Journal Home > Volume 16 , Issue 7

As an ideal carbon-free energy carrier, ammonia plays an indispensable role in modern society. The conventional industrial synthesis of NH3 by the Haber–Bosch technique under harsh reaction conditions results in serious energy consumption and environmental pollution. Therefore, it is essential to develop NH3 synthesis tactics under benign conditions. Electrochemical synthesis of NH3 has the advantages of mild reaction conditions and environmental friendliness, and has become a hotspot for research in recent years. It has been reported that zinc-nitrogen batteries (ZNBs), such as Zn-N2, Zn-NO, Zn-NO3, and Zn-NO2 batteries, can not only reduce nitrogenous species to ammonia but also have concomitant power output. However, the common drawbacks of these battery systems are unsatisfactory power density and ammonia production. In this review, the latest progress of ZNBs including the reaction mechanism of the battery and reactor design principles is systematically summarized. Subsequently, active site engineering of cathode catalysts is discussed, including vacancy defects, chemical doping, and heterostructure engineering. Finally, some insights are provided to improve the performance of ZNBs from a practical perspective of view.


menu
Abstract
Full text
Outline
About this article

Engineering active sites of cathodic materials for high-performance Zn-nitrogen batteries

Show Author's information Shanshan Chen1,2Kang Lian1Wenxian Liu3( )Qian Liu4Gaocan Qi1( )Jun Luo1,5Xijun Liu2( )
Institute for New Energy Materials and Low-Carbon Technologies, Tianjin Key Lab for Photoelectric Materials & Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resource, Environments and Materials, Guangxi University, Nanning 530004, China
College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
Institute for Advanced Study, Chengdu University, Chengdu 610106, China
ShenSi Lab, Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen 518110, China

Abstract

As an ideal carbon-free energy carrier, ammonia plays an indispensable role in modern society. The conventional industrial synthesis of NH3 by the Haber–Bosch technique under harsh reaction conditions results in serious energy consumption and environmental pollution. Therefore, it is essential to develop NH3 synthesis tactics under benign conditions. Electrochemical synthesis of NH3 has the advantages of mild reaction conditions and environmental friendliness, and has become a hotspot for research in recent years. It has been reported that zinc-nitrogen batteries (ZNBs), such as Zn-N2, Zn-NO, Zn-NO3, and Zn-NO2 batteries, can not only reduce nitrogenous species to ammonia but also have concomitant power output. However, the common drawbacks of these battery systems are unsatisfactory power density and ammonia production. In this review, the latest progress of ZNBs including the reaction mechanism of the battery and reactor design principles is systematically summarized. Subsequently, active site engineering of cathode catalysts is discussed, including vacancy defects, chemical doping, and heterostructure engineering. Finally, some insights are provided to improve the performance of ZNBs from a practical perspective of view.

Keywords: electrocatalysis, nitrogen reduction, ammonia synthesis, aqueous battery, Zn-nitrogen batteries

References(141)

[1]

Chen, A. L.; Xia, B. Y. Ambient dinitrogen electrocatalytic reduction for ammonia synthesis. J. Mater. Chem. A 2019, 7, 23416–23431.

[2]

He, S.; Somayaji, V.; Wang, M. D.; Lee, S. H.; Geng, Z. J.; Zhu, S. Y.; Novello, P.; Varanasi, C. V.; Liu, J. High entropy spinel oxide for efficient electrochemical oxidation of ammonia. Nano Res. 2022, 15, 4785–4791.

[3]

van Langevelde, P. H.; Katsounaros, I.; Koper, M. T. M. Electrocatalytic nitrate reduction for sustainable ammonia production. Joule 2021, 5, 290–294.

[4]

Kyriakou, V.; Garagounis, I.; Vasileiou, E.; Vourros, A.; Stoukides, M. Progress in the electrochemical synthesis of ammonia. Catal. Today 2017, 286, 2–13.

[5]

Li, C. C.; Wang, T.; Gong, J. L. Alternative strategies toward sustainable ammonia synthesis. Trans. Tianjin Univ. 2020, 26, 67–91.

[6]

Rouwenhorst, K. H. R.; Engelmann, Y.; van ‘t Veer, K.; Postma, R. S.; Bogaerts, A.; Lefferts, L. Plasma-driven catalysis: Green ammonia synthesis with intermittent electricity. Green Chem. 2020, 22, 6258–6287.

[7]

Teng, M. J.; Ye, J. R.; Wan, C.; He, G. Y.; Chen, H. Q. Research progress on Cu-based catalysts for electrochemical nitrate reduction reaction to ammonia. Ind. Eng. Chem. Res. 2022, 61, 14731–14746.

[8]
Lu, G. L.; Gao, S. S.; Liu, Q.; Zhang, S. S.; Luo, J.; Liu, X. J. Design of material regulatory mechanism for electrocatalytic converting NO/NO3 to NH3 progress. Nat. Sci., in press, https://doi.org/10.1002/ntls.20220047.
[9]

Wang, H. P.; Zhang, F.; Jin, M. M.; Zhao, D. L.; Fan, X. Y.; Li, Z. R.; Luo, Y. S.; Zheng, D. D.; Li, T. S.; Wang, Y. et al. V-doped TiO2 nanobelt array for high-efficiency electrocatalytic nitrite reduction to ammonia. Mater. Today Phys. 2023, 30, 100944.

[10]

Goldstein, V.; Rath, M. K.; Kossenko, A.; Litvak, N.; Kalashnikov, A.; Zinigrad, M. Solid oxide fuel cells for ammonia synthesis and energy conversion. Sustainable Energy Fuels 2022, 6, 4706–4715.

[11]

Jiao, F.; Xu, B. J. Electrochemical ammonia synthesis and ammonia fuel cells. Adv. Mater. 2019, 31, e1805173.

[12]

Wu, T. T.; Fan, W. J.; Zhang, Y.; Zhang, F. X. Electrochemical synthesis of ammonia: Progress and challenges. Mater. Today Phys. 2021, 16, 100310.

[13]

Peng, X. Y.; Zhang, R.; Mi, Y. Y.; Wang, H. T.; Huang, Y. C.; Han, L. L.; Head, A. R.; Pao, C. W.; Liu, X. J.; Dong, C. L. et al. Disordered Au nanoclusters for efficient ammonia electrosynthesis. ChemSusChem 2023, 16, e202201385.

[14]

Qi, D. F.; Lv, F.; Wei, T. R.; Jin, M. M.; Meng, G.; Zhang, S. S.; Liu, Q.; Liu, W. X.; Ma, D.; Hamdy, M. S. et al. High-efficiency electrocatalytic NO reduction to NH3 by nanoporous VN. Nano Res. Energy 2022, 1, e9120022.

[15]

Meng, G.; Jin, M. M.; Wei, T. R.; Liu, Q.; Zhang, S. S.; Peng, X. Y.; Luo, J.; Liu, X. J. MoC nanocrystals confined in N-doped carbon nanosheets toward highly selective electrocatalytic nitric oxide reduction to ammonia. Nano Res. 2022, 15, 8890–8896.

[16]

Li, J.; Zhao, D. L.; Zhang, L. C.; Ren, Y. C.; Yue, L. C.; Li, Z. R.; Sun, S. J.; Luo, Y. S.; Chen, Q. Y.; Li, T. S. et al. Boosting electrochemical nitrate-to-ammonia conversion by self-supported MnCo2O4 nanowire array. J. Colloid Interface Sci. 2023, 629, 805–812.

[17]

Guo, Y.; Zhang, R.; Zhang, S. C.; Zhao, Y. W.; Yang, Q.; Huang, Z. D.; Dong, B. B.; Zhi, C. Y. Pd doping-weakened intermediate adsorption to promote electrocatalytic nitrate reduction on TiO2 nanoarrays for ammonia production and energy supply with zinc-nitrate batteries. Energy Environ. Sci. 2021, 14, 3938–3944.

[18]

Zhang, R.; Wu, Z. X.; Huang, Z. D.; Guo, Y.; Zhang, S. C.; Zhao, Y. W.; Zhi, C. Y. Recent advances for Zn-gas batteries beyond Zn-air/oxygen battery. Chin. Chem. Lett. 2023, 34, 107600.

[19]

Zhang, R.; Zhang, S. C.; Guo, Y.; Li, C.; Liu, J. H.; Huang, Z. D.; Zhao, Y. W.; Li, Y. Y.; Zhi, C. Y. A Zn-nitrite battery as an energy-output electrocatalytic system for high-efficiency ammonia synthesis using carbon-doped cobalt oxide nanotubes. Energy Environ. Sci. 2022, 15, 3024–3032.

[20]

Liang, J.; Liu, P. Y.; Li, Q. Y.; Li, T. S.; Yue, L. C.; Luo, Y. S.; Liu, Q.; Li, N.; Tang, B.; Alshehri, A. A. et al. Amorphous boron carbide on titanium dioxide nanobelt arrays for high-efficiency electrocatalytic NO reduction to NH3. Angew. Chem., Int. Ed. 2022, 61, e202202087.

[21]

Ren, J. T.; Chen, L.; Wang, H. Y.; Yuan, Z. Y. Aqueous rechargeable Zn-N2 battery assembled by bifunctional cobalt phosphate nanocrystals-loaded carbon nanosheets for simultaneous NH3 production and power generation. ACS Appl. Mater. Interfaces 2021, 13, 12106–12117.

[22]

Li, X. H.; Li, T. S.; Ma, Y. J.; Wei, Q.; Qiu, W. B.; Guo, H. R.; Shi, X. F.; Zhang, P.; Asiri, A. M.; Chen, L. et al. Boosted electrocatalytic N2 reduction to NH3 by defect-rich MoS2 nanoflower. Adv. Energy Mater. 2018, 8, 1801357.

[23]

Li, X. T.; Chen, K.; Lu, X. B.; Ma, D. W.; Chu, K. Atomically dispersed Co catalyst for electrocatalytic NO reduction to NH3. Chem. Eng. J. 2023, 454, 140333.

[24]

Liu, W. X.; Feng, J. X.; Wei, T. R.; Liu, Q.; Zhang, S. S.; Luo, Y.; Luo, J.; Liu, X. J. Active-site and interface engineering of cathode materials for aqueous Zn-gas batteries. Nano Res. 2023, 16, 2325–2346.

[25]

Liu, H.; Liu, X. Y.; Yu, Y. S.; Yang, W. W.; Li, J.; Feng, M.; Li, H. B. Bifunctional networked Ag/AgPd core/shell nanowires for the highly efficient dehydrogenation of formic acid and subsequent reduction of nitrate and nitrite in water. J. Mater. Chem. A 2018, 6, 4611–4616.

[26]

Xu, H.; Ma, Y. Y.; Chen, J.; Zhang, W. X.; Yang, J. P. Electrocatalytic reduction of nitrate—A step towards a sustainable nitrogen cycle. Chem. Soc. Rev. 2022, 51, 2710–2758.

[27]

Zhang, R.; Guo, Y.; Zhang, S. C.; Chen, D.; Zhao, Y. W.; Huang, Z. D.; Ma, L. T.; Li, P.; Yang, Q.; Liang, G. J. et al. Efficient ammonia electrosynthesis and energy conversion through a Zn-nitrate battery by iron doping engineered nickel phosphide catalyst. Adv. Energy Mater. 2022, 12, 2103872.

[28]

Qiu, H.; Chen, Q. Y.; An, X. G.; Liu, Q.; Xie, L. S.; Zhang, J.; Yao, W. T.; Luo, Y. S.; Sun, S. J.; Kong, Q. Q. et al. WO2 nanoparticles with oxygen vacancies: A high-efficiency electrocatalyst for the conversion of nitrite to ammonia. J. Mater. Chem. A 2022, 10, 24969–24974.

[29]

Kosaka, F.; Nakamura, T.; Oikawa, A.; Otomo, J. Electrochemical acceleration of ammonia synthesis on Fe-based alkali-promoted electrocatalyst with proton conducting solid electrolyte. ACS Sustainable Chem. Eng. 2017, 5, 10439–10446.

[30]

Zhang, L. C.; Zhou, Q.; Liang, J.; Yue, L. C.; Li, T. S.; Luo, Y. S.; Liu, Q.; Li, N.; Tang, B.; Gong, F. et al. Enhancing electrocatalytic NO reduction to NH3 by the CoS nanosheet with sulfur vacancies. Inorg. Chem. 2022, 61, 8096–8102.

[31]

Qiao, Y. J.; Peng, M.; Lan, J.; Jiang, K.; Chen, D. C.; Tan, Y. W. Active-site engineering in dealloyed nanoporous catalysts for electrocatalytic water splitting. J. Mater. Chem. A 2023, 11, 495–511.

[32]

Gao, S. S.; Wang, T. W.; Jin, M. M.; Zhang, S. S.; Liu, Q.; Hu, G. Z.; Yang, H.; Luo, J.; Liu, X. J. Bifunctional Nb-N-C atomic catalyst for aqueous Zn-air battery driving CO2 electrolysis. Sci. China Mater. 2023, 66, 1013–1023.

[33]

Ge, S. M.; Zhang, L. W.; Hou, J. R.; Liu, S.; Qin, Y. J.; Liu, Q.; Cai, X. B.; Sun, Z. Y.; Yang, M. S.; Luo, J. et al. Cu2O-derived PtCu nanoalloy toward energy-efficient hydrogen production via hydrazine electrolysis under large current density. ACS Appl. Energy Mater. 2022, 5, 9487–9494.

[34]

Shen, H.; Wei, T. R.; Liu, Q.; Zhang, S. S.; Luo, J.; Liu, X. J. Heterogeneous Ni-MoN nanosheet-assembled microspheres for urea-assisted hydrogen production. J. Colloid Interface Sci. 2023, 634, 730–736.

[35]

Yang, M. S.; Sun, J. Q.; Qin, Y. J.; Yang, H.; Zhang, S. S.; Liu, X. J.; Luo, J. Hollow CoFe-layered double hydroxide polyhedrons for highly efficient CO2 electrolysis. Sci. China Mater. 2022, 65, 536–542.

[36]

Guo, F. J.; Zhang, M. Y.; Yi, S. C.; Li, X. X.; Xin, R.; Yang, M.; Liu, B.; Chen, H. B.; Li, H. M.; Liu, Y. J. Metal-coordinated porous polydopamine nanospheres derived Fe3N-FeCo encapsulated N-doped carbon as a highly efficient electrocatalyst for oxygen reduction reaction. Nano Res. Energy 2022, 1, e9120027.

[37]

Zhang, W. J.; Jiang, M. H.; Yang, S. Y.; Hu, Y.; Mu, B.; Tie, Z.; Jin, Z. In-situ grown CuOx nanowire forest on copper foam: A 3D hierarchical and freestanding electrocatalyst with enhanced carbonaceous product selectivity in CO2 reduction. Nano Res. Energy 2022, 1, e9120033.

[38]

Zhang, L. C.; Liang, J.; Yue, L. C.; Dong, K.; Li, J.; Zhao, D. L.; Li, Z. R.; Sun, S. J.; Luo, Y. S.; Liu, Q. et al. Benzoate anions-intercalated NiFe-layered double hydroxide nanosheet array with enhanced stability for electrochemical seawater oxidation. Nano Res. Energy 2022, 1, e9120028.

[39]

Liu, W. X.; Feng, J. X.; Yin, R. L.; Ni, Y. F.; Zheng, D.; Que, W. B.; Niu, X. X.; Dai, X. J.; Shi, W. H.; Wu, F. F. et al. Tailoring oxygenated groups of monolithic cobalt-nitrogen-carbon frameworks for highly efficient hydrogen peroxide production in acidic media. Chem. Eng. J. 2022, 430, 132990.

[40]

Liu, W. X.; Que, W. B.; Shen, X. H.; Yin, R. L.; Xu, X. L.; Zheng, D.; Feng, J. X.; Dai, X. J.; Niu, X. X.; Wu, F. F. et al. Unlocking active metal site of Ti-MOF for boosted heterogeneous catalysis via a facile coordinative reconstruction. Nanotechnology 2022, 33, 025401.

[41]

Zhang, H.; Qi, G. C.; Liu, W.; Zhang, S. S.; Liu, Q.; Luo, J.; Liu, X. J. Bimetallic phosphoselenide nanosheets as bifunctional catalysts for 5-hydroxymethylfurfural oxidation and hydrogen evolution. Inorg. Chem. Front. 2023, 10, 2423–2429.

[42]

Hu, B.; Xu, J.; Fan, Z. J.; Xu, C.; Han, S. C.; Zhang, J. X.; Ma, L. B.; Ding, B.; Zhuang, Z. C.; Kang, Q. et al. Covalent organic framework based lithium-sulfur batteries: Materials, interfaces, and solid-state electrolytes. Adv. Energy Mater. 2023, 13, 2203540.

[43]

Zheng, X. B.; Yang, J. R.; Li, P.; Jiang, Z. L.; Zhu, P.; Wang, Q. S.; Wu, J. B.; Zhang, E. H.; Sun, W. P.; Dou, S. X. et al. Dual-atom support boosts nickel-catalyzed urea electrooxidation. Angew. Chem., Int. Ed. 2023, 62, e202217449.

[44]

Liu, Z. H.; Du, Y.; Yu, R. H.; Zheng, M. B.; Hu, R.; Wu, J. S.; Xia, Y. Y.; Zhuang, Z. C.; Wang, D. S. Tuning mass transport in electrocatalysis down to sub-5 nm through nanoscale grade separation. Angew. Chem., Int. Ed. 2023, 62, e202212653.

[45]

Liu, Z. H.; Du, Y.; Zhang, P. F.; Zhuang, Z. C.; Wang, D. S. Bringing catalytic order out of chaos with nitrogen-doped ordered mesoporous carbon. Matter 2021, 4, 3161–3194.

[46]

Zhu, H.; Sun, S. H.; Hao, J. C.; Zhuang, Z. C.; Zhang, S. G.; Wang, T. D.; Kang, Q.; Lu, S. L.; Wang, X. F.; Lai, F. L. et al. A high-entropy atomic environment converts inactive to active sites for electrocatalysis. Energy Environ. Sci. 2023, 16, 619–628.

[47]

Zhuang, Z. C.; Li, Y.; Li, Y. H.; Huang, J. Z.; Wei, B.; Sun, R.; Ren, Y. J.; Ding, J.; Zhu, J. X.; Lang, Z. Q. et al. Atomically dispersed nonmagnetic electron traps improve oxygen reduction activity of perovskite oxides. Energy Environ. Sci. 2021, 14, 1016–1028.

[48]

Zhuang, Z. C.; Li, Y. H.; Yu, R. H.; Xia, L. X.; Yang, J. R.; Lang, Z. Q.; Zhu, J. X.; Huang, J. Z.; Wang, J. O.; Wang, Y. et al. Reversely trapping atoms from a perovskite surface for high-performance and durable fuel cell cathodes. Nat. Catal. 2022, 5, 300–310.

[49]

Zhuang, Z. C.; Xia, L. X.; Huang, J. Z.; Zhu, P.; Li, Y.; Ye, C. L.; Xia, M. G.; Yu, R. H.; Lang, Z. Q.; Zhu, J. X. et al. Continuous modulation of electrocatalytic oxygen reduction activities of single-atom catalysts through p–n junction rectification. Angew. Chem., Int. Ed. 2023, 62, e202212335.

[50]

Liang, J.; Chen, H. Y.; Mou, T.; Zhang, L. C.; Lin, Y. T.; Yue, L. C.; Luo, Y. S.; Liu, Q.; Li, N.; Alshehri, A. A. et al. Coupling denitrification and ammonia synthesis via selective electrochemical reduction of nitric oxide over Fe2O3 nanorods. J. Mater. Chem. A 2022, 10, 6454–6462.

[51]

Liu, H. X.; Fu, J. T.; Li, H. Y.; Sun, J. Q.; Liu, X. J.; Qiu, Y.; Peng, X. Y.; Liu, Y. F.; Bao, H. H.; Zhuo, L. C. et al. Single palladium site in ordered porous heteroatom-doped carbon for high-performance alkaline hydrogen oxidation. Appl. Catal. B: Environ. 2022, 306, 121029.

[52]

Choi, M.; Lee, W. Tuning the oxygen vacancy concentration in a heterostructured electrode for high chemical and electrochemical stabilities. Chem. Eng. J. 2022, 431, 134345.

[53]

Guo, X.; Wang, C. D.; Wang, W. J.; Zhou, Q.; Xu, W. J.; Zhang, P. J.; Wei, S. Q.; Cao, Y. Y.; Zhu, K. F.; Liu, Z. F. et al. Vacancy manipulating of molybdenum carbide MXenes to enhance Faraday reaction for high performance lithium-ion batteries. Nano Res. Energy 2022, 1, e9120026.

[54]

Liu, W. X.; Que, W. B.; Yin, R. L.; Dai, J. L.; Zheng, D.; Feng, J. X.; Xu, X. L.; Wu, F. F.; Shi, W. H.; Liu, X. J. et al. Ferrum-molybdenum dual incorporated cobalt oxides as efficient bifunctional anti-corrosion electrocatalyst for seawater splitting. Appl. Catal. B: Environ. 2023, 328, 122488.

[55]

Hou, X. H.; Ding, J. Y.; Liu, W. X.; Zhang, S. S.; Luo, J.; Liu, X. J. Asymmetric coordination environment engineering of atomic catalysts for CO2 reduction. Nanomaterials 2023, 13, 309.

[56]

Ji, Y. A.; Du, J.; Chen, A. B. Review on heteroatom doping carbonaceous materials toward electrocatalytic carbon dioxide reduction. Trans. Tianjin Univ. 2022, 28, 292–306.

[57]

Wang, Y. T.; Zhou, W.; Jia, R. R.; Yu, Y. F.; Zhang, B. Unveiling the activity origin of a copper-based electrocatalyst for selective nitrate reduction to ammonia. Angew. Chem., Int. Ed. 2020, 59, 5350–5354.

[58]

Wang, H.; Li, Z. J.; Li, Y.; Yang, B.; Chen, J.; Lei, L. C.; Wang, S. B.; Hou, Y. An exfoliated iron phosphorus trisulfide nanosheet with rich sulfur vacancy for efficient dinitrogen fixation and Zn-N2 battery. Nano Energy 2021, 81, 105613.

[59]

Luo, P.; Zhang, W. W.; Cai, W. Y.; Huang, Z.; Liu, G. Y.; Liu, C.; Wang, S. Y.; Chen, F.; Xia, L. X.; Zhao, Y. et al. Accelerated ion/electron transport kinetics and increased active sites via local internal electric fields in heterostructured VO2-carbon cloth for enhanced zinc-ion storage. Nano Res. 2023, 16, 503–512.

[60]

Gao, S. S.; Wei, T. R.; Sun, J. Q.; Liu, Q.; Ma, D.; Liu, W. X.; Zhang, S. S.; Luo, J.; Liu, X. J. Atomically dispersed metal-based catalysts for Zn-CO2 batteries. Small Struct. 2022, 3, 2200086.

[61]

Lu, G. L.; Wang, Z. G.; Zhang, S. S.; Ding, J. Y.; Luo, J.; Liu, X. J. Cathode materials for halide-based aqueous redox flow batteries: Recent progress and future perspectives. Nanoscale 2023, 15, 4250–4260.

[62]

Yang, M. S.; Liu, S.; Sun, J. Q.; Jin, M. M.; Fu, R.; Zhang, S. S.; Li, H. Y.; Sun, Z. Y.; Luo, J.; Liu, X. J. Highly dispersed Bi clusters for efficient rechargeable Zn-CO2 batteries. Appl. Catal. B: Environ. 2022, 307, 121145.

[63]
Feng, J. X.; Zheng, D.; Yin, R. L.; Niu, X. X.; Xu, X. L.; Meng, S. B.; Ma, S. L.; Shi, W. H.; Wu, F. F.; Liu, W. X. et al. A wide-temperature adaptive aqueous zinc-air battery-based on Cu-Co dual metal-nitrogen-carbon/nanoparticle electrocatalysts. Small Struct., in press, https://doi.org/10.1002/sstr.202200340.
[64]

Cui, T. T.; Wang, Y. P.; Ye, T.; Wu, J.; Chen, Z. Q.; Li, J.; Lei, Y. P.; Wang, D. S.; Li, Y. D. Engineering dual single-atom sites on 2D ultrathin N-doped carbon nanosheets attaining ultra-low-temperature zinc-air battery. Angew. Chem., Int. Ed. 2022, 61, e202115219.

[65]

Wang, Y.; Wu, J.; Tang, S. H.; Yang, J. R.; Ye, C. L.; Chen, J.; Lei, Y. P.; Wang, D. S. Synergistic Fe-Se atom pairs as bifunctional oxygen electrocatalysts boost low-temperature rechargeable Zn-air battery. Angew. Chem., Int. Ed. 2023, 62, e202219191.

[66]

Cui, J. Y.; Li, Z. H.; Xu, A. N.; Li, J. B.; Shao, M. F. Confinement of zinc salt in ultrathin heterogeneous film to stabilize zinc metal anode. Small 2021, 17, 2100722.

[67]

Tian, Y. D.; Chen, S.; He, Y. L.; Chen, Q. W.; Zhang, L. L.; Zhang, J. T. A highly reversible dendrite-free Zn anode via spontaneous galvanic replacement reaction for advanced zinc-iodine batteries. Nano Res. Energy 2022, 1, e9120025.

[68]

Liu, W.; Han, L. L.; Wang, H. T.; Zhao, X. R.; Boscoboinik, J. A.; Liu, X. J.; Pao, C. W.; Sun, J. Q.; Zhuo, L. C.; Luo, J. et al. FeMo sub-nanoclusters/single atoms for neutral ammonia electrosynthesis. Nano Energy 2020, 77, 105078.

[69]

Wang, H.; Si, J. C.; Zhang, T. Y.; Li, Y.; Yang, B.; Li, Z. J.; Chen, J.; Wen, Z. H.; Yuan, C.; Lei, L. C. et al. Exfoliated metallic niobium disulfate nanosheets for enhanced electrochemical ammonia synthesis and Zn-N2 battery. Appl. Catal. B: Environ. 2020, 270, 118892.

[70]

Gao, S. S.; Chen, S. S.; Liu, Q.; Zhang, S. S.; Qi, G. C.; Luo, J.; Liu, X. J. Bifunctional BiPd alloy particles anchored on carbon matrix for reversible Zn-CO2 battery. ACS Appl. Nano Mater. 2022, 5, 12387–12394.

[71]

Ren, J. T.; Chen, L.; Liu, Y. P.; Yuan, Z. Y. Hollow cobalt phosphate microspheres for sustainable electrochemical ammonia production through rechargeable Zn-N2 batteries. J. Mater. Chem. A 2021, 9, 11370–11380.

[72]

Huang, Z. L.; Rafiq, M.; Woldu, A. R.; Tong, Q. X.; Astruc, D.; Hu, L. S. Recent progress in electrocatalytic nitrogen reduction to ammonia (NRR). Coord. Chem. Rev. 2023, 478, 214981.

[73]

Li, Q. Q.; Guo, Y. L.; Tian, Y.; Liu, W. M.; Chu, K. Activating VS2 basal planes for enhanced NRR electrocatalysis: The synergistic role of S-vacancies and B dopants. J. Mater. Chem. A 2020, 8, 16195–16202.

[74]

Huang, S. M.; Zhang, M.; Liu, Y. T. Preparation and NRR application of transition metal nanosheets on carbon nanofiber membranes. J. Phys.: Conf. Ser. 2021, 1948, 012222.

[75]

Liu, K.; Fu, J. W.; Zhu, L.; Zhang, X. D.; Li, H. M.; Liu, H.; Hu, J. H.; Liu, M. Single-atom transition metals supported on black phosphorene for electrochemical nitrogen reduction. Nanoscale 2020, 12, 4903–4908.

[76]

Chen, H. H.; Zhang, S. S.; Liu, Q.; Yu, P.; Luo, J.; Hu, G. Z.; Liu, X. J. CoSe2 nanocrystals embedded into carbon framework as efficient bifunctional catalyst for alkaline seawater splitting. Inorg. Chem. Commun. 2022, 146, 110170.

[77]

Liu, X. J.; Yang, H.; He, J.; Liu, H. X.; Song, L. D.; Li, L.; Luo, J. Highly active, durable ultrathin MoTe2 layers for the electroreduction of CO2 to CH4. Small 2018, 14, 1704049.

[78]

Shen, S. B.; He, J.; Peng, X. Y.; Xi, W.; Zhang, L. H.; Xi, D. S.; Wang, L.; Liu, X. J.; Luo, J. Stepped surface-rich copper fiber felt as an efficient electrocatalyst for the CO2RR to formate. J. Mater. Chem. A 2018, 6, 18960–18966.

[79]

Du, C.; Gao, Y. J.; Wang, J. G.; Chen, W. Achieving 59% Faradaic efficiency of the N2 electroreduction reaction in an aqueous Zn-N2 battery by facilely regulating the surface mass transport on metallic copper. Chem. Commun. 2019, 55, 12801–12804.

[80]

Lin, S. S.; Zhang, X. H.; Chen, L. G.; Zhang, Q.; Ma, L. L.; Liu, J. G. A review on catalysts for electrocatalytic and photocatalytic reduction of N2 to ammonia. Green Chem. 2022, 24, 9003–9026.

[81]

Lv, X. W.; Liu, Y. P.; Wang, Y. S.; Liu, X. L.; Yuan, Z. Y. Encapsulating vanadium nitride nanodots into N,S-codoped graphitized carbon for synergistic electrocatalytic nitrogen reduction and aqueous Zn-N2 battery. Appl. Catal. B: Environ. 2021, 280, 119434.

[82]

Chen, H. J.; Xu, Z. Q.; Sun, S. J.; Luo, Y. S.; Liu, Q.; Hamdy, M. S.; Feng, Z. S.; Sun, X. P.; Wang, Y. Plasma-etched Ti2O3 with oxygen vacancies for enhanced NH3 electrosynthesis and Zn-N2 batteries. Inorg. Chem. Front. 2022, 9, 4608–4613.

[83]

Zhang, L. C.; Liang, J.; Wang, Y. Y.; Mou, T.; Lin, Y. T.; Yue, L. C.; Li, T. S.; Liu, Q.; Luo, Y. L.; Li, N. et al. High-performance electrochemical NO reduction into NH3 by MoS2 nanosheet. Angew. Chem., Int. Ed. 2021, 60, 25263–25268.

[84]

Boyano, A.; Gálvez, M. E.; Moliner, R.; Lázaro, M. J. Carbon based catalytic briquettes for the reduction of NO: Catalyst scale-up. Catal. Today 2008, 137, 209–214.

[85]

Chen, K.; Wang, J. X.; Kang, J. L.; Lu, X. B.; Zhao, X. L.; Chu, K. Atomically Fe-doped MoS2−x with Fe-Mo dual sites for efficient electrocatalytic NO reduction to NH3. Appl. Catal. B: Environ. 2023, 324, 122241.

[86]

Wei, T. R.; Bao, H. H.; Wang, X. Z.; Zhang, S. S.; Liu, Q.; Luo, J.; Liu, X. J. Ionic liquid-assisted electrocatalytic NO reduction to NH3 by P-doped MoS2. ChemCatChem 2023, 15, e202201411.

[87]

Wei, T. R.; Liu, W. X.; Zhang, S. S.; Liu, Q.; Luo, J.; Liu, X. J. A dual-functional Bi-doped Co3O4 nanosheet array towards high efficiency 5-hydroxymethylfurfural oxidation and hydrogen production. Chem. Commun. 2023, 59, 442–445.

[88]

Lin, Y. T.; Liang, J.; Li, H. B.; Zhang, L. C.; Mou, T.; Li, T. S.; Yue, L. C.; Ji, Y. Y.; Liu, Q.; Luo, Y. L. et al. Bi nanodendrites for highly efficient electrocatalytic NO reduction to NH3 at ambient conditions. Mater. Today Phys. 2022, 22, 100611.

[89]

Liu, Q.; Lin, Y. T.; Yue, L. C.; Liang, J.; Zhang, L. C.; Li, T. S.; Luo, Y. S.; Liu, M. L.; You, J. M.; Alshehri, A. A. et al. Bi nanoparticles/carbon nanosheet composite: A high-efficiency electrocatalyst for NO reduction to NH3. Nano Res. 2022, 15, 5032–5037.

[90]

Liu, P. Y.; Liang, J.; Wang, J. Q.; Zhang, L. C.; Li, J.; Yue, L. C.; Ren, Y. C.; Li, T. S.; Luo, Y. L.; Li, N. et al. High-performance NH3 production via NO electroreduction over a NiO nanosheet array. Chem. Commun. 2021, 57, 13562–13565.

[91]
Du, M. X.; Li, D.; Liu, S. Z.; Yan, J. Q. Transition metal phosphides: A wonder catalyst for electrocatalytic hydrogen production. Chin. Chem. Lett., in press, https://doi.org/10.1016/j.cclet.2023.108156.
[92]

Mou, T.; Liang, J.; Ma, Z. Y.; Zhang, L. C.; Lin, Y. T.; Li, T. S.; Liu, Q.; Luo, Y. L.; Liu, Y.; Gao, S. Y. et al. High-efficiency electrohydrogenation of nitric oxide to ammonia on a Ni2P nanoarray under ambient conditions. J. Mater. Chem. A 2021, 9, 24268–24275.

[93]

Liang, J.; Hu, W. F.; Song, B. Y.; Mou, T.; Zhang, L. C.; Luo, Y. S.; Liu, Q.; Alshehri, A. A.; Hamdy, M. S.; Yang, L. M. et al. Efficient nitric oxide electroreduction toward ambient ammonia synthesis catalyzed by a CoP nanoarray. Inorg. Chem. Front. 2022, 9, 1366–1372.

[94]

Meng, G.; Wei, T. R.; Liu, W. J.; Li, W. B.; Zhang, S. S.; Liu, W. X.; Liu, Q.; Bao, H. H.; Luo, J.; Liu, X. J. NiFe layered double hydroxide nanosheet array for high-efficiency electrocatalytic reduction of nitric oxide to ammonia. Chem. Commun. 2022, 58, 8097–8100.

[95]

Deng, Z. Q.; Liang, J.; Liu, Q.; Ma, C. Q.; Xie, L. S.; Yue, L. C.; Ren, Y. C.; Li, T. S.; Luo, Y. S.; Li, N. et al. High-efficiency ammonia electrosynthesis on self-supported Co2AlO4 nanoarray in neutral media by selective reduction of nitrate. Chem. Eng. J. 2022, 435, 135104.

[96]

Reddy, K. M.; Singh, S. P. Easy removal of nitrate and phosphate anions from water by low cost chitosan and activated charcoal. Int. J. Chem. React. Eng. 2020, 18, 20200113.

[97]

Zhou, J. J.; Pan, F.; Yao, Q. F.; Zhu, Y. Q.; Ma, H. R.; Niu, J. F.; Xie, J. P. Achieving efficient and stable electrochemical nitrate removal by in-situ reconstruction of Cu2O/Cu electroactive nanocatalysts on Cu foam. Appl. Catal. B: Environ. 2022, 317, 121811.

[98]

Gao, Q.; Pillai, H. S.; Huang, Y.; Liu, S. K.; Mu, Q. M.; Han, X.; Yan, Z. H.; Zhou, H.; He, Q.; Xin, H. L. et al. Breaking adsorption-energy scaling limitations of electrocatalytic nitrate reduction on intermetallic CuPd nanocubes by machine-learned insights. Nat. Commun. 2022, 13, 2338.

[99]

Cai, W.; Deng, J. Y.; Lu, H. M.; Cao, Y. Performance of metal borides as anode in metal boride-air battery. Mater. Chem. Phys. 2020, 251, 123101.

[100]

Xie, L. S.; Sun, S. J.; Hu, L.; Chen, J.; Li, J.; Ouyang, L.; Luo, Y. S.; Alshehri, A. A.; Kong, Q. Q.; Liu, Q. et al. In situ derived Co2B nanosheet array: A high-efficiency electrocatalyst for ambient ammonia synthesis via nitrate reduction. ACS Appl. Mater. Interfaces 2022, 14, 49650–49657.

[101]

Liu, Q.; Xie, L. S.; Liang, J.; Ren, Y. C.; Wang, Y. Y.; Zhang, L. C.; Yue, L. C.; Li, T. S.; Luo, Y. S.; Li, N. et al. Ambient ammonia synthesis via electrochemical reduction of nitrate enabled by NiCo2O4 nanowire array. Small 2022, 18, e2106961.

[102]

Li, Z. R.; Liang, J.; Liu, Q.; Xie, L. S.; Zhang, L. C.; Ren, Y. C.; Yue, L. C.; Li, N.; Tang, B.; Alshehri, A. A. et al. High-efficiency ammonia electrosynthesis via selective reduction of nitrate on ZnCo2O4 nanosheet array. Mater. Today Phys. 2022, 23, 100619.

[103]

Wu, T. Y.; Kong, X. G.; Tong, S. Y.; Chen, Y.; Liu, J.; Tang, Y.; Yang, X. J.; Chen, Y. M.; Wan, P. Y. Self-supported Cu nanosheets derived from CuCl-CuO for highly efficient electrochemical degradation of NO3. Appl. Surf. Sci. 2019, 489, 321–329.

[104]

Wen, W. D.; Yan, P.; Sun, W. P.; Zhou, Y. T.; Yu, X. Y. Metastable phase Cu with optimized local electronic state for efficient electrocatalytic production of ammonia from nitrate. Adv. Funct. Mater. 2023, 33, 2212236.

[105]

Li, S. X.; Liang, J.; Wei, P. P.; Liu, Q.; Xie, L. S.; Luo, Y. L.; Sun, X. P. ITO@TiO2 nanoarray: An efficient and robust nitrite reduction reaction electrocatalyst toward NH3 production under ambient conditions. eScience 2022, 2, 382–388.

[106]

Ren, Z. F.; Chen, Q. Y.; An, X. G.; Liu, Q.; Xie, L. S.; Zhang, J.; Yao, W. T.; Hamdy, M. S.; Kong, Q. Q.; Sun, X. P. High-efficiency ammonia electrosynthesis on anatase TiO2−x nanobelt arrays with oxygen vacancies by selective reduction of nitrite. Inorg. Chem. 2022, 61, 12895–12902.

[107]

Li, C.; Li, K.; Chen, C.; Tang, Q. L.; Sun, T. H.; Jia, J. P. Electrochemical removal of nitrate using a nanosheet structured Co3O4/Ti cathode: Effects of temperature, current and pH adjusting. Sep. Purif. Technol. 2020, 237, 116485.

[108]

Lv, X. W.; Liu, X. L.; Gao, L. J.; Liu, Y. P.; Yuan, Z. Y. Iron-doped titanium dioxide hollow nanospheres for efficient nitrogen fixation and Zn-N2 aqueous batteries. J. Mater. Chem. A 2021, 9, 4026–4035.

[109]

Li, Z. R.; Deng, Z. Q.; Ouyang, L.; Fan, X. Y.; Zhang, L. C.; Sun, S. J.; Liu, Q.; Alshehri, A. A.; Luo, Y. L.; Kong, Q. Q. et al. CeO2 nanoparticles with oxygen vacancies decorated N-doped carbon nanorods: A highly efficient catalyst for nitrate electroreduction to ammonia. Nano Res. 2022, 15, 8914–8921.

[110]

Wang, Y. T.; Wang, C. H.; Li, M. Y.; Yu, Y. F.; Zhang, B. Nitrate electroreduction: Mechanism insight, in situ characterization, performance evaluation, and challenges. Chem. Soc. Rev. 2021, 50, 6720–6733.

[111]

Ling, Y. F.; Ma, Q. L.; Yu, Y. F.; Zhang, B. Optimization strategies for selective CO2 electroreduction to fuels. Trans. Tianjin Univ. 2021, 27, 180–200.

[112]

Zhang, Y. Q.; Tao, L.; Xie, C.; Wang, D. D.; Zou, Y. Q.; Chen, R.; Wang, Y. Y.; Jia, C. K.; Wang, S. Y. Defect engineering on electrode materials for rechargeable batteries. Adv. Mater. 2020, 32, 1905923.

[113]

Guo, N. K.; Xue, H.; Bao, A.; Wang, Z. H.; Sun, J.; Song, T. S.; Ge, X.; Zhang, W.; Huang, K. K.; He, F. et al. Achieving superior electrocatalytic performance by surface copper vacancy defects during electrochemical etching process. Angew. Chem., Int. Ed. 2020, 59, 13778–13784.

[114]

Yang, X. H.; Ling, F. L.; Su, J. F.; Zi, X. R.; Zhang, H.; Zhang, H. J.; Li, J.; Zhou, M.; Wang, Y. Insights into the role of cation vacancy for significantly enhanced electrochemical nitrogen reduction. Appl. Catal. B: Environ. 2020, 264, 118477.

[115]

Ding, J. Y.; Hou, X. H.; Qiu, Y.; Zhang, S. S.; Liu, Q.; Luo, J.; Liu, X. J. Iron-doping strategy promotes electroreduction of nitrate to ammonia on MoS2 nanosheets. Inorg. Chem. Commun. 2023, 151, 110621.

[116]

Li, X. R.; Li, Y. P.; Wang, C. L.; Xue, H. G.; Pang, H.; Xu, Q. A 3D hierarchical electrocatalyst: Core–shell Cu@Cu(OH)2 nanorods/MOF octahedra supported on N-doped carbon for oxygen evolution reaction. Nano Res. 2023, 16, 8012–8017.

[117]

Wang, T. W.; Gao, S. S.; Wei, T. R.; Qin, Y. J.; Zhang, S. S.; Ding, J. Y.; Liu, Q.; Luo, J.; Liu, X. J. Co nanoparticles confined in mesoporous Mo/N co-doped polyhedral carbon frameworks towards high-efficiency oxygen reduction. Chem.—Eur. J. 2023, 29, e202204034.

[118]

Hou, J. R.; Peng, X. Y.; Sun, J. Q.; Zhang, S. S.; Liu, Q.; Wang, X. Z.; Luo, J.; Liu, X. J. Accelerating hydrazine-assisted hydrogen production kinetics with Mn dopant modulated CoS2 nanowire arrays. Inorg. Chem. Front. 2022, 9, 3047–3058.

[119]

Liu, H. M.; Lang, X. Y.; Zhu, C.; Timoshenko, J.; Rüscher, M.; Bai, L. C.; Guijarro, N.; Yin, H. B.; Peng, Y.; Li, J. H. et al. Efficient electrochemical nitrate reduction to ammonia with copper-supported rhodium cluster and single-atom catalysts. Angew. Chem., Int. Ed. 2022, 61, e202202556.

[120]

Yuan, X. B.; Li, H. Y.; Fan, J.; Zhang, L.; Ran, F.; Feng, M. L.; Li, P. Y.; Kong, W. X.; Chen, S. J.; Zang, Z. G. et al. Enhanced p-type conductivity of NiOx films with divalent Cd ion doping for efficient inverted perovskite solar cells. ACS Appl. Mater. Interfaces 2022, 14, 17434–17443.

[121]

Fan, X. Y.; Zhao, D. L.; Deng, Z. Q.; Zhang, L. C.; Li, J.; Li, Z. R.; Sun, S. J.; Luo, Y. S.; Zheng, D. D.; Wang, Y. et al. Constructing Co@TiO2 nanoarray heterostructure with Schottky contact for selective electrocatalytic nitrate reduction to ammonia. Small 2023, 19, e2208036.

[122]

Li, Z. X.; Hu, M. L.; Wang, P.; Liu, J. H.; Yao, J. S.; Li, C. Y. Heterojunction catalyst in electrocatalytic water splitting. Coord. Chem. Rev. 2021, 439, 213953.

[123]

Pan, S. Y.; Yu, X. X.; Ling, Y.; Yang, Z. H. Stable and efficient hydrogen evolution reaction catalyzed by NiO-Rh2P heterostructure electrocatalyst. Catal. Commun. 2022, 163, 106404.

[124]

Wang, K.; Guo, W. L.; Yan, S. C.; Song, H. Z.; Shi, Y. Hierarchical Co-FeS2/CoS2 heterostructures as a superior bifunctional electrocatalyst. RSC Adv. 2018, 8, 28684–28691.

[125]

Liu, D.; Lv, Z. P.; Dang, J.; Ma, W. S.; Jian, K. L.; Wang, M.; Huang, D. J.; Tian, W. Q. Nitrogen-doped MoS2/Ti3C2Tx heterostructures as ultra-efficient alkaline HER electrocatalysts. Inorg. Chem. 2021, 60, 9932–9940.

[126]

Chu, K.; Luo, Y. J.; Shen, P.; Li, X. C.; Li, Q. Q.; Guo, Y. L. Unveiling the synergy of O-vacancy and heterostructure over MoO3−x/MXene for N2 electroreduction to NH3. Adv. Energy Mater. 2022, 12, 2103022.

[127]

Kim, D.; Shin, D.; Heo, J.; Lim, H.; Lim, J. A.; Jeong, H. M.; Kim, B. S.; Heo, I.; Oh, I.; Lee, B. et al. Unveiling electrode–electrolyte design-based NO reduction for NH3 synthesis. ACS Energy Lett. 2020, 5, 3647–3656.

[128]

Xu, X.; Dai, J. X.; Guo, X.; Qian, C.; Zhang, P.; Duan, Y. X.; Tian, Y. H. Effective N2 capture by aryl cations at ambient temperature and pressure. Phys. Chem. Chem. Phys. 2021, 23, 10763–10767.

[129]

Zhang, W. Q.; Qin, X. H.; Wei, T. R.; Liu, Q.; Luo, J.; Liu, X. J. Single atomic cerium sites anchored on nitrogen-doped hollow carbon spheres for highly selective electroreduction of nitric oxide to ammonia. J. Colloid Interface Sci. 2023, 638, 650–657.

[130]

Jang, D.; Maeng, J.; Kim, J.; Han, H.; Park, G. H.; Ha, J.; Shin, D.; Hwang, Y. J.; Kim, W. B. Boosting electrocatalytic nitrate reduction reaction for ammonia synthesis by plasma-induced oxygen vacancies over MnCuOx. Appl. Surf. Sci. 2023, 610, 155521.

[131]

Zhu, K. L.; Ma, J.; Chen, L.; Wu, F. F.; Xu, X. D.; Xu, M. Q.; Ye, W.; Wang, Y.; Gao, P.; Xiong, Y. J. Unraveling the role of interfacial water structure in electrochemical semihydrogenation of alkynes. ACS Catal. 2022, 12, 4840–4847.

[132]

Xu, M. Q.; Xie, Q. F.; Duan, D. L.; Zhang, Y.; Zhou, Y. H.; Zhou, H. Q.; Li, X. Y.; Wang, Y.; Gao, P.; Ye, W. Atomically dispersed Cu sites on dual-mesoporous N-doped carbon for efficient ammonia electrosynthesis from nitrate. ChemSusChem 2022, 15, e202200231.

[133]

Ding, J. Y.; Liu, W. X.; Zhang, S. S.; Luo, J.; Liu, X. J. A mini review: Recent advances in asymmetrically coordinated atom sites for high-efficiency hydrogen evolution reaction. Energies 2023, 16, 2664.

[134]

Zhang, S. C.; Liu, Q.; Tang, X. Y.; Zhou, Z. M.; Fan, T. Y.; You, Y. M.; Zhang, Q. C.; Zhang, S. S.; Luo, J.; Liu, X. J. Electrocatalytic reduction of NO to NH3 in ionic liquids by P-doped TiO2 nanotubes. Front. Chem. Sci. Eng. 2023, 17, 726–734.

[135]

Meng, G.; Cao, H. J.; Wei, T. R.; Liu, Q.; Fu, J. T.; Zhang, S. S.; Luo, J.; Liu, X. J. Highly dispersed Ru clusters toward an efficient and durable hydrogen oxidation reaction. Chem. Commun. 2022, 58, 11839–11842.

[136]

Zhang, H.; Luo, Y.; Chu, P. K.; Liu, Q.; Liu, X. J.; Zhang, S. S.; Luo, J.; Wang, X. Z.; Hu, G. Z. Recent advances in non-noble metal-based bifunctional electrocatalysts for overall seawater splitting. J. Alloys Compd. 2022, 922, 166113.

[137]

Liang, J.; Zhou, Q.; Mou, T.; Chen, H. Y.; Yue, L. C.; Luo, Y. S.; Liu, Q.; Hamdy, M. S.; Alshehri, A. A.; Gong, F. et al. FeP nanorod array: A high-efficiency catalyst for electroreduction of NO to NH3 under ambient conditions. Nano Res. 2022, 15, 4008–4013.

[138]

Zhang, H.; Wei, T. R.; Qiu, Y.; Zhang, S. S.; Liu, Q.; Hu, G. Z.; Luo, J.; Liu, X. J. Recent progress in metal phosphorous chalcogenides: Potential high-performance electrocatalysts. Small 2023, 19, 2207249.

[139]

Liu, Q.; Lin, Y. T.; Gu, S.; Cheng, Z. Q.; Xie, L. S.; Sun, S. J.; Zhang, L. C.; Luo, Y. S.; Alshehri, A. A.; Hamdy, M. S. et al. Enhanced N2-to-NH3 conversion efficiency on Cu3P nanoribbon electrocatalyst. Nano Res. 2022, 15, 7134–7138.

[140]
Chen, K.; Wang, G. H.; Guo, Y. L.; Ma, D. W.; Chu, K. Iridium single-atom catalyst for highly efficient NO electroreduction to NH3. Nano Res., in press, https://doi.org/10.1007/s12274-023-5556-7.
[141]

Wang, R.; Wu, Q. F.; Wu, M. J.; Zheng, J. X.; Cui, J.; Kang, Q.; Qi, Z. B.; Ma, J. D.; Wang, Z. C.; Liang, H. F. Interface engineering of Zn meal anodes using electrochemically inert Al2O3 protective nanocoatings. Nano Res. 2022, 15, 7227–7233.

Publication history
Copyright
Acknowledgements

Publication history

Received: 01 April 2023
Revised: 28 April 2023
Accepted: 01 May 2023
Published: 13 June 2023
Issue date: July 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 22075211, 22109118, 22275166, 21601136, and 51971157), Tianjin Science Fund for Distinguished Young Scholars (No. 19JCJQJC61800), Shenzhen Science and Technology Program (Nos. JCYJ20210324123202008, JCYJ20210324115412035, and ZDSYS20210813095534001), and Guangdong Foundation for Basic and Applied Basic Research Program (No. 2021A1515110880).

Return