12357.

[49]

Yan, L. L.; Liu, J.; Zhao, S. C.; Zhang, B.; Gao, Z.; Ge, H. B.; Chen, Y.; Cao, M. S.; Qin, Y. Coaxial multi-interface hollow Ni-Al2O3-ZnO nanowires tailored by atomic layer deposition for selective-frequency absorptions. Nano Res. 2017, 10, 1595–1607.

[50]

Gu, W. H.; Cui, X. Q.; Zheng, J.; Yu, J. W.; Zhao, Y.; Ji, G. B. Heterostructure design of Fe3N alloy/porous carbon nanosheet composites for efficient microwave attenuation. J. Mater. Sci. Technol. 2021, 67, 265–272.

[51]

Cheng, Y.; Zhao, H. Q.; Zhao, Y.; Cao, J. M.; Zheng, J.; Ji, G. B. Structure-switchable mesoporous carbon hollow sphere framework toward sensitive microwave response. Carbon 2020, 161, 870–879.

[52]

Yu, L. J.; Zhu, Y. F.; Fu, Y. Q. Waxberry-like carbon@polyaniline microspheres with high-performance microwave absorption. Appl. Surf. Sci. 2018, 427, 451–457.

[53]

Hou, Z. L.; Du, K. R.; Zhang, Y. Q.; Bi, S.; Zhang, J. Y. Nanoarchitectonics of MnO2 nanotubes as sea urchin-like aggregates for dielectric response and microwave absorption with a wide concentration domain. Nano Res. 2023, 16, 2604–2610.

[54]

Liu, Y. L.; Tian, C. H.; Wang, F. Y.; Hu, B.; Xu, P.; Han, X. J.; Du, Y. C. Dual-pathway optimization on microwave absorption characteristics of core–shell Fe3O4@C microcapsules: Composition regulation on magnetic core and MoS2 nanosheets growth on carbon shell. Chem. Eng. J. 2023, 461, 141867.

[55]

Xue, W.; Yang, G.; Bi, S.; Zhang, J. Y.; Hou, Z. L. Construction of caterpillar-like hierarchically structured Co/MnO/CNTs derived from MnO2/ZIF-8@ZIF-67 for electromagnetic wave absorption. Carbon 2021, 173, 521–527.

[56]

Rao, L. J.; Wang, L.; Yang, C. D.; Zhang, R. X.; Zhang, J. C.; Liang, C. Y.; Che, R. C. Confined diffusion strategy for customizing magnetic coupling spaces to enhance low-frequency electromagnetic wave absorption. Adv. Funct. Mater. 2023, 33, 2213258.

[57]

Nandan, R.; Pandey, P.; Gautam, A.; Bisen, O. Y.; Chattopadhyay, K.; Titirici, M. M.; Nanda, K. K. Atomic arrangement modulation in CoFe nanoparticles encapsulated in N-doped carbon nanostructures for efficient oxygen reduction reaction. ACS Appl. Mater. Interfaces 2021, 13, 3771–3781.

[58]

Chen, S. B.; Zhou, X. F.; Liao, J. H.; Yang, S. Y.; Zhou, X. S.; Gao, Q. Z.; Zhang, S. Q.; Fang, Y. P.; Zhong, X. H.; Zhang, S. S. FeNi intermetallic compound nanoparticles wrapped with N-doped graphitized carbon: A novel cocatalyst for boosting photocatalytic hydrogen evolution. J. Mater. Chem. A 2020, 8, 3481–3490.

[59]

Rezania, J.; Rahimi, H. Investigating the carbon materials’ microwave absorption and its effects on the mechanical and physical properties of carbon fiber and carbon black/polypropylene composites. J. Compos. Mater. 2017, 51, 2263–2276.

[60]

Meng, F. B.; Wang, H. G.; Huang, F.; Guo, Y. F.; Wang, Z. Y.; Hui, D.; Zhou, Z. W. Graphene-based microwave absorbing composites: A review and prospective. Compos. Part B Eng. 2018, 137, 260–277.

[61]

Diao, J. L.; Cai, Z. H.; Xia, L.; Wang, Z. Y.; Yin, Z. Z.; Liu, X. Y.; Ma, W. L.; Huang, Y. High-performance microwave absorption of 3D Bi2Te2.7Se0.3/graphene foam. Carbon 2021, 183, 702–710.

[62]

Zhang, D. Q.; Xiong, Y. F.; Cheng, J. Y.; Chai, J. X.; Liu, T. T.; Ba, X. W.; Ullah, S.; Zheng, G. P.; Yan, M.; Cao, M. S. Synergetic dielectric loss and magnetic loss towards superior microwave absorption through hybridization of few-layer WS2 nanosheets with NiO nanoparticles. Sci. Bull. 2020, 65, 138–146.

[63]

Bai, Y. W.; Shi, G. M.; Gao, J.; Shi, F. N. MOF decomposed for the preparation of Co3O4/N-doped carbon with excellent microwave absorption. J. Solid State Chem. 2020, 288, 121401.

[64]

Liu, Z. K.; Chen, J.; Que, M. D.; Zheng, H. Q.; Yang, L. F.; Yuan, H. D.; Ma, Y. Z.; Li, Y. J.; Yang, X. F. 2D Ti3C2Tx MXene/MOFs composites derived CoNi bimetallic nanoparticles for enhanced microwave absorption. Chem. Eng. J. 2022, 450, 138442.

[65]

Song, S. W.; Zhang, A. T.; Chen, L.; Jia, Q.; Zhou, C. L.; Liu, J. Q.; Wang, X. X. A novel multi-cavity structured MOF derivative/porous graphene hybrid for high performance microwave absorption. Carbon 2021, 176, 279–289.

[66]

Cheng, R. R.; Wang, Y.; Di, X. C.; Lu, Z.; Wang, P.; Wu, X. M. Heterostructure design of MOFs derived Co9S8/FeCoS2/C composite with efficient microwave absorption and waterproof functions. J. Mater. Sci. Technol. 2022, 129, 15–26.

[67]

Liu, P. B.; Gao, S.; Zhang, G. Z.; Huang, Y.; You, W. B.; Che, R. C. Hollow engineering to Co@N-doped carbon nanocages via synergistic protecting–etching strategy for ultrahigh microwave absorption. Adv. Funct. Mater. 2021, 31, 2102812.

[68]

Chen, X. T.; Wang, Z. D.; Zhou, M.; Zhao, Y.; Tang, S. L.; Ji, G. B. Multilevel structure carbon aerogels with 99.999% electromagnetic wave absorptivity at 1.8 mm and efficient thermal stealth. Chem. Eng. J. 2023, 452, 139110.

[69]

Huang, Q. Q.; Zhao, Y.; Wu, Y.; Zhou, M.; Tan, S. J.; Tang, S. L.; Ji, G. B. A dual-band transceiver with excellent heat insulation property for microwave absorption and low infrared emissivity compatibility. Chem. Eng. J. 2022, 446, 137279.

[70]

Fang, G.; Liu, C. Y.; Wei, X. Y.; Cai, Q. Y.; Chen, C.; Xu, G. Y.; Ji, G. B. Determining the preferable polarization loss for magnetoelectric microwave absorbers by strategy of controllably regulating defects. Chem. Eng. J. 2023, 463, 142440.

File
12274_2023_5799_MOESM1_ESM.pdf (1.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 04 April 2023
Revised: 25 April 2023
Accepted: 02 May 2023
Published: 13 June 2023
Issue date: July 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

We are thankful for financial support from the National Nature Science Foundation of China (Nos. 51971111 and 52273247), the Fund of Prospective Layout of Scientific Research for NUAA (Nanjing University of Aeronautics and Astronautics) (No. ILA220461A22), and the facilities in the Center for Microscopy and Analysis at Nanjing University of Aeronautics and Astronautics.

Return